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Abstract

We study a gravity model in 2 + 1 dimensions, arising from a generalized Chern-Simons (CS) density
we call a Higgs-Chern-Simons (HCS) density. This generalizes the construction of gravitational systems
resulting from non-Abelian CS densities in all odd dimensions. The new HCS densities employed here are
arrived at by the usual one-step descent of new Higgs–Chern-Pontryagin (HCP) densities, the latter resulting
from the dimensional reduction of Chern-Pontryagin (CP) densities in some even dimension, such that in any
given dimension (including even) there is an infinite tower of such models. Here, we restrict our attention
to the lowest dimension, 2 + 1, and to the simplest such model resulting from the dimensional reduction
of the 3-rd CP density. We construct a black hole (BH) solution in closed form, generalizing the familiar
BTZ BH. We also study the electrically charged BH solution of the same model augmented with a Maxwell
term, and contrast this solution with the electrically charged BTZ BH, specifically concering their respective
thermodynamic properties.

1 Introduction

Chern-Simons gravities (CSG) derived from non-Abelian Chern-Simons (CS) densities in 2+1 dimensions were
proposed by Witten in Ref. [1] and they were extended to all odd dimensions by Chamseddine in Refs. [2, 3].
CSG models consist of superpositions of gravitational models of all possible higher order gravities in the given
dimensions, each appearing with a precise real numerical coefficient resulting from the calculus. In this report
we refer to these models, aka. Lovelock models, as p-Einstein gravities, the number p being the power of the
Riemann curvature in the Lagrangian, with p = 0 being the cosmological constant.

The recent work [8] has proposed a new formulation of the CSG systems, which allows their construction
in all, both odd and even dimensions. The derivation of the new-CS densities follows exactly the same method
as the usual-CS densities in odd dimensions. The usual CS density results from the one-step descent of the
corresponding Chern-Pontryagin (CP) density. The CP density being a total-divergence

ΩCP = ∂iΩi , i = µ,D ; µ = 1, 2, . . . , d ; d = D − 1 ,

the CS density is defined as the D-th component of ΩM , namely ΩCS
def.
= ΩD.

In the new formulation, the role of the usual-CP density, which is defined in even dimensions only, is played
by what we refer to as the Higgs–Chern-Pontryagin (HCP) density, described in Refs. [4, 5] and in Appendix A
of Ref. [6]. These are dimensional descendents of the nth CP density in N = 2n dimensions, down to residual
D dimensions (D < N = 2n), where now D can be either odd or even. The relics of the gauge connection on
the co-dimension are Higgs scalars. The remarkable property of the HCP density ΩHCP[A,Φ], which is now
given in terms of both the residual gauge field A and the Higgs scalar Φ, is that like the CP density it is also a
total divergence

ΩHCP = ∂iΩi , i = µ,D ; µ = 1, 2, . . . , d ; d = D − 1 .
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Implementing now the one-step descent of the density Ωi, one can define the corresponding new Chern-Simons

density as the D-th component of Ωi, namely ΩHCS
def.
= ΩD. We refer to the quantity ΩHCS as the Higgs–Chern-

Simons (HCS) density. A detailed definition of the HCS density is given in Refs. [4, 5, 6]. Subsequently, a
similar definition for the HCS density was given in [7], but only in odd dimensions 1 and with the Higgs scalar
being a complex column, not suited to the application here. In our formulation, HCS densities are given in
both odd and even dimensions and in any given dimension, there is an infinite family of HCP densities in D
dimensions, as also HCS densities in d = D− 1 dimensions, since these follow from the descent of a CP density
in any dimension N = 2n > D.

Once the Higgs-CS (HCS) densities are calculated, they can be employed to generate gravitational theories
in the same spirit as in [1, 2, 3], which could be designated as HCS gravities (HCSG). In any given dimension,
there is an infinite family of such theories, each resulting from the infinite family of HCS densities.

In the passage of the HCS densities to gravitational systems in d = D − 1 dimensions, we see from (1) and
(2) below, that the gauge group is chosen to be SO(d) and the Higgs multiplet is chosen to be a D-component
isovector of SO(D) 2. The cornerstone of constructing CSG models is the identification of the non-Abelian (nA)
SO(D) connection in d = D − 1 dimensions 3, with the spin-connection ωab

µ and the V ielbein eaµ, (µ = 1, 2, 3;
a=1,2,3). The prescription employed in [1, 2, 3] is

Aµ = −1

2
ωab
µ γab + κ eaµ γa4 ⇒ Fµν = −1

2

(

Rab
µν − κ2 ea[µ e

b
ν]

)

γab + κCa
µνγa4 , (1)

(γab, γa4) being the Dirac gamma matrices used in the representation of the algebra of SO(D) , D = 4. The
constant κ has dimensions L−1, compensating the difference of the dimensions of the spin-connection and the
Dreibein. In (1),

Rab
µν = ∂[µω

ab
ν] + (ω[µων])

ab

is the Riemann curvature, and Ca
µν = D[µe

a
ν] is the torsion.

Here, in addition to (1), we posit the corresponding prescription for the Higgs scalar Φ,

2−1Φ = (φa γa5 + φγ45) ⇒ 2−1DµΦ = (Dµφ
a − κ eaµ φ)γa5 + (∂µφ+ κ eaµ φ

a)γ45 (2)

which clearly displays the iso-four-vector (φa, φ4), that are split into the three component frame-vector field
φa and the scalar field φ = φ4. The covariant derivative DµΦ of the Higgs scalar features the gravitational
covariant derivative

Dµφ
a = ∂µφ

a + ωab
µ φb

of the frame vector field φa. Indeed, this is a vector field φµ = eaµφ
a, which however has rather unusual dynamics

as will be seen below. It is neither a gauge field nor a Proca field, rather, it has geometric content.
The fields (φa, φ) are not matter fields like, e.g. Maxwell or Yang-Mills, or Skyrme, etc. In the latter cases,

the covariant derivatives are not defined by the (gravitational) spin-connection, while here they are as seen in
(2). In this sense they are like spinor fields. An immediate consequence of this is that theories like the one
proposed here can support solutions with torsion.

Unlike spinors however, the fields (φa, φ) are gravitational coordinates as they originate from the Higgs
field Φ of the nA gauge theory, which itself is a (dimensional) descendent of a (higher dimensional) connection.
Thus, as seen from (2), (φa, φ) are on the same footing as the usual gravitational coordinates (ωab

µ , eaµ). As a
consequence, we would expect that the effect of (φa, φ) on the solutions cannot be characterised as hair. We
expect that they support only black hole solutions and do not describe horizonless (soliton) solutions in the
limit of the horizon radius vanishing, as it happens in the usual theories with hair.

1Apart from the definition in Ref. [7] being restricted to odd dimensions, there is another important difference with with our
formulation. In our case the dimensional reduction is carried out on the gauge invariant CP density yielding the HCP density,
while in [7] it is the CS density in the (higher) odd dimensions that is subjected to dimensional reduction. While the results happen
to be similar, there is no guarantee they should agree since subjecting a gauge variant CS density to symmetry imposition as
done in [7] problematic.

2These choices coincide with the representations that yield monopoles on IRd described in[4]
3We do not make a choice for the signature of the space at this stage.
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The gravitational models resulting from the Higgs-CS (HCS) densities via (1)-(2) are referred to as HCS
gravities [8] (HCSG). In this report we have restricted our detailed study to the “simplest” HCSG model in 2+1
dimensions, namely to the HCSG model resulting from the HCS density descended from the HCP density in 6
(rather than those in 8, 10, etc.) dimensions. This model is an extension of the usual Chern-Simons gravity [1],
and our solutions can be contrasted with the Banados, Teitelboim and Zanelli (BTZ) [9] black hole solution in
that theory.

This paper is organized as follows. The model studied is presented in Section 2, including the equations of
motion. Then in Section 3 the imposition of (radial) symmetry is carried out, for the torsion-free case where the
spin-connection is restricted to the Levi-Civita connection. There are two questions that symmetry imposition
must address: a) The consistency of the Ansatz, and b) the consistency of using a torsion-free Ansatz, in a
theory where the torsion tensor cannot be set to zero a priori because of the appearance of the gravitational
covariant derivative. Both these questions are addressed implicitly, in Section 3. In Section 4 we present the
solutions of the system with backreacting HCSG fields.

2 A HCSG model in 2 + 1 dimensions

The Higgs–Chern-Simons density (HCS) employed here is the “simplest” example in 2+ 1 dimensions. By sim-
plest we mean that the Higgs–Chern-Simons (HCS) density employed to construct the HCS gravity (HCSG), is
the one resulting from the “simplest” Higgs–Chern-Pontryagin (HCP) density, which is defined in one dimension
higher, namely in four dimensions. Now in four dimensions, HCP densities can be constructed as dimensional
descendants of a CP density in 2n > 4 dimensions, hence it is reasonable to describe the “simplest” case at
hand to be the HCP density in 4 dimensions, the one that descends from the CP density in 2n = 6 dimensions.

Since like the CP density, the HCP density is a total divergence, then the corresponding HCS density results
from usual one-step descent, in this case from 4 to 3 dimensions. It may be helpful to display two such HCS
densities in 2+1 dimensions, each resulting from the one-step descent of a HCP density th 4 dimensions, the first
of which has resulted from the dimensional descent of the CP in 6 dimensions, and the second in 8 dimensions.
These are

Ω
(3,6)
HCS = −2η2Ω

(3)
CS − εµνλTr γ5DλΦ (Fµν Φ + FµνΦ) , (3)

Ω
(3,8)
HCS = 6η4Ω

(3)
CS − εµνλ Tr γ5

{

6 η2 (ΦDλΦ−DλΦΦ) Fµν

−
[

(

Φ2 DλΦΦ− ΦDλΦΦ2
)

− 2
(

Φ3 DλΦ−DλΦΦ3
)

]

Fµν

}

, (4)

where the leading term Ω
(3)
CS in each is the usual CS density

Ω
(3)
CS = εµνλTrAλ

(

Fµν − 2

3
AµAν

)

, (5)

and where the constant η and the Higgs field Φ both have the dimensions of L−1, like the gauge connection.
Our choice for the “simplest” HCS density will be (3), rather than for example (4) or ones originating from

even higher dimensional CP densities. Applying the prescriptions (1) and (2), (3) yields the HCS gravitational
(HCSG) model studied here,

LHCSG = ελµνεabc

{

2η2κ

(

ecλ R
ab
µν − 2

3
κ2eaµe

b
νe

c
λ

)

+

[

2(Rab
µν − κ2 ea[µe

b
ν])

[

φc(∂λφ+ κ edλφ
d)− φ(Dλφ

c − κ ecλφ)
]

−4κφa(Dλφ
b − κ ebλφ)C

c
µν

]

}

, (6)
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where Cc
µν is the torsion tensor.

In the Lagrangian (6), both the torsion Cc
µν and the covariant derivative Dλφ

c are defined in terms of the

spin-connection ωab
µ , so that the variation w.r.t. to the latter will result in the appearance of the Cc

µν in the field
equations. Whether or not can the torsion be set equal to zero consistently 4 for a particular field configuration
must be checked. This question is tackled in Section 3 where the system is subjected to static radial symmetry.

In the present work, we restrict our attentions to the Levi-Civita connection

ωab
µ [e, ∂e] = −1

2
edµ e

ρaeσb∂[ρeσ]d +
1

2
eλ[a ∂[µe

b]
λ] , (7)

subject to checking the consistency of our Ansatz with this case.

2.1 Equations of motion

To express the equations of motion concisely, it is useful to introduce the notations

Vλ
c = ελµνεcab(R

ab
µν − κ2ea[µe

b
ν]) , (8)

S = η2 − φ2 − |~φ|2 . (9)

The (modified) Einstein equations follow from the variation of (6) w.r.t. the Dreibein ecλ, yielding

Eλ
c = κSVλ

c + 4κελµνεcab
[

Dµφ
aDνφ

b − κφ
(

2Dµφ
a − κ eaµ φ

)

ebν
]

= 0 . (10)

The equations resulting from the variation of the frame-vector scalar φc are

Ec = 2Vλ
c (∂τφ+ κ ~eλ · ~φ) + 4ελµνεcabC

a
µν (Dλφ

b − κ ebλφ) = 0 , (11)

while the equation resulting from the variation of the scalar φ is

E = −2Vλ
c (Dτφ

c − κ ecλφ) = 0 . (12)

The torsion equations follow from the variation of (6) w.r.t. the spin connection ωab
λ , not constrained to be the

Levi-Civita connection (7), yielding

Eλ
ab = ελµνεcab

{

− 2κSCc
µν + 8Dµφ

c ∂νφ+

+8κ
[

(~eν · ~φ)Dµφ
c + eaν φ∂µφ

]

− 8κ2φ(~φ · ~eν)ecµ

}

= 0 (13)

Note that in (13) the curvature Rab
µν does not appear. Setting Ca

µν = 0 in (13) puts a constraint on the fields
(φa, φ), which for consistency should be satisfied for a given field configuration.

In (10), in (13) and in (11), the “usual” notation |~φ|2 = φaφa, (~eτ · ~φ) = eaµφ
a and (~eµ ·Dν

~φ) = eaµDνφ
a is

used.
Also, in what follows we opt for Minkowskian signature and make the replacement

κ → iκ , h → −ih . (14)

As such, setting φ = φa = 0 results in Einstein gravity with a negative cosmological constant Λ = −κ2. As found
in [9] by Banados, Teitelboim and Zanelli (BTZ), this model possess black hole (BH) solutions with Anti-de
Sitter asymptotics. Their study has been seminal for a better understanding of BH physics and dualities.

A natural question, which we propose to address in the following Section, is if the BTZ BHs possess gener-
alizations within the full model (6) with excited functions φ, φa.

4Note that coupling gravity, e.g. to Maxwell, Yang-Mills or Skyrme/Higgs fields can consistently be considered in a torsionless
framework, since the kinetic terms of these fields do not feature the spin-connection.
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3 The solutions

3.1 The Ansatz

We convert the usual static radially symmetric metric Ansatz in 2 + 1 dimensions

ds2 = A2(r)dr2 + r2dϕ2 −B2(r)dt2, (15)

(where r, t are the radial and time coordinate, respectively, while 0 ≤ ϕ < 2π), to the corresponding Dreibein
Ansatz as follows

eαr = Anα
(1) , eαϕ = r nα

(2) , e3t = B, (16)

where

nα
(1) =

(

cosnϕ
sinnϕ

)

= (εn(2))
α , nα

(2) =

(

− sinnϕ
cosnϕ

)

= −(εn(1))
α, (17)

where n is an integer.
The Ansatz we use for the frame-vector field φa = (φα, φ3) and the scalar φ is

φα = f(r)nα
(1) , φ3 = g(r), (18)

φ = h(r) , (19)

having used the same unit vector nα
(1) in (18) as that given by (17).

We restrict our attention to the torsion-free case, substituting the Ansatz (16) in the Levi-Civita connection
(7) and calculating the resulting components of the curvature. Using this reduced spin connection and the
Ansatz (18)-(19), we calculate the reduced (covariant) derivatives of the fields (φa, φ). Substituting all this
in the equations (10), (11) and (12), we find that these are satisfied for g(r) = 0. Thus there remain four
equations for the functions (A,B, f, h), plus one constraint equation that is satisfied. We then substitute this
torsion-free Ansatz in the torsion equations (13), yielding three non-trivial equations, each of which is satisfied
by the “Einstein” equation for h′. Therefore we conclude that our torsion-free Ansatz is consistent.

We also remark that the system is described by the reduced Lagrangian resulting from the imposition of
symmetry on (6),

4−1LHCSG = 2η2κ

[

−BA′

A2
+ κ2rAB

]

−
{

2

(

B′

A2

)

fh′ +
κ

A

[(

BA′

A

)

(g2 − h2)−B′(f2 + 2rhh′)

]

+κ2 [(rB′ +B)fh− rB(fh′ − hf ′)] + κ3rAB(f2 + g2 − 3h2)

}

. (20)

We observe that, indeed, (20) does not feature the derivative of the function g(r), and hence one can consistently
set g(r) = 0.

3.2 An exact solution (HBTZ BH)

In the absence of the fields (φa, φ), only the equation (10) must be solved, which is of course satisfied by the
vacuum BTZ solution [9]. Since the BTZ solution satisfies the equations of Chern-Simons gravity (CSG) in 2+1
dimensions, and since the solution presented here results instead from the equations of the Higgs–Chern-Simons
gravity (HCSG), one might refer to the new solutions as Higgs-BTZ, or simply as HBTZ black holes.

We have found that the field equations (10)-(12) possess a closed-form solution with

B2(r) =
1

A2(r)
= κ2r2 + ct, (21)

h(r) = c0r , f(r) =
c0
κ
B(r), (22)
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where ct, c0 are free parameters. Equivalently, (22) can be replaced by (f, h) → (h, f).
One can see that (21) corresponds to a globally AdS3 geometry (for ct > 0) or to a BTZ black hole

(for ct < 0), which are solutions of the Einstein equations also for φa = φ = 0. Thus the fields (φa, φ) do
not backreact on these geometries, leading to a vanishing effective energy-momentum tensor, i.e. that these
solutions are effectively vacuum solutions 5. This solution possesses another unusual property, namely that f
and h functions diverge at infinity.

One may ask if other solutions exist apart from (21), (22) (preferably with both f and g finite in the far
field). The answer seems to be negative, a strong indication in this direction coming from the study of the
near horizon expansion of the solutions. The first step here is to notice that the field equations imply that the
function f can be eliminated, with

f(r) =
h′(r)

κA(r)
, (23)

The BH solutions possess an horizon at r = rH > 0, where we suppose the following approximate form of the
generic solution (with A(r) = 1√

U(r)
, B(r) =

√

H(r)):

H(r) =
∑

k≥0

H(k)(r − rH)k, U(r) =
∑

k≥0

U(k)(r − rH)k, h(r) =
∑

k≥0

h(k)(r − rH)k, (24)

where H(k), U(k) and h(k) are real numbers. After substituting (24) in the equations of motion and solving
order by order, we have found that

H(r) = H(1)(r − rH) +
H(1)

2rh
(r − rH)2 +O(r − rH)12, (25)

U(r) = 2κ2rH(r − rH) + κ2(r − rH)2 +O(r − rH)12, (26)

h(r) =
h(0)

rH
r +O(r − rH)11. (27)

The above result has been proven up to order 11 in perturbation theory. It is likely however, that it holds to
all orders, although we do not have a proof of that. This coincides with the near horizon form of the exact
solution (21), (22) (note that the metric function B(r) is fixed up to a constant factor B(r) → λB(r) ). Thus we
conclude that (21), (22) is likely the unique configuration compatible with a regular expansion at the horizon6.

A similar argument excludes the existence of particle-like solitonic solutions apart from (22) in an AdS
background.

3.3 Deformed charged HBTZ black holes

The above results, namely the HBTZ solution, are consistent with the spirit of the ’no hair’ theorems, which
exclude the existence of BH solutions with matter fields that do not possess measured quantities subject to a
Gauss Law [16], [17], [18].

The ’no hair’ constraints can be circumvented for more complicated models, typically possessing gauge fields
(see e.g. [10], [11], [12], for seminal work on hairy black holes with AdS asymptotics). Thus one can ask if
the results in the previous subsection are generic and hold also in more general models, with a Lagrangian
containing matter fields in addition to fields (eaµ, φ

a, φ).
To address this question, we consider the simplest generalization of the model (4), with an additional Maxwell

term,

L = LHCSG − 1

4
F 2
µν , (28)

5 It is interesting to note the analogy with gravitating self-dual instantonic Yang-Mills configurations with Euclidean metric see
e.g. [13], [14], [15]. In that case the reason is that the stress tensor vanishes identically due to self-dualty. In the present case,
(21), (22) are solutions also for an Euclidean signature and one can easily check that the contribution of the second term in (6) to
the total action is nonvanishing. Based on this analogy, one might claim that these closed form solutions are effectively vacuum
solutions.

6This also agrees with our numerical results, which have failed to indicate the existence of other solutions apart from (21), (22).
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with Fµν = ∂[µAν] the field strength tensor. It is clear that in this case there will be a nonvanishing stress
tensor.

Considering the same metric Ansatz (15), we take a purely electric connection

Aµ = (A0, Ai) = (V (r), 0) . (29)

The corresponding equations are easily derived; note that V (r) interacts with (φa, φ) only via the geometry,
with the existence of a first integral

V =

∫

dr
Q

r

√
AB, (30)

where Q is an integration constant identified with the electric charge.
For f = g = h = 0, the electrically charged BTZ BH [9] is recovered, with

B2(r) =
1

A2(r)
= κ2r2 −M − Q2

2κ
log r . (31)

This solution possess an event horizon at r = rH , where B(rH) = 0.
We are interested in generalizations of this solution with nonvanishing fields (f, h). Assuming the existence

of a regular event horizon at r = rH > 0, the field equations imply the following approximate form of the
solutions near the horizon,

1

A2(r)
= H1κ

2r2H(r − rH) + . . . , B2(r) = κ2r2Hu1(r − rH) + . . . , (32)

f2(r) = h2
1H1r

2
H(r − rH) + . . . , h(r) = h0 + h1(r − rH) + . . . ,

in terms of two free parameters (h0, u1), with

H1 =
2

rH



1 +
Q2

6(2 + h2
0)κ

3r2H
(

√

1− 12h2
0κ

3r2H
Q2

− 1)



 , (33)

h1 =
1

2h0H1r2H

(

(2 + 3h2
0)(2−H1rH) + 2h2

0H1rH − Q2

κ3r2H

)

.

Note that the condition for H1 to be real implies the existence of a maximal value of the functions h(r) at the
horizon

h(rH) <
Q

2κrH
√
3κ

. (34)

We seek electrically charged HBTZ solutions deforming the charged BTZ BH’s, with the functions (f, h)
excited. We have encountered solutions that possess isolated zeros of (f, h) for some values of r, i.e., displaying
nodes, whose detailed study we have eschwewd. Henceforth we concentrate exclusively on nodeless, fundamental

solutions.
Generic solutions with non-standard asymptotics are found for the near horizon expansion (32). As seen in

Figure 1, similar to the exact solution (22), the fields (f, h) diverge linearly as r → ∞, with (h(r), f(r)) → c0r.
This divergence mixes with the logarithmic terms originating in the Maxwell part of the theory, leading to a
slower decay at infinity of the functions B2/r2 and A2r2, as compared to the charged BTZ case.

In addition to these generic solutions, we have found special solutions isolated in parameter space. For given
(and nonzero) (rH , Q), a different situation is found for a particular set of near-horizon parameters (h0, u1),
which lead to f and h vanishing at infinity, with c0 = 0 (for the data exhibited in Figure 1, this corresponds to
the blue point).
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f(r)/r

h(rH)=0.0005

Figure 1: The parameter c0 which enters the far field asymptotics of the functions f(r), h(r) (with (h(r), f(r)) →
c0r), is shown as a function of the value of h(r) at the horizon, for as set of generic solutions. The inset shows
a typical profile of the functions f(r), h(r).

The resulting configurations possess the following large-r asymptotic expansion:

A2(r) =
1

κ2r2
+

(

ct − 4c2s
κ2

+
Q2

2κ5
log r

)

1

r4
+ . . . , B2(r) = κ2r2 − ct −

Q2

2κ5
log r + . . . , (35)

f(r) = −cs
r

+ . . . , h(r) =
cs
r

+ . . . , (36)

in terms of two constants ct, cs.
This set of solutions are of particular interest and, for the remainder of this Section we shall confine our

discussions to their basic properties. These BHs are constructed numerically by using a standard ordinary
differential equation solver. In our approach, we evaluate the initial conditions (32) at r = 10−5 for global
tolerance 10−14, adjusting for fixed shooting parameter and integrate the equations towards r → ∞ where the
far field asymptotics (35) are approached. The profiles of a typical solution is displayed in Figure 1.

The resulting solutions can be interpreted as deformations of the charged BTZ BHs, since the fields (φa, φ) in
this case deform the geometry on and outside the horizon. To highlight the departure of the charged (deformed)
HBTZ BH from the charged BTZ BH, we consider some relevant thermodynamic quantities. Their Hawking
temperature TH and event horizon area AH are unambiguously defined, with

TH =
κ2r2H
4π

√

H1u1, AH = 2πrH . (37)

For f = h = 0, the mass of the solutions is determined by the constant ct in the far field asymptotics (35),
while the entropy is S = AH/4. However, given the direct coupling of the coupling of matter fields φa, φ with
the curvature tensor, the definition of the BH mass and entropy for the general model (28) is not a priori clear,
this issue requiring a separate study.

A number of basic properties of the solutions are shown in Figure 3. One can see that, similar to the charged
BTZ case, there is a single branch of solutions, with both ct and TH increasing with AH . Moreover, for the
same horizon size, the solutions with nonzero (f, h) are warmer. Interestingly, the solutions possess a zero
temperature extremal limit, which is nonsingular and featurs a nonvanishing horizon size. The deviation7 from

7The solutions possess a second parameter, cs, in the far field expansion (35), which can be interpreted as a scalar ’charge’, and
provides annother measure for the deviation of charged HBTZ BH from the (usual) charged BTZ BH. Note however, that no global
charge is a associated with cs.
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Figure 2: The profile of a typical black hole solution with nontrivial (φa, φ)-fields.
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Figure 3: Relevant data is shown for a family of charged black hole solutions.

the standard charged BTZ BH is maximal, close to that limit, while the fields (φa, φ) trivialize for large horizon
size, (f, g) → 0 as rH → ∞.

4 Summary and outlook

In this paper we have studied a generalization of the familiar Chern-Simons gravity (CSG) in 2 + 1 dimensions
proposed in Ref. [1], where the gravitational model is described by both the Einstein-Hilbert (EH) Lagrangian
with a (negative) cosmological constant. In our generalized model, in addition to the EH and cosmological terms,
our Lagrangian features new terms described by a frame-vector field φa and a scalar field φ. The dynamical
terms of the fields (φa, φ) are non-standard 8.

The generalization that introduces the fields (φa, φ) is a result of the following. While the construction of

8By standard, we mean that the dynamical term of the field φµ = eaµφa would feature the square of the velocity field ∂µφν .
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Chern-Simons gravities in all odd dimensions employs [1][2, 3] non-Abelian Chern-Simons densities, we employ
instead an alternative type of generaized CS densities that we have referred to as Higgs–Chern-Simons [4, 5, 6]
(HCS) densities. The HCS densities are extracted from the Higgs–Chern-Pontryagin [4] (HCP) densities, which
being descendents of Chern-Pontryagin (CP) constitute an infinite family in any even given, including even

spacetime dimensions. This construction is described in Ref. [8]. The present work is a first exploration of such
gravitational models, and we have chosen the lowest dimension, 2 + 1, and simplest model in this dimension,
which employs the HCS density extracted from the 3-rd CP density in 6 dimensions.

The HCS gravity model we have studied, (6), features the gravitational covariant derivatives of the frame
vector field φa, a = 1, , 2, 3 in this case, so that the possibility of finding non-zero torsion solutions is not
excluded. Here we have chosen to seek only torsion-free solutions. We have constructed radially symmetric
solutions employing the usual metric [9] Ansatz, augmented by a suitable Ansatz for the fields (φa, φ). We have
verified the consistency of our Ansatz, and what is more is, that we have verified that the torsion equations
resulting from the variation of (6) with respect to the spin-connection are identically satisfied by the equations
resulting from the variation of (6) with respect to the metric fields, in this Ansatz.

We have found a closed form solution analogous to the BTZ [9] black hole, which we have referred to as a
Higgs-BTZ HBTZ black hole (BH). We have a heuristic verification of the fact that this HBTZ BH is unique,
and most importantly that there are no regular solutions in this model. In this respect, the HBTZ BHs cannot
be considered as hairy solutions, as would have been the case if matter fields were present and the solutions
persisted in the limit of vanishing horizon radius. As such, the fields (φa, φ) should not be seen as matter fields.

With the intention of introducing a matter field, we have extended our model to feature a Maxwell term.
We have sought, and found, new solutions by adding the Maxwell field to (6). As in the case of the electrically
charged BTZ BH [9], the Abelian matter does not result in hairy solutions and the solutions we find are
qualitatively similar to the electrically charged BTZ BH. Unlike the latter however, these electrically charged
HBTZ BHs are not given in closed form but are constructed numerically. We have found it useful to consider
some thermodynamic properties of the electrically charged HBTZ BHs, by way of contrasting them to the
electrically charged BTZ BHs.

As this is a preliminary exploration of such systems, there is a long list of follow-up investigations, which
we list:

• Seek torsionful solutions in the model studied here.

• Analyze the present model, augmented by the planar Skyrme model in 2 + 1 dimensions, by way of
introducing a metter field. This would be an alternative to the Maxwell field considered here as a matter
field. We expect that with the Skyrme matter, regular solutions in the limit of vanishing horizon radius
may exist.

• Consider the HBTZ BHs in 2 + 1 dimensions, of the next HCSG model in the hierarchy, namely (4) that
results from the dimensional reduction of the 4-th CP density in 8 dimensions. We expect the resulting
HBTZ BH to be qualitaively similar to the one studied here.

• Consider the HBTZ BHs in 4 + 1 and 6 + 1 dimensions, in the HCSG models constructed from HCS
densities extracted from HCP densities descended from the 4-th and 5-th CP densities given in Ref. [8].

This would throw light on some general properties of HCSG BHs in all odd dimensions, analogous to
the property common to CSG BHs in all odd dimensions, namely that the simplest solutions posesses a
generic form with 1

grr
= −gtt = κ2r2 + ct, starting with the BTZ BH in 2 + 1 dimensions.

• Consider the HBTZ BHs in 3 + 1 dimensions, in the HCSG models constructed from HCS densities
extracted from HCP densities descended from the 3-rd and 4-th CP densities [8]. This would be a
novel result in that Chern-Simons gravitational BHs in even dimensional spacetimes may also be of some
interest.

In addition to the above systematic follow-ups, it is possible to consider a more formal possibility. This is
the analogue of augmenting a given gravitational Lagrangian, with a gravitational Chern-Simons (GCS) term,
most familiary known since a long time from Ref. [19] where the usual Einstein Lagrangian was augmented
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by the GCS term in 2 + 1 dimensions. In the present case for example, one might consider the gravitational
Higgs–Chern-Simons term (GHCS), since this one features the same field multiplets. (eaµ, φ

a, φ) as the HCSG
model studied. (The definitions of GCHS terms, along with the usual GCS densities, is given in Ref. [8]. These
are derived from a modified version 9 of the HCS densities rather than from the CS densities in the usual case.)

The simplest such GHCS term in 2 + 1 dimensions, which has the same dimensions as (6), is

Ω̂
(3,6)
GHCS = −2η2Ω̂

(3)
GCS + 4ελµν φaRab

µνDλφ
b, (38)

Ω̂
(3)
GCS = −1

2
ελµνωab

λ

[

Rab
µν − 2

3
(ωµων)

ab

]

, (39)

Ω̂
(3)
GCS in (39) being the usual GCS term used in Ref. [19, 20]. Note that the GHCS density (38) features only

the frame-vector field φa and not the scalar φ = φ4, while the latter is present in the HCSG model (6).
Perhaps more interesting are the first two GHCS densities in 3 + 1 dimensions, each derived from the HCS

densities extracted, respectively, from HCP density densities in 6 and in 8 dimensions. These are

Ω̂
(4,6)
GHCS = −1

4
εµνρσ Rab

µν R
ab
ρσ φ (40)

Ω̂
(4,8)
GHCS = −εµνρσ Rab

µν

{[

1

8

(

1− 1

3
(|φa|2 + φ2)

)

Rab
ρσ +

1

3
φab
ρσ

]

φ+
4

3
φaDρφ

b ∂σφ

}

(41)

where the abbreviated notation

φab
µν = D[µφ

aDν]φ
b , a = 1, 2, 3, 4 ; and φ = φ5 .

The reason for displaying (41) in addition to (40) is that the former does not feature any dynamical terms for
(φa, φ), while the latter does. The GHCS densities (40) and (41) can be viewed as alternatives to the GHCS
density proposed in Ref. [21].
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