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Abstract:We consider the O(3) non-linear sigma-model, composed of three real scalar fields

with a standard kinetic term and with a symmetry breaking potential in four spacetime dimen-

sions. We show that this simple, geometrically motivated model, admits both self-gravitating,

asymptotically flat, non-topological solitons and hairy black holes, when minimally coupled

to Einstein’s gravity, without the need to introduce higher order kinetic terms in the scalar

fields action. Both spherically symmetric and spinning, axially symmetric solutions are stud-

ied. The solutions are obtained under a ansatz with oscillation (in the static case) or rotation

(in the spinning case) in the internal space. Thus, there is symmetry non-inheritance: the

matter sector is not invariant under the individual spacetime isometries. For the hairy black

holes, which are necessarily spinning, the internal rotation (isorotation) must be synchronous

with the rotational angular velocity of the event horizon. We explore the domain of exis-

tence of the solutions and some of their physical properties, that resemble closely those of

(mini) boson stars and Kerr black holes with synchronised scalar hair in Einstein-(massive,

complex)-Klein-Gordon theory.
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1. Introduction

Non-linear sigma models are scalar field theories wherein the scalar fields take values on

a certain target manifold, described as a non-linear function of the fields. They were first

introduced long ago [1] in the context of a field theoretical description of pion decay. A

conceptually simple, but physically and mathematically rich particular example is the O(3)

sigma model, which has the very simple Lagrangian density

L =
1

2
∂µφ

α ∂µφα , (1.1)

where the trio of scalar fields, φα = (φ1, φ2, φ3) parameterises a 2-sphere: φαφα = 1. Thus,

on Euclidean 3-space, R3, the set of φα define a map R
3 −→ S2; moreover, the fields must

(spatially) asymptote to constant values, which may be chosen, say, as φα∞ = (0, 0, 1). The

identification of R3’s spatial infinity as a single point effectively replaces R3 by its one point

compactification, S3. Then, the scalar fields become a map

φα : S3 −→ S2 , (1.2)

which is naturally characterised by the Hopf index, the third homotopy group of S2, π3(S
2) =

Z.
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As it turns out, this very simple, geometrically appealing field theory has no finite energy,

localized solutions on R
3, as shown by using a standard Derrick-type scaling argument [2],

cf. Section 2.2. Such solitonic configurations are, nonetheless, found by augmenting the

Lagrangian (1.1) with a Skyrme-type term [3] which is quartic in the derivatives of the scalar

fields, as first realized in [4, 5]. This results in the Faddeev-Skyrme model, which has been

extensively studied over the last 30 years, its solutions carrying a topological charge given by

the (integer) Hopf index and being usually called in the literature Hopf solitons or Hopfions.

Hopfions have found a variety of applications in different branches of science, including not

only physics [6, 9, 7, 8], but also chemistry [10] and biology [11].

With the exception of adding higher derivative terms, no other mechanism to endow the

O(3)-non-linear sigma model (1.1) with finite mass-energy solutions is known. The addition

of a (positive) potential term V , in particular, is insufficient for the existence of solitonic

solutions, as shown, again by a scaling argument, cf. Section 2.2; and adding rotation to the

model – which results in isospinning Hopfions with some angular frequency w in the Faddeev-

Skyrme model – still requires the higher order kinetic term for the existence localised, finite

energy solutions [12, 13].

It is interesting to contrast the situation we have just described with the picture found in

a different class of non-linear scalar field theories wherein non-topological solitons in flat space

exist - Q-balls [14, 15]. These solitons emerge in the complex-Klein-Gordon field theory with

a mass term and a self-interacting potential, which, in the simplest cases, contains a quartic

and sextic term (besides the quadratic mass term). The emergence of these solutions, evading

Derrick type no-soliton arguments [2], is intrinsically linked to the existence of harmonic

oscillations in field space that do not carry through into the energy-momentum dynamics.

This is an early example of symmetry non-inheritance: the matter fields do not share the full

symmetry observed at the level of the spacetime energy-momentum distribution [16].

It is well known that Q-balls self-gravitate, when their complex-Klein-Gordon field the-

ory is minimally coupled to Einstein’s gravity. When the non-linearities of gravity are in-

troduced, moreover, the non-linearities of the field theory become optional. Self-gravitating

scalar solitons in the Einstein-complex-Klein-Gordon model only require a mass term. These

self-gravitating, asymptotically flat, everywhere regular lumps of scalar field energy are called

boson stars, and were originally obtained without scalar self-interactions [17, 18]. Such boson

stars, obtained in a model solely with a mass term are referred to as mini boson stars [19].

Boson stars containing scalar self-interactions, of quartic type, were first considered in [20];

boson stars with the simplest Q-ball type potential were discussed in [21, 22]. This latter ex-

ample yields non-trivial flat spacetime configurations (Q-balls) as the gravitational coupling

is switched off. The former examples of boson stars, trivialise in that limit. In all cases, the

models allows both static, spherically symmetric, and stationary, spinning, axially symmetric

boson star solutions - see e.g. [23, 24, 25, 26].
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We remark that boson stars, like Q-balls, exhibit symmetry non-inheritance. In the case

of spinning boson stars, the complex scalar field is, strictly speaking neither stationary nor

axially symmetric. In fact, there is an explicit temporal and azimuthal dependence of the

complex scalar field, endowing it with a phase rotation; but the corresponding energy mo-

mentum tensor is stationary and axially symmetric, and therefore the required compatibility

with a spacetime geometry preserved by these isometries is fulfilled.

In a recent development, it has been shown that each of these spinning, asymptotically

flat boson star models belong to a larger family of solutions of hairy black holes (BHs) [27, 28].

That is, it is always possible to place a BH horizon in equilibrium with a rotating boson star,

as long as the phase rotation of the boson star is synchronised with the angular velocity of

the BH horizon. Thus, these are BHs with synchronised hair. Taking the limit where the

horizon goes to zero size within this family of solutions, the hairy BHs reduce to spinning

boson stars; in the limit where the scalar field trivialises, they reduce to the vacuum Kerr

BH of general relativity [29], for the particular BH parameters that can support test field

stationary scalar clouds [30, 31, 27, 32, 33, 34]. These hairy BHs violate Wheeler’s dynamical

no hair conjecture [35] as they can form dynamically [36, 37] and be sufficiently long lived [38].

Moreover, in the space of solutions, they can have phenomenological features quite distinct

from Kerr, including different shadow shapes and topologies [39, 40] and a distinct X-ray

spectroscopy [41, 42]. Also, they present some distinct geometrical features, such as new

shapes of ergo-regions [43] and an interior geometry distinct from (eternal) Kerr [44]. The

way in which these BHs circumvent well known no hair theorems [45] is precisely related to

the symmetry non-inheritance they share with the spinning boson stars they reduce to in the

vanishing horizon limit - see e.g. [16, 46].

The case of mini-boson stars shows that the coupling of a field theory wherein no solitonic

solutions exist to gravity makes such finite energy lump solutions possible. This suggest

that, similarly to the case of the massive, free, complex Klein-Gordon field theory, minimally

coupling the O(3) non-linear sigma model (1.1) to Einstein’s gravity may yield solitonic finite

energy solutions, without a quartic (or higher order) term in the action. Moreover, since one

is now in the realm of gravity, BH solutions, and in particular hairy BHs, should exist.

The main purpose of this work is to show that, indeed, the coupling of the O(3) non-linear

sigma model (1.1) to Einstein’s gravity results in families of solitonic and hairy BH solutions

which closely resemble the pattern found in the non-self interacting, massive, complex scalar

field case. Again, the existence of both the solitons and the hairy BHs relies on a symmetry

non-inheritance mechanism. The scalar fields are neither stationary nor axisymmetric, but

possess a rotation in the field space - isorotation (or oscillations, in the static case). When

the angular velocity of this isorotation matches that of the black hole horizon, hairy BHs are

possible. In all cases, the oscillations in field space imply, for the existence of bound states, a

potential must be added to the matter Lagrangian (1.1), cf. eq. (2.2) below, which plays the
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role of a mass term. Both the solitonic solutions and hairy BHs trivialise in the flat spacetime

limit, as they are topologically trivial, for the (non-generic) ansatz we consider.

This paper is organised as follows. In Section 2 we introduce the model, including the field

equations, conserved Noether current and Noether charge. Scaling type arguments are then

used to establish the absence of solitonic solutions in flat spacetimes. Then, the spacetime

and scalar fields ansatz, as well as the boundary conditions to be used in finding the numerical

solutions are presented, together with some relevant physical quantities to be analysed. In

Section 3 we discuss our numerical results. Firstly we discuss the domain of existence of

the spherical and spinning solitons; next, then the domain of existence of the hairy BHs is

analysed. A discussion of some physical properties, including the matter distribution around

the BHs, the BH temperature, the types of ergo-regions observed and the shape of the horizon

follows. We also consider the variation of the solutions with the gravitational coupling and

illustrate the discrete set of families of solutions that arise in these models, labelled by an

integer - the azimuthal winding number. Finally, in Section 4 we present some conclusions

and further remarks.

2. The Model

2.1 Field equations and current

We consider the non-linear O(3) sigma model minimally coupled to Einstein’s gravity in 3+1

dimensions. The model’s action is

S =

∫ √−g
(

R

16πG
− Lm

)

d4x , (2.1)

where R is the scalar curvature, g is the determinant of the metric tensor, G is Newton’s

constant, and Lm is the matter field Lagrangian:

Lm =
λ1
2

(∂µφ
α)2 + λ0

(

1− φ3
)

, (2.2)

where the trio of real scalar fields φα, α = 1, 2, 3, is restricted to the surface of the unit sphere:

(φ1)2 + (φ2)2 + (φ3)2 = 1 . (2.3)

In order to yield asymptotically flat solutions, the boundary condition at spatial infinity are

φα → φα∞ = (0, 0, 1). The target space of the O(3) sigma model is therefore S2. Also, λ0 and

λ1 are (dimensionful) input parameters, their ratio fixing the mass of the fields’ excitations,

µ2 = λ0/λ1. Observe also that by appropriately rescaling the coordinates xµ and G one

can effectively set λ0 = λ1 = 1, leaving only one non-trivial parameter, α, where we define

α2 ≡ 4πGλ1.

Variation of (2.1) with respect to metric yields the Einstein equations:

Rµν −
1

2
Rgµν = 2α2Tµν , (2.4)
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where the stress-energy tensor is

Tµν = ∂µφ
α∂νφ

α − Lmgµν .

Variation of (2.1) with respect to scalar field itself leads to the following field equations:

∂µ∂
µφα + φα∞ = 0 , (2.5)

which are solved together with the constraint equation (2.3).

Observe that the potential term in (2.2) breaks the O(3) symmetry of the model to the

SO(2) subgroup. Associated to the latter, a Noether current exists, given by

jµ = −φ1∂µφ2 + φ2∂µφ
1 . (2.6)

2.2 Absence of flat spacetime solitons

Let us first establish that the field theory (2.2) in flat spacetime admits no finite energy,

localised solutions, even in the presence of a generic, positive potential V [φ3], using a scaling

argument. We consider the spacetime action on Minkowski space, M1,3

SM1,3 =

∫

dtIR3 , IR3 =

∫

R3

d3x

(

1

2
∂iφ

a ∂iφa + V [φ3]

)

≡ I2 + I0 , (2.7)

where i, k are spatial indices and I2, I0 are positive quantities. Following Derrick [2], let

us assume there is a non-trivial solution, and we consider the scale transformation thereof,

xi → Λxi (with Λ an arbitrary constant), defining a 1-parameter family of configurations.

This scaling implies I2 → ΛI2 and I0 → Λ3I0. Then, requiring the original configuration is a

solution yields (dI(Λ)/dΛ)|Λ=1 = 0, which implies the virial identity

I2 + 3I0 = 0 . (2.8)

Since both terms are positive definite, this implies they both must vanish, and the hypothetical

solution must be trivial.

One may inquire if the presence of a harmonic time dependence, which is key to the

existence ofQ-balls, could change the above result, and yield flat spacetime solitons. As shown

by Ward [47] (see also [48]), in three spatial dimensions the answer is still negative (at least for

the usual form of the potential) and can be proven as follows. Without any loss of generality,

one takes an stationary O(3) ansatz with factorized time dependence: φ1 + iφ2 = ψ(xk)e−iωt

(with ψ a complex function in general) and φ3(xk). Then, (2.7) becomes

IR3 =

∫

R3

d3x

(

1

2
(|∇ψ|2 + (∇φ3)2 − ω2|ψ|2) + V [φ3]

)

. (2.9)

Recall that, differently from the static case, the presence of a potential (with the associated

mass term) is a necessary requirement for possible bound states, when ω 6= 0. Restricting to

the potential considered above

V [φ3] = µ2(1− φ3) , (2.10)
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(with µ the mass parameter) and following the same Derrick prescription as in the static case,

one arrives at the virial identity

∫

R3

d3x

{

∂iφ
a ∂iφa + 6(1− φ3)

[

µ2 − ω2

2
(1 + φ3)

]}

= 0 . (2.11)

Observing that w < µ, which follows from a a linearised analysis of the solutions in the

far field and the fact that |φ3| < 1, one concludes that the integrand in (2.11) is strictly

positive, which, again, rules out the existence of solitonic configurations in d = 3 spatial

dimensions.1 Moreover, this conclusion is independent of the precise spatial symmetries of

the configurations. It should be remarked, however, that this scaling argument does not

exclude the existence of solitonic configurations for more complicated potentials than (2.10);

in fact we predict such solutions to exist. In the following, in order to find solitonic solutions

of the O(3) sigma model, (2.2) with the potential (2.10), we shall consider its coupling to

gravity, i.e. the action (2.1).

2.3 Ansatz

We seek stationary, axially-symmetric solutions of (2.4)-(2.5), describing spinning, asymptot-

ically flat solitons or “hairy” BHs. Using coordinates adapted to the two commuting Killing

vectors ξ = ∂t and η = ∂ϕ, where t and ϕ are the time and azimuthal coordinates, the metric

can be written in Lewis-Papapetrou form:

ds2 = −F0dt
2 + F1

(

dr2 + r2dθ2
)

+ r2 sin2 θF2

(

dϕ− W

r
dt

)2

, (2.12)

where the four metric functions, F0, F1, F2 and W , depend on r and θ only.

The O(3) scalar field ansatz compatible with stationarity and axial symmetry needs not

to be t, ϕ independent. The solutions in this work are found within an ansatz2 inspired by

previous work done for an O(4) Skyrme model [49, 51, 50, 52, 53, 54], with:

φα = [sin f cos (mϕ− ωt) , sin f sin (mϕ− ωt) , cos f ] , (2.13)

where the profile function f depends on coordinates r and θ only, ω is the spinning frequency

of field - there are isorotations - and m ∈ Z is the azimuthal harmonic index. Observe that

the trigonometric parameterisation (2.13) identically obeys the sigma model constraint (2.3).

As a special case we shall also be considering static, spherically symmetric self-gravitating

solitons without an event horizon;3 spherically symmetric hairy BHs turn out not to exist.

In this limit, the line element (2.12) has W = 0 while F1, F2, F0 depends only on r (with

1On the other hand, there are stable spinning soliton solutions in the pure d = 2 O(3) sigma model with a

polynomial potential [47, 48].
2We remark that the most general O(3) scalar field ansatz compatible with the isometries of (2.12) contains

an extra function for the (φ1, φ2)-sector.
3Similar solutions of the O(4) sigma model were considered in [56].
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F1 = F2). The scalar field ansatz is of the form (2.13) with m = 0 and f solely a radial

function. For the remaining of this Section, however, we will focus on the generic stationary

case and the metric ansatz (2.12).

We assume the existence of a rotating, topologically spherical event horizon, located at

a constant value of radial variable r = rh > 0. The horizon null generator is the helicoidal

Killing vector field

χ = ξ +ΩHη , (2.14)

where the horizon angular velocity, ΩH , is fixed by the value of the metric function W on the

horizon:

ΩH = −gφt
gtt

∣

∣

∣

∣

r=rh

=W

∣

∣

∣

∣

r=rh

.

The rotating horizon allows the existence of stationary scalar clouds, supported by the syn-

chronisation condition [57, 27, 58]

ω = mΩH , (2.15)

between the event horizon angular velocity, ΩH and the angular phase velocity ω/m of the

scalar field. This condition implies that there is no scalar field through the horizon [57, 27, 58].

The SO(2) unbroken symmetry yields the conserved Noether current jµ, cf. (2.6). Thus,

there is an associated Noether charge

Q =

∫ √−gj0d3x = 2π

∫ ∞

rh

dr

∫ π

0

dθ
F1

√
F2 sin

2 f√
F0

r2 sin θ

(

ω − mW

r

)

, (2.16)

which is the counterpart of the Noether charge of boson stars, associated with the global

phase rotations of the complex scalar field [55, 21, 57].

2.4 Boundary conditions and relevant physical quantities

In the generic stationary case it is convenient to make use of the following exponential

parametrization for the metric fields

F0 =

(

1− rh
r

)2

(

1 + rh
r

)2
ef0 , F1 =

(

1 +
rh
r

)4

ef1 F2 =
(

1 +
rh
r

)4

ef2 . (2.17)

Then a power series expansion near the horizon yields the following regularity requirements

for the profile function f(r) and the metric functions fi

∂rf
∣

∣

r=rh
= ∂rf0

∣

∣

r=rh
= ∂rf1

∣

∣

r=rh
= ∂rf2

∣

∣

r=rh
= 0 , (2.18)

These boundary conditions supplement the synchronization condition (2.15) imposed on the

metric function W .

The requirement of asymptotic flatness at spatial infinity yields another set of boundary

conditions:

f
∣

∣

r→∞ = f0
∣

∣

r→∞ = f1
∣

∣

r→∞ = f2
∣

∣

r→∞ =W
∣

∣

r→∞ = 0 . (2.19)
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Axial symmetry and regularity impose the following boundary conditions on the symmetry

axis at θ = 0, π,

f
∣

∣

θ=0,π
= ∂θf0

∣

∣

θ=0,π
= ∂θf1

∣

∣

θ=0,π
= ∂θf2

∣

∣

θ=0,π
= ∂θW

∣

∣

θ=0,π
= 0 . (2.20)

We also require solutions to be Z2-symmetric under reflections with respect to the equatorial

plane. Thus, it is enough to consider the range of values of the angular variable θ ∈ [0, π/2].

The corresponding boundary conditions on the equatorial plane are:

∂θf
∣

∣

θ=π
2

= ∂θf0
∣

∣

θ=π
2

= ∂θf1
∣

∣

θ=π
2

= ∂θf2
∣

∣

θ=π
2

= ∂θW
∣

∣

θ=π
2

= 0 . (2.21)

Furthermore, the absence of a conical singularity at the symmetry axis requires that

the deficit angle should vanish, δ = 2π

(

1− lim
θ→0

F2

F1

)

= 0. Hence any physically consistent

solution should satisfy the constrain F2

∣

∣

θ=0
= F1

∣

∣

θ=0
. In our numerical scheme we explicitly

imposed this condition on the symmetry axis.

Asymptotic expansions of the metric function at the horizon and at spacial infinity yields

a number of physical observables. The total ADM mass M and the angular momentum J

of the spinning hairy BH can be read off from asymptotic subleading behaviour of metric

functions as r → ∞:

gtt = −1 +
2MG

r
+O

(

1

r2

)

, gϕt = −GJ
r

sin2 θ +O
(

1

r2

)

. (2.22)

The ADM charges can be decomposed as sum of two contributions, one from the event

horizon and one from the bulk scalar hair: M = MH +MΦ and J = JH + JΦ, respectively.

These contributions can be evaluated separately using Komar integrals4

MH = − 1

8πG

∮

S

dSµν∇µξν , JH =
1

16πG

∮

S

dSµν∇µην ,

MΦ = −
∫

V

dSµ (2T
µ
ν ξ

ν − Tξµ) , JΦ =

∫

V

dSµ

(

T µ
ν η

ν − 1

2
Tηµ

)

,

(2.23)

where S is the horizon 2-sphere and V denotes an asymptotically flat spacelike hypersurface

bounded by the horizon.

We remark that similarly to the angular momentum of the stationary rotating boson

stars [21, 22], there is a quantisation relation for the angular momentum of the scalar field,

JΦ = mQ, where Q is the Noether charge Q (2.16) and m is the winding number of the scalar

field.

The relevant horizon quantities include the Hawking temperature TH , which is propor-

tional to the surface gravity κ2 = −1
2
∇µχν∇µχν , as

TH =
κ

2π
=

1

16πrh
exp

[

1

2
(f0 − f1)

∣

∣

r=rh

]

. (2.24)

4All numerical work herein uses λ1 = λ0 = 1 and α2 = 4πG.
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Here χ is the horizon null generator (2.14). Another quantity of interest is the horizon area

which is given by

AH = 32πr2h

∫ π

0

dθ sin θ exp

[

1

2
(f1 + f2)

∣

∣

r=rh

]

. (2.25)

One can easily check that the horizon quantities are related through the Smarr relation

M = 2THS + 2ΩHJH +MΦ , (2.26)

where S = 1
4G
AH is the BH entropy and MΦ is the scalar field energy outside the event

horizon, (2.23). Another relation between the physical quantities of the hairy BH is provided

by the first law of thermodynamics

dM = THdS +ΩHdJ .

3. Numerical results

For the spinning solutions, we solve the boundary value problem for nonlinear partial differ-

ential equations (2.4)-(2.5) with boundary conditions (2.18)-(2.21) using a fourth-order finite

differences scheme. The system of equations is discretized on a grid with 201 × 101 points.

To simplify our calculation in the near horizon area, we introduce a new radial coordinate

x = r−rh
r+c

, which maps the semi-infinite region [0,∞) onto the unit interval [0, 1]. Here c is

an arbitrary constant which is used to adjust the contraction of the grid. The emerging sys-

tem of nonlinear algebraic equations is solved using a trust-region Newton method [59]. The

underlying linear system is solved with the Intel MKL PARDISO sparse direct solver [60].

Errors are of order of 10−4. Most calculation are performed using the CESDSOL5 library.

Some of the solutions were also constructed by using FIDISOL/CADSOL package [61] which

also uses the Newton-Raphson method. But let us start with the spherical solutions for which

the numerical strategy is simpler.

3.1 Spherical solitons - domain of existence

The solitonic solutions are found by fixing rh = 0. Thus there are only two continuous input

parameters (α, ω) and one discrete one, m. For m = 0 we find spherically symmetric solitons.

Although they can be studied in isotropic coordinates (i.e. the static limit of (2.12)), we found

it convenient to employ Schwarzschild-like coordinates, with a line element

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdφ2) , N(r) ≡ 1− 2m(r)

r
. (3.1)

Then, for the scalar fields ansatz (2.13), the problem reduces to solving a second order equa-

tion for the scalar amplitude f(r) and two first order equations for the metric functions m

5Complex Equations – Simple Domain partial differential equations SOLver is a C++ package being de-

veloped by one of us (I.P.).
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and σ

(r2Nσf ′)′ = r2σ

(

µ2 − ω2

Nσ2
cos f

)

sin f , (3.2)

m′ =
1

2
α2r2

[

Nf ′2 +
ω2 sin2 f

Nσ2
+ 4µ2 sin2

(

f

2

)]

, (3.3)

σ′ = α2rσ

(

f ′2 +
ω2 sin2 f

N2σ2

)

. (3.4)

The equations for a spherically symmetric (mini) boson star are recovered to lowest order

in the limit of a small f . Differently from that case, however, the sigma model constraint

prevents us from absorbing the coupling constant α in the expression of the scalars.

Close to the origin, the approximate form of the functions read

f(r) = b+
1

6

[

µ2 − ω2

σ2
cos b

]

sin br2 +O(r4) , (3.5)

m(r) =
2

3
α2

[

µ2 +
ω2

σ2
cos2

(

b

2

)]

sin2
(

b

2

)

+O(r5) ,

σ(r) = σ0 +
α2ω2 sin2 b

2σ0
r2 +O(r4) ,

where b and σ0 two free parameters. The leading order terms in the large-r solutions for the

various functions are

f(r) =
f0e

−
√

µ2−ω2r

r
+ . . . , m(r) =M − α2f20 e

−2
√

µ2−ω2rµ2

2
√

µ2 − ω2
+ . . . , (3.6)

σ(r) = 1− α2f20
r

√

µ2 − ω2e−2
√

µ2−ω2r + . . . ,

where M is the ADM mass and f0 another parameter, both fixed by the numerics. In this

case the Noether charge takes the form

Q = 4πω

∫ ∞

0

dr r2
sin2 F

Nσ
. (3.7)

The numerical construction of the solutions is straightforward. We use a standard Runge-

Kutta ordinary differential equation solver and evaluate the initial conditions at r = 10−6 for

global tolerance r = 10−14 adjusting for fixed shooting parameters f(0), σ(0) and integrating

towards r → ∞. The accuracy of the solutions was also monitored by computing the virial

identity
∫ ∞

0

dr r2σ

[

f ′2 + 12µ2 sin2
(

f

2

)]

= ω2

∫ ∞

0

dr
r2(4N − 1) sin2 f

N2σ
, (3.8)

which shows that, as with mini boson stars, the coupling to gravity is crucial for the existence

of these solutions; indeed (3.8) cannot be satisfied for a flat metric, as for N = σ = 1 it (3.8)

becomes
∫ ∞

0

dr r2
{

f ′2 + 12 sin2
(

f

2

)[

µ2 − ω2 cos2
(

f

2

)]}

= 0 , (3.9)
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which cannot be satisfied since ω < µ.
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Figure 1: Spherically symmetric gravitating O(3) solitons. (Left panel) The radial profile functions

of an illustrative solution, which has w/µ = 0.74. (Right panel) The mass and Noether charge as

function of ω. For both panels, α = 1/
√
2.

As usual with boson stars, there are fundamental states, for which the scalar fields profile

has no nodes and excited states, labelled by the number of such nodes. Indeed, for given ω,α,

the solutions form a discrete set, labelled by the number of nodes, n, of the function f . Here

and also in the spinning case we will always focus on fundamental modes. A typical profile

is shown in Fig. 1 (left panel), for a nodeless solution.

The domain of existence of such solitons, in an ADM mass vs. frequency diagram is

shown in Fig. 1 (right panel), for the illustrative value α = 1/
√
2 and n = 0. The plot also

shows the Noether charge and the value of the scalar fields at the origin. This domain of

existence corresponds to a spiral, a typical pattern for boson star solutions and other gravi-

tating solitons. The solitons exist for some restricted set of values of the angular frequency

ω ∈ [ωmin ≃ 0.737, ωmax = 1]. The upper critical value ωmax = 1 corresponds to the particular

choice of the potential of the model (2.2). This can be confirmed by introducing a complex

scalar field Ψ as Ψ = φ1 + iφ2. Then the matter Lagrangian (2.2) with the rescaling done

before and taking into account the sigma model constraint (2.3) becomes, to first order in Ψ:

Lm ≃ 1

2
∂µΨ∂

µΨ∗ +
µ2

2
|Ψ|2 , (3.10)

where the effective mass used in numerics is µ = 1. Since ω2 6 µ2 is a bound state condition,

the maximal frequency is ωmax = 1. In this limit the spinning solitons smoothly approach

perturbations around Minkowski spacetime, with the ADM mass M tending to zero. Indeed,

linearizing the scalar field equation (2.5) one can see that the profile function decays asymp-

totically as f ∼ e−
√
1−ω2r, becoming delocalized as ω → 1. This is usually referred to as the

Newtonian limit.
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Starting from the Newtonian limit in Fig. 1 (right panel), in which limit the function

f(r) becomes very close to zero and the solution trivialises, at some intermediate frequency

ωMmax, a maximal mass is attained. Similarly to the mini boson stars case, there is also a

minimal frequency, ωmin, below which no solutions are found. The solutions in between the

Newtonian limit and ωmin compose the first (forward) branch. At ωmin the curve backbends

and a second (backward) branch is found. A multi-branch structure ensues, with a third

(forward) branch visible in Fig. 1 (right panel), providing an overall inspiral-type pattern for

the line of solutions. Likely, the spiral approaches, at the centre, a critical singular solution

with f(0) = π/2. We remark that, as a rule of thumb, as one advances along the spiral one

is moving towards the strong gravity region where the solitons become more compact along

the forward branches and slightly less compact along the backwards branches - see, e.g. the

bottom panels of Fig. 1 in [62]. On the other hand, the central value of the scalar field

increases monotonically along the spiral, cf. inset in Fig. 1 (right panel), as in other boson

star models, cf. inset in bottom panels of Fig. 1 in [62].

As a final remark concerning the spherical case, following the approach in [63], one can

prove these spherical solitons do not possess generalizations with an event horizon at their

center: i.e. there are no spherically symmetric BHs with O(3)-sigma model hair.

3.2 Spinning solitons - domain of existence

Taking m > 1, we obtain spinning solitonic solutions. The dependency of these solutions

on the angular frequency ω is qualitatively similar to that just described for the spherical

solitons and also observed in spinning boson star models - see the outermost solid blue line

in the left panel of Fig. 2. Again we focus on fundamental modes. A recent study of excited

spinning boson stars and Kerr BHs with synchronised hair has been discussed in [64].

Starting from the Newtonian limit, we observe that, as the angular frequency decreases

from ωmax = 1, the ADM mass of all solutions increases approaching its maximum at some

value of frequency ωMmax. From that point onwards the mass decreases until the minimum

frequency ωmin is reached. Using the same nomenclature as before, the solutions in between

the Newtonian limit and ωmin compose the first (forward) branch. At ωmin the curve back-

bends into a second (backward) branch. A third (forward) branch and a fourth (backward)

branch are visible in Fig. 2, making up a spiral towards a limiting solution at the center of the

spiral (challenging to obtain numerically). This mimics closely what has been found for both

rotating and non-rotating boson stars (see e.g. [28]) as well as for other gravitating solitons

(e.g. Proca stars [65]); the location and the shape of the spiral depend on the gravitational

coupling strength α [55, 21, 22].

The blue solid curve in the right panel of Fig. 2 shows the ADM mass of the spinning

solitons as a function of their total angular momentum. Again, the pattern follows closely

that observed for spinning boson stars - see e.g. [28]. Along the first branch both mass and

angular momentum increase until the maximal ADM mass is attained; then the trend inverts

and both mass and angular momentum decrease until the minimum ADM mass attained
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Figure 2: ADM mass M vs. (left panel) the angular frequency ω or (right panel) the angular mo-

mentum J . Here m = 1 and α = 0.5, whereas rh varies. In the left panel, the shaded area corresponds

to the domain of existence of vacuum Kerr BHs, the red dashed line to the extremal vacuum Kerr

BHs, and the blue dashed line to the existence line: the subset of vacuum Kerr BHs that can support

test field, stationary scalar clouds of the linear, massive, Klein-Gordon equation, with zero nodes and

angular quantum numbers ℓ = 1 = m, of the spheroidal harmonics [27].

along the second (backward) branch. Another inversion follows and so on, revealing a zig-zag

type structure.

In summary, the solitonic solutions of the O(3) sigma model mimic closely those of the

more familiar mini boson stars. Boson stars with a Q-ball type potential also have similar

features, but admit a non-trivial flat space limit, where they become Q-ball solutions. The

spinning solitons of the non-linear O(3) sigma model trivialise in the flat spacetime limit, as

mini-boson stars do.

3.3 Hairy black holes - domain of existence

Let us now turn to the hairy black hole solutions we constructed numerically. The problem

has four input parameters, three of them continuous (α, rh, ω) and one discrete m. We

have obtained more than 4000 solutions in order to study how the solitons and the hairy BHs

depend on each of these parameters. To simplify our analysis, we mainly consider the spinning

hairy BHs with winding number m = 1, but below we shall also exhibit some solutions with

m > 1.

The left panel of Fig. 2 exhibits the variation of the ADM mass of the spinning hairy

BHs, at a fixed value of the gravitational coupling α = 0.5, versus the angular frequency

ω, along some lines of constant rh 6= 0. First observe that the hairy BHs smoothly connect

with the spinning solitons. Concerning the structure of the rh = constant lines, part of the

description provided above for the solitonic limit still applies: we again observe that, as the
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angular frequency decreases from ωmax, the mass of all solutions increases approaching its

maximum at some value of frequency ωMmax. This maximal mass decreases as rh increases.

The behaviour of the rh =constant curves beyond ωMmax depends on the value of rh.

For very small values of rh the spiral type critical behavior observed in the solitonic limit

changes. There is still a multibranch structure; but instead of terminating at some central

limiting solution, the plot shows that after three backbendings a fourth branch terminates at

an upper critical value of the angular frequency ωend < 1, see Fig. 2 (left panel). In this limit,

the scalar field trivializes and we recover a Kerr BH solution with the corresponding value of

rh and that can support O(3) non-trivial configurations as test field solutions. This subset of

Kerr BHs (as one varies rh) defines the existence line, which, since the field becomes small, by

virtue of (3.10) coincides with that found in the Einstein-(complex, massive)-Klein-Gordon

theory. We call this the Kerr limit. This behaviour is qualitatively similar to that observed

for other models of Kerr BHs with synchronised [27, 28].

As rh increases, the multibranch structure gives place to a two-branch scenario, with the

first (upper, forward) branch connected to the perturbative excitations at ωmax = 1 and the

second (lower, backward) branch ending on the Kerr solution as ω → ωend. The minimum

value of the angular frequency ωmin is increasing as rh increases; at some point the frequency

ωMmax which corresponds to the maximal value of the ADM mass along the constant rh line,

becomes the minimal allowed frequency ωmin. Also, the maximum value of the frequency

along the second branch ωend is slowly increasing and it approaches ωmax = 1 as the loop

shrinks to zero. Fig. 2 (left panel) presents the domain of existence we have just described. A

very similar behaviour was recently described for excited Kerr BHs with synchronised scalar

hair [64]. In the right panel of Fig. 2 we see the aforementioned zig-zag type structure remains

for sequences of hairy BHs with rh = constant 6= 0.

3.4 Some physical properties of the solutions

Having analysed the domain of existence of the solitons and hairy BHs found in the O(3)

sigma model, which in particular shows their global quantities M,J , let us now consider

some other basic physical properties of the solutions.

In Fig. 3 (left panel) we plot the scalar field profile function for two illustrative hairy

BHs, both with the same value of rh but one on the first (forward) branch and another on the

second (backward) branch. The figure illustrates two features. Firstly, that the scalar field

distribution is the typical toroidal pattern of spinning boson stars, with a clear maximum

along the equator at some radial distance and a suppression of the profile function for larger

latitudes (the field vanishes along the symmetry axis). Secondly, that going along the spiral

(away from the Newtonian limit), the solutions become more compact and the scalar field

attains larger values.

In the right panel of Fig. 3 we exhibit the Hawking temperature for the same solutions

that were plotted in the domain of existence, cf. Fig. 2. One observes that, in the Kerr limit

the solutions with the smallest rh have the smallest temperature. This is consistent with the

distribution of the endpoint of the curves along the existence line, observed in the left panel
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Figure 3: (Left panel) Scalar field profile function f(r, θ) of two hairy BH solutions with rh =

0.01, w = 0.8, one on the first forward branch (red curves) and another on the second backward

branch (blue curves) branches, for several values of θ = const. (Right panel) Hawking temperature

TH of hairy BHs, as function of the angular frequency for a set of values of the horizon radius rh. All

solutions have α = 0.5, m = 1.

of Fig. 2, where the smallest rh is the one closest to the extremal Kerr solutions (cf. the q = 0

line in Fig. 2 in [27]). In the Newtonian limit, on the other hand, BHs become Schwarzschild

like and rh is a good measure of their size. Then the largest BHs have the lowest temperature,

as expected.

The toroidal structure of the matter distribution exhibited in the left panel of Fig. 3 has

another interesting manifestation. Similarly to what has been observed for spinning boson

stars and Kerr BHs with synchronised hair [43] toroidal ergo-regions appear in the spinning

solitons and hairy BHs of the O(3) model. These toroidal ergo-regions are delimited by an

ergo-surface, defined as the zero locus of the time-like Killing vector ξ · ξ = 0, or

gtt = −F0 + sin2 θF2W
2 = 0 . (3.11)

The analysis of the ergo-regions of the spinning boson in [43] showed that these solitons do

not have an ergo-region in the vicinity of the Newtonian limit. Moving towards the strong

gravity region, however, they develop an ergo-region still in the first forward branch, after

the maximum ADM mass. The topology of the corresponding ergo-region is always an ergo-

torus, S1 × S1. The hairy BHs – that connect continuously to the spinning boson stars in

this model – can either have a Kerr-like ergo-region, delimited by a (topological) 2-sphere,

S2, or an ergo-Saturn, with topology S2
⊕

(S1 × S1). The former (latter) hairy BHs can be

thought as a superposition of a rotating horizon with a spinning boson star without (with) a

toroidal ergo-region.

Using our numerical data we have found the solutions of equation (3.11) unveiling a
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Figure 4: Illustration of the ergo-surfaces of some selected solutions. (Upper left panel) Spinning

soliton along the second (backward) branch with ω = 0.8; (upper right panel) hairy BH along the first

(forward) branch with rh = 0.01 and ω = 0.8; (lower left panel) hairy BH along second (backward)

branch with rh = 0.01 and ω = 0.7; (bottom right panel) hairy BH along the second (backward)

branch with rh = 0.01 and ω = 0.685. In the last three plots the event horizon is plotted as a yellow

surface.

qualitatively similar picture to that in [43]. Firstly, we observe that on the forward branch,

the axially-symmetric rotating boson stars with rh = 0 appear to possess no ergosurfaces.

However, on the backward branch they develop an S1 ×S1 ergo-surface (ergo-torus) - Fig. 4,

left upper panel. This is a pattern also observed in other boson star models, with a Q-ball

type potential [21, 22].

On the other hand, spinning hairy BH solutions of the O(3) model, both on the first

forward branch and on most of the secondary branches possess a Kerr-like ergo-surface with

S2 topology - Fig. 4, right upper panel. At some point along the spiral, however, the spinning

hairy BHs develop an ergo-torus in addition to the S2 ergo-sphere, thus giving rise to an

ergo-Saturn, just as in [43] - Fig. 4, bottom panels. A similar pattern is observed for the

hairy BH solutions of the Skyrme model recently analysed in [54].

Moving on with our analysis, we now consider the variation of the solutions with the

coupling α. In Fig. 5 we exhibit the scaled mass Mα2 of the hairy BH solutions at a fixed

value of the angular frequency ω versus the gravitational coupling constant α.

Firstly, we do not find evidence for a maximal critical value of α; i.e., the solutions appear

to exist for arbitrary large values of the coupling. Secondly, both the scaled mass and the

Hawking temperature of the configurations remain almost constant as α increases above a

– 16 –



0 1 2 3
8

10

12

14

16

18

20

rh=0

rh=0.06

rh=0.05

M
2

rh=0.01

0 1 2 3

0.01

0.05

0.1

0.5

1

rh=0.06

rh=0.05

T H

rh=0.01

Figure 5: Scaled ADM mass Mα2 (left panel) and Hawking temperature TH (right panel) vs. the

gravitational coupling constant α, for a set of values of the horizon radius rh, for hairy BHs of the

O(3) model with m = 1 and ω = 0.9.

certain critical value. In other words, in the limit of strong gravitational coupling, the ADM

mass of the solutions decreases as M ∼ α−2. The scale invariance of the model is effectively

restored and the profile functions of the solutions become completely independent on the

strength of the gravitational interactions. Notably, this pattern is also observed in the limit

α→ ∞ both for the topologically trivial pion clouds in the Einstein-Skyrme model [51], and

for rotating boson stars [21].

For solitonic solutions there are, generally, two α-branches of solutions, which bifurcate at

some value of the gravitational coupling. However, as the angular velocity becomes relatively

high, ω ∼ 0.95, we observe just a single branch of solitonic solutions. This branch terminates

at some small finite value of the coupling α, wherein the mass and the angular momentum

diverge like α3. Indeed, in the O(3) non-linear sigma model the spinning solitons do not

possess a non-trivial flat space limit.

For the hairy BHs we can also find two α-branches of solutions, which, for small values

of rh, are disconnected - Fig. 5. As rh increases, the branches merge at some minimal value

αmin > 0; these solutions exist only as α > αmin. The value of αmin rapidly increases as rh
increases.

Up to now we have always been discussing solutions with m = 1. Let us briefly mention

now solutions with higher windings m > 1 - Fig. 6. We have observed their behavior, gener-

ically, mimics the same qualitative pattern of the m = 1 configurations. As basic trends, as

the winding m increases, both the ADM mass and the angular momentum increase, while the

minimal allowed value of the angular frequency ωmin decreases. Fig. 6 presents the variation

of the ADM mass and Hawking temperature with ω and the mass-angular momentum relation

for some selected hairy BH solutions with fixed rh = 0.01 and m = 1, 2, 3, 4.
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Figure 6: ADM mass M (upper left panel) and Hawking temperature TH (upper right panel) as

functions of the angular frequency ω. Scaled ADM mass vs. total angular momentum J (bottom

panel) for a set of values of the winding number m for rotating hairy BHs with rh = 0.01, α = 0.5.

Finally, let us briefly comment on the geometry of the horizon of the hairy BHs. In Fig. 4,

the spatial sections of the even horizon are represented as a round S2. Geometrically, however,

these surfaces are squashed 2-spheres, rather round ones. To quantify this deformation, we

have evaluated the ratio of equatorial to polar circumferences6, ǫ = Le/Lp, which is exhibited

in Fig. 7. Along the first forward branch the value of ǫ is slightly smaller than 1, weakly

decreasing as ω decreases. Hence, as mentioned above the BHs are Schwarzschild-like in the

6For the considered metric ansatz (2.12), one defines Le ≡ 2πrh
√

F2(rh, π/2, and Lp ≡

2rh
∫ π

0
dθ

√

F1(rh, θ).
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vicinity of the Newtonian limit. The deformation becomes considerably stronger along the

secondary branches, towards the Kerr limit.

0,5 0,6 0,7 0,8 0,9 1,0
0.5

0.6

0.7

0.8

0.9

0.95

0.99

1

m=4

m=3

m=2

m=1

L p/
L e

0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00
0.5

0.6

0.7

0.8

0.9

0.95

0.99

1

rh=0.06

rh=0.05r h=0.
04

rh =0.03

rh=0.02

rh=0.005

rh=0.01

L p/
L e

Figure 7: The ratio of the horizon circumferences Le/Lp is shown as a function of: winding number

m (left panel), for fixed rh = 0.01; angular frequency ω (right panel) for the forward branch solutions

with m = 1. Here all solutions have α = 0.5.

4. Conclusions

In this paper we have shown that the O(3) non-linear sigma-model, a simple and geometrically

motivated field theory that does not admit solitonic solutions in flat spacetime, in the absence

of higher order kinetic terms, can admit solitonic and hairy BH solutions when minimally cou-

pled to gravity and when in the presence of symmetry non-inheritance. A close resemblance

with the case of the massive, complex Klein-Gordon field theory has been observed. In the

latter, no soliton like solutions exist in flat spacetime and, again, coupling to gravity can

yield self-gravitating (both static and spinning) solitonic solutions - boson stars - and spin-

ning hairy BHs. In fact, a parallelism on the structure of the domain of existence of solutions

and physical properties between the O(3) sigma model and the Einstein-Klein-Gordon model

has been clearly exhibited.

It is well known that field theories, in order to possess solitonic type solutions, need

non-linearities. This is a necessary but not sufficient condition as shown by the absence of

non-trivial solutions in the pure O(3) non-linear sigma-model. The soliton enabling non-

linearities can have different origins: i) self-interactions of the field, as illustrated by Q-balls

in flat spacetime; ii) higher order kinetic terms, as illustrated by the Skyrme model; iii)

coupling to Einstein’s gravity, as illustrated for mini-boson stars in the massive-complex-

Klein-Gordon model. For the O(3) non-linear sigma model case, it is well known that in the

presence of higher order kinetic terms it gives rise to the topologically non-trivial Hopfions [4,
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5, 66, 67, 68, 69] (point ii); here we have shown that the coupling to gravity gives rise to

new regular, topologically trivial spherically symmetric and spinning solitons (point iii), and,

via the synchronisation mechanism, to BHs with synchronised hair. As pointed out above,

using a harmonic time dependence in field space and a sufficiently accommodating potential,

it should also contain solitonic solutions in flat spacetime (point i). It would be interesting

to study such solutions. One observes that, as a general pattern, symmetry non-inheritance

accompanies the existence of non-topological solitons.

From the viewpoint of the hairy BH solutions found in this work, it again shows the

universality of the synchronisation mechanism to yield hairy BHs in a large variety of field

theory models (see another example in [70]), in different dimensions and asymptotics - see

e.g. [71, 72]. Thus, this mechanism can be extended to non-linear sigma models when coupled

to gravity.

Finally, we remark that the O(3) configurations reported in this work are topologically

trivial, being constructed for the simplest scalar fields ansatz (2.13). However, more gen-

eral solutions, which carry a nonzero Hopf charge density, should also exist within the same

model (2.1), by considering an extended O(3) ansatz with two essential functions. Further,

a similarity of the model with Einstein-Skyrme theory [21] suggests that the pattern of the

spinning self-gravitating solutions may be very involved, in particular we can expect the topo-

logically trivial clouds may be bounded by isospinning Hopfion forming additional branches

of solutions. We hope to address these problems in our future work.
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