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ABSTRACT

Expanding nebulae are produced by mass-loss from stars, especially during late stages of evolution. Multidimensional simulation

of these nebulae requires high resolution near the star and permits resolution that decreases with distance from the star, ideally with

adaptive time-steps. We report the implementation and testing of static mesh-refinement in the radiation-magnetohydrodynamics

(R-MHD) code PION, and document its performance for 2D and 3D calculations. The bow shock produced by a hot, magnetized,

slowly rotating star as it moves through the magnetized ISM is simulated in 3D, highlighting differences compared with 2D

calculations. Latitude-dependent, time-varying magnetized winds are modelled and compared with simulations of ring nebulae

around blue supergiants from the literature. A 3D simulation of the expansion of a fast wind from a Wolf–Rayet star into the

slow wind from a previous red supergiant phase of evolution is presented, with results compared with results in the literature and

analytic theory. Finally, the wind–wind collision from a binary star system is modelled with 3D MHD, and the results compared

with previous 2D hydrodynamic calculations. A PYTHON library is provided for reading and plotting simulation snapshots, and

the generation of synthetic infrared emission maps using TORUS is also demonstrated. It is shown that state-of-the-art 3D MHD

simulations of wind-driven nebulae can be performed using PION with reasonable computational resources. The source code and

user documentation is made available for the community under a BSD3 licence.

Key words: hydrodynamics – radiative transfer – methods: numerical – stars: winds, outflows – ISM: bubbles.

1 IN T RO D U C T I O N

Massive stars emit copious extreme-ultraviolet (EUV) photons ca-

pable of ionizing hydrogen when on the hydrogen-burning main

sequence and also have line-driven stellar winds with terminal

velocities v∞ � 1000 km s−1 (Snow & Morton 1976), with important

consequences for their surroundings (Dale 2015). After the main-

sequence phase, the outer layers of a massive star expand rapidly,

and the star evolves to the upper right-hand part of the Hertzsprung–

Russell Diagram (HRD), becoming a cool and luminous supergiant.

Such stars have extended, loosely bound envelopes, and their further

evolution is determined by mass-loss through winds, eruptions, or

interaction with a binary companion, and by rotational mixing of

nuclear-processed material from the core to the envelope (Langer

2012; Smith 2014).

After the main sequence, the dynamical time-scale of circumstellar

nebulae (∼104–105 yr) becomes comparable to the nuclear (∼105 yr)

and thermal (∼10–104 yr) time-scales of a massive star. Mass-

loss rates (Ṁ) and wind velocities (v∞) can change drastically

on these time-scales, meaning that the evolution of circumstellar

⋆ E-mail: jmackey@cp.dias.ie

nebulae cannot be considered in isolation from the evolution of

the central star(s). These late phases of evolution of massive stars

are very uncertain because some key physical processes are poorly

constrained and poorly modelled, namely convection, mass-loss,

rotation, and interaction with a companion (for a review, see Smith

2014). Significant progress is being made in understanding the radii

(Grassitelli et al. 2018) and wind structure (Sander & Vink 2020)

of classical Wolf–Rayet (WR) stars, winds from stars close to the

Eddington limit (Bestenlehner 2020) and potentially understanding

the S-Doradus cycle of Luminous Blue Variables (LBVs) (Grassitelli

et al. 2021). On the other hand, we do not yet have a predictive theory

of mass-loss from red supergiants (RSGs), for which the empirical

scaling of Ṁ with stellar luminosity, mass, and temperature is a

subject of active debate and research (Beasor et al. 2020; Humphreys

et al. 2020). Nor is there any consensus on the causes or trigger for

eruptive mass-loss events such as LBV giant eruptions, but there are

indications that some of them could be driven by binary interaction

(Smith et al. 2018). While we do not have a predictive theory

for mass-loss rates across the HRD, stellar evolution calculations

use mass-loss prescriptions that do cover the HRD, and so the

wind-driven nebula produced around a massive star is a prediction

of stellar evolution calculations. Comparing these predictions with

observations is a test of mass-loss prescriptions.
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Circumstellar nebulae are complex structures, typically subject

to non-linear dynamical instabilities (Garcı́a-Segura, Langer & Mac

Low 1996b), and must be studied with multidimensional radiation-

magnetohydrodynamics (R-MHD), or simplifications thereof (e.g.

hydrodynamics (HD) or ideal magnetohydrodynamics (MHD) with

radiative heating and cooling). This means that, while significant

work has been done on modelling circumstellar nebulae (see below),

its potential to test stellar evolution theory has not been exploited to

the extent that it could be.

The first two-dimensional (2D) hydrodynamics simulations of the

expansion of H II regions (Bodenheimer, Tenorio-Tagle & Yorke

1979), wind bubbles (Rozyczka 1985), superbubbles (Mac Low, Mc-

Cray & Norman 1989) and bow shocks (Mac Low et al. 1991) showed

the importance of asymmetric ISM density and of hydrodynamical

instabilities in the evolution of circumstellar nebulae. Colliding winds

in binary systems were studied by Stevens, Blondin & Pollock

(1992), who found that the wind collision region can be dynamically

unstable and predicted that the resulting X-ray emission could vary

at the level of 10 per cent. A series of papers gave a quantitative

understanding of the physical processes that could give rise to the

structure of planetary nebulae (Frank & Mellema 1994; Mellema

1994). Raga et al. (1997) studied the properties of bow shocks and

H II regions around runaway stars.

By coupling stellar-evolution calculations with 2D hydrodynamics

on a spherical mesh (with logarithmic radial spacing), Garcı́a-Segura

et al. (1996a,b) studied the development of nebulae around stars

evolving from main sequence through LBV → WR, and RSG →
WR phases, respectively. They predicted lifetimes and observable

properties of nebulae produced during various transitions and phases,

and compared results with nebulae around a number of WR stars,

finding good agreement in some cases. The numerical methods

developed have been used in many follow-up works and ported to

other codes (e.g. van Marle, Langer & Garcı́a-Segura 2005; Chita

et al. 2008; van Veelen et al. 2009; van Marle, Decin & Meliani

2014).

Meyer et al. (2014) implemented the wind boundary-condition and

radiative heating/cooling model of Mackey et al. (2012) into PLUTO

(Mignone et al. 2012) and made 2D hydrodynamics simulations of

bow shocks around massive stars moving through the Galactic plane,

following this in Meyer et al. (2015) with simulations of supernova

blastwaves interacting with the bow shocks. This model was extended

to MHD by Meyer et al. (2017) and also used for a number of recent

studies of circumstellar nebulae (e.g. Meyer, Petrov & Pohl 2020).

Yorke & Kaisig (1995) and Yorke & Welz (1996) developed a

radiation-hydrodynamics (R-HD) solver on a multiply nested grid

in 2D cylindrical coordinates (R and z) with adaptive time-steps.

This was used by Freyer, Hensler & Yorke (2003, 2006) to study

H II regions and wind bubbles around two stars (60 and 35 M⊙,

respectively) for the full evolution of the star through main sequence,

supergiant, and WR phases. The same evolutionary tracks as Garcı́a-

Segura et al. (1996a,b) were used.

Three-dimensional (3D) simulations of circumstellar nebulae

became possible in the past 10–15 yr. Pittard (2009) developed 3D

hydrodynamic simulations including wind acceleration, used to study

the thermal X-ray emission from binary stars in Pittard & Parkin

(2010). Using 3D adaptive mesh-refinement simulations, Parkin

et al. (2011) studied the wind-collision region of the binary system

η Carinae, and Parkin & Gosset (2011) investigated the WR 22

system. H II region expansion in turbulent clouds was investigated

by a number of authors (Mellema et al. 2006b; Arthur et al. 2011;

Walch et al. 2012; Geen et al. 2015b). 3D simulations of bow

shocks around RSGs were presented in Mohamed, Mackey & Langer

(2012). The differences between 2D and 3D calculations of wind–

wind interaction were investigated by van Marle & Keppens (2012),

and 3D calculations of wind bubbles expansing in turbulent media

by Rogers & Pittard (2013). Geen et al. (2015a) and Haid et al.

(2018) studied combined effects of winds and H II regions on the

ISM for the full evolution of a star using R-HD, similar to previous

2D calculations by Freyer et al. (2003). 3D MHD calculations of

wind bubbles were presented by Scherer et al. (2020).

Previous work (Freyer et al. 2003, 2006) has shown the value

of static mesh-refinement for simulating circumstellar structures

expanding from small to large scales, motivating the work presented

here. The majority of the work cited above was performed using

software that is no longer actively developed or is not freely available.

In this paper, we describe the simulation code PhotoIonization of

Nebulae, abbreviated to PION, an R-MHD code that has been devel-

oped with the aim of modelling nebulae around massive evolving

stars. Significant new additions to the code with respect to previous

versions (Mackey & Lim 2010, 2011; Mackey 2012) are described,

and the code is made available to the community under a BSD-3

licence from https://www.pion.ie.

The paper is organized as follows: Section 2 describes the

numerical methods, including the wind boundary condition, static

mesh-refinement, radiative transfer, and MHD. Test calculations

are presented in Section 3 that show the strengths and weaknesses

of static mesh-refinement. Applications of the code to modelling

circumstellar nebulae are presented in Section 4, namely a 3D

simulation of a magnetized bow shock (Section 4.1), 2D simulation

of the formation of ring nebulae around rotating and evolving stars

(Section 4.2), 3D R-HD simulation of the wind–wind interaction

from an RSG evolving to a WR star (Section 4.3), and 3D MHD

simulation of a wind–wind collision between two rotating stars

(Section 4.4). In all of these cases, the results are compared with

previous calculations in the literature. Methods for post-processing

simulation snapshots are described in Section 5, and parallel scaling

in Section 6. Conclusions are presented in Section 7.

2 C O D E D E S C R I P T I O N A N D A L G O R I T H M S

PION is a HD and MHD grid-based simulation code that includes

radiative transfer of ionizing and non-ionizing photons for R-HD

(Mackey & Lim 2010) and for R-MHD (Mackey & Lim 2011). A

finite-volume integration scheme was implemented that is second-

order-accurate in time and space, following Falle, Komissarov &

Joarder (1998). In Mackey & Lim (2010), Mackey & Lim (2011) the

formation of pillars at the boundaries of H II regions was investigated

using 3D simulations in Cartesian geometry. Improvements to the

radiative transfer and time-integration schemes were described in

Mackey (2012). 2D simulations with axisymmetry (cylindrical coor-

dinates in R and z) were added following Falle (1991), and a stellar

wind boundary condition implemented and used in Mackey et al.

(2012) to study the nebula around Betelgeuse assuming the star was

previously a blue supergiant and only recently evolved to a RSG. This

was achieved by varying the wind parameters according to results

from a stellar evolution calculation. The spherically symmetric (1D)

coordinate system has also been implemented, and was used for

studying the external irradiation of winds from RSG (Mackey et al.

2014; Szécsi, Mackey & Langer 2018) and for modelling the D-type

expansion of H II regions (Bisbas et al. 2015). A non-equilibrium-

ionization model for the thermodynamics and ionization of the

diffuse ISM was introduced in Mackey, Langer & Gvaramadze

(2013) for modelling H II regions, and a related model for molecular

gas in Mackey et al. (2015), based on results from Henney et al.

MNRAS 504, 983–1008 (2021)
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PION: simulations of wind-blown nebulae 985

(2009). These were used in Mackey et al. (2016), Gvaramadze et al.

(2017), and Green et al. (2019) for simulating circumstellar nebulae

and comparing observational data with synthetic observations.

These calculations were run on a uniform rectilinear grid, de-

composed into blocks for parallel code execution, using MPI for

inter-process communication. The code was shown to scale well

to at least 256 cores for 2D problems, and to 1024 cores for 3D

problems (Mackey 2012) in tests of strong scaling (i.e. fixed problem

size, variable number of MPI processes). PION has proven to be

a useful code for studying circumstellar nebulae and expanding

bubbles driven by photoionization and winds, but most applications

have been 2D because of the limitations of the uniform computational

grid.

2.1 Stellar-wind boundary condition

A stellar wind is modelled as a source of mass, momentum, and

energy within a sphere of user-specified radius on 1D-spherical, 2D-

cylindrical, and 3D-Cartesian grids. There are three options in PION

specified by wind-type parameter 0, 1, or 2 in the input parameter-file.

Type 0 is a spherically symmetric wind that is constant in time; type

1 is a spherically symmetric and time-varying wind with properties

specified by a text file containing the time evolution; and type 2 is

a latitude-dependent and time-varying wind. These are described in

the following subsections and demonstrated in Sections 4.1, 4.3, and

4.2, respectively. There is no limit on the number of wind sources

that can be included in a simulation.

For all wind-boundary types, it is possible to specify chemical

element abundance fractions (by mass) as passive scalar variables

that are advected across the simulation domain (see also e.g. Georgy

et al. 2013). These can be constant in time or with time-varying values

read in from a text file. We implemented the consistent multispecies

advection (sCMA) scheme of Plewa & Müller (1999) for tracking the

fractional abundances of these chemical elements. This ensures that

the non-uniform elemental abundances are tracked accurately as they

expand outwards and mix with fluid elements that have (potentially)

different abundances.

2.1.1 Constant wind

The simplest wind boundary (type 0) is spherically symmetric and

constant in time, and the wind is injected at the terminal velocity, i.e. it

is assumed that the wind boundary region is significantly bigger than

the star. The boundary region is specified by a position and a radius,

both in cm, and the physical properties of the wind are specified by

the mass-loss rate, Ṁ , the wind terminal velocity, v∞, stellar radius,

R⋆, temperature, Teff, equatorial rotation velocity, vrot, surface split-

monopole magnetic field strength, B⋆, and the mass fractions of

any chemical elements tracked. Generally, the wind boundary region

should be 10–20 grid cells in radius to suppress grid-related artefacts

in the expanding flow.

If |vrot| > 0 then the spherical symmetry is broken for multidi-

mensional simulations, because the azimuthal component of velocity

and magnetic field are non-zero. The magnetic field is taken to be

weak (dynamically) and to follow a split monopole swept into a

Parker spiral at large distance from the stellar surface. Both toroidal

and poloidal field components are included, and for simplicity, it

is assumed that the rotation and magnetic axes are coincident. The

rotational component of the wind velocity decays with distance,

r, from the star as r−1 and is generally negligible. The boundary

condition follows closely the methods commonly used for MHD

modelling of the Solar Wind and Heliosphere (e.g. Pogorelov, Zank &

Ogino 2004), also similar to the recent implementation on a spherical

coordinate grid by Scherer et al. (2020), and it is demonstrated in

Sections 4.1 and 4.4.

2.1.2 Time-varying wind

Wind type 1 is an extension of type 0 for time-varying sources that are

specified through a tab-separated text file containing the evolution

of the star in question. The columns in this file are: time, mass,

luminosity, temperature, mass-loss rate, rotation velocity, critical

rotation velocity, vcrit ≡ vesc/
√

2 (where vesc is the surface escape

velocity), wind terminal velocity, and mass-fractions of any chemical

elements tracked. All values are assumed to be in cgs units and can

be modified output from a stellar evolution calculation (e.g. Mackey

et al. 2012) or an ad-hoc model (cf. Langer, Garcı́a-Segura & Mac

Low 1999). The evolving stellar wind module was previously used

in Mackey et al. (2012) to study the hydrodynamics of the nebula

produced when a blue supergiant evolves redward to an RSG, and

follows similar algorithms from the earlier literature (Garcı́a-Segura

et al. 1996b; van Marle et al. 2005). Here, the module is demonstrated

in Section 4.3 for the nebula produced when an RSG evolves to a

WR star.

2.1.3 Latitude-dependent and time-varying wind

Wind type 2 provides a prescription for latitude-dependent winds

from rotating stars, and the option to read time-evolution of stellar-

wind and radiation properties from a text file. The latitude-dependent

wind is modelled following Langer et al. (1999), who introduced

a mathematical model of the focusing of stellar wind towards

the equator as the star approaches the so-called �-limit (Langer

1997), defined as the equatorial surface rotation speed, vrot, for

which the net acceleration on the surface layers is zero. The

critical rotation velocity is used to define the rotation parameter,

� ≡ vrot/vcrit < 1. Equations (3)–(5) in Langer et al. (1999) are

used to calculate the latitude dependence of the wind density and

velocity as a function of �. This algorithm is based on the theory

of Bjorkman & Cassinelli (1993) and it produces many of the

observed features of bipolar nebulae (Langer et al. 1999; Chita

et al. 2008; van Marle et al. 2008), particularly for stars that

reach critical rotation in the temperature range of 6000 − 10 000 K

when embarking on a blue loop. This module is demonstrated in

Section 4.2, where the results are compared with previous literature

results.

2.2 Upgraded magnetohydrodynamics implementation

PION has an MHD implementation presented in Mackey & Lim

(2011), which is effective for simulating the magnetohydrodynamics

of H II regions (Mackey et al. 2013). This uses a modified version of

the Dedner et al. (2002) mixed-GLM divergence-cleaning algorithm

for mitigating against the growth of magnetic monopoles. It uses

either the linear MHD solver described by Falle et al. (1998), or

the Roe solver in conserved variables of Cargo & Gallice (1997),

following Stone et al. (2008).

Neither of these MHD Riemann solvers is robust enough for

the high-Mach-number shocks encountered in stellar-wind bubbles

around hot stars. We implemented the HLL solver in HD (Harten,

Lax & Leer 1983) and MHD (Janhunen 2000) following Mignone

et al. (2012), and also the more accurate HLLD solver (Miyoshi &

MNRAS 504, 983–1008 (2021)
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986 J. Mackey et al.

Kusano 2005) for MHD. The HLLD solver is also not sufficiently

robust for the high-Mach-number flows in stellar wind simulations,

because it is not positive definite in gas pressure (Mignone et al.

2012). Following Mignone et al. (2012), we implemented a shock

detection scheme and a switch that locally replaces the HLLD with

the HLL scheme, which is positive definite. This improves the code

stability, but for some problems the simpler HLL scheme should be

used everywhere.

Following Derigs et al. (2018), we included the Powell source

terms (Powell et al. 1999), added the source terms for the Dedner

et al. (2002) ψ field, which we re-scaled as in Derigs et al. (2018),

and included ψ in the total energy density. This introduces very small

changes in the solution to test calculations, and some improvements

in the robustness of the scheme. We did not implement the full scheme

of Derigs et al. (2018) with their entropy-stable Riemann solver, and

so the rest of the MHD implementation is as in Mackey & Lim

(2011).

2.3 Static mesh-refinement

A number of implementations of static mesh-refinement have been

described in the literature, typically arranged as a multiply nested grid

that is centred on a region of interest. Freyer et al. (2003, 2006) used a

2D nested grid with axisymmetry described in Yorke & Kaisig (1995)

and Yorke & Welz (1996) to study expanding nebulae. This has one

advantage over a spherical grid with logarithmically spaced radial

cells, in that the latter has a global time-step for all cells whereas the

nested grid can have adaptive time-stepping. This efficiency comes

at the cost that all radial columns away from a point source are

not equal – angle-dependent numerical viscosity and grid-artefacts

are inevitably introduced, as can be seen by comparing results from

Garcı́a-Segura et al. (1996b) and Freyer et al. (2006). In particular

with 2D simulations, the symmetry axis has a coordinate singularity

that affects results, also seen in bow-shock simulations (Green et al.

2019). For 3D, this is less of a problem, but the viscosity of the

numerical scheme for expansion along grid axes remains different

from expansion at an angle to the grid.

Recently Stone et al. (2020) described the implementation of static

and adaptive mesh-refinement algorithms in the ATHENA++ software

framework, again demonstrating the dramatic improvements that can

be obtained with these techniques. The advantages in computational

efficiency of a nested grid compared with a uniform grid are clear:

for 2D calculations with a uniform grid, doubling the resolution

everywhere increases the computational cost by a factor of 8; for 3D

calculations, it is a factor of 16. Adding a nested grid that is a factor

of 2 smaller than the coarse grid in each dimension, but that retains

the same number of zones, increases the computational load by a

factor of 3 (the fine grid requires the same amount of computation as

the coarse grid per step, but must take twice the number of steps), and

this is independent of dimensionality. Adding a third level requires

seven times more computation than just a single level, whereas for

a uniform grid the cost of quadrupling the resolution would be 64×
(2D) or 256× (3D) more work. A nested grid also has a modest

efficiency advantage over spherical-coordinate grids with a cell size

that increases with radius, in that adaptive time-steps can be used. On

a spherical grid all cells must use the same time-step, usually dictated

by the smallest cells close to the origin. For N refinement levels, the

computational saving using adaptive time-stepping compared with a

global time-step on all levels approaches a factor of N/2 for large N.

There are three additions to a uniform-grid algorithm required for

a nested grid:

(i) The refined grid should obtain its external boundary data from

its parent (coarser) grid, by interpolating the coarse-grid zones to

the zone-centres of the boundary data on the refined grid. This

interpolation should be done to the same order of accuracy as the

spatial reconstruction used, and should conserve the total mass,

momentum and energy of the coarse-grid zone. This is known as

prolongation (e.g. Tóth & Roe 2002).

(ii) The coarse grid should update its zones by obtaining averaged

data from any finer-level grid (where applicable). This is known as

restriction (e.g. Tóth & Roe 2002).

(iii) The flux entering/leaving a finer-level grid should be recorded

and sent to the coarser-level parent grid to ensure that this flux is

consistent across all grid levels (Berger & Colella 1989, hereafter

BC89). This is required so that conserved quantities are indeed

conserved; otherwise mass, momentum, and energy can disappear

because of inconsistencies between levels.

All of these are well-established techniques, but they are described

below because the implementation depends on the time-integration

scheme adopted as well as the parallelization strategy.

2.3.1 Coarse-to-fine interpolation (Prolongation)

We follow the scheme used for MPI-AMRVAC (Meliani et al. 2007;

Keppens et al. 2021) on a cell-by-cell basis, and for a grid with D

spatial dimensions. For a scheme that is first-order accurate in space,

we can simply copy the coarse-grid values to the 2D fine-grid cells.

For a second-order scheme, linear interpolation and correction are

applied as follows:

(i) For each coarse-grid cell, i, with cell volume Vi, and cell-

centred vector of primitive variables P i , calculate slopes, mk, of the

primitive variables in each dimension k.

(ii) Send these data to the finer grid and the finer grid receives the

data.

(iii) Using the slopes mk, interpolate P i to the cell centres

of the 2D fine-grid cells contained within the coarse-grid cell i,

assigning primitive variable data P j to these cells. Depending on grid

dimensionality, this uses linear, bilinear, or trilinear interpolation.

(iv) The conserved quantities U i and U j are calculated from P i

and P j , respectively.

(v) The difference vector � = U iVi −
∑

j U jVj is calculated, to

ensure that the conserved quantities have consistent values within

the same volume in both levels.

(vi) The fine-grid cells j are corrected by adding 1/2D of this

difference to each U j (also dividing out the total volume)

U j → U j +
�

2DVi

. (1)

(vii) The fine-grid primitive vectors P j are obtained from the

corrected U j vectors, for each fine-grid cell.

This ensures that conserved quantities are conserved when a coarse

grid cell is prolongated on to the finer grid.

2.3.2 Fine-to-coarse averaging (restriction)

This is much more straightforward than prolongation, and also

independent of the spatial order of accuracy of the scheme.

(i) For each set of 2D fine-grid cells j, contained within the coarse-

grid cell i, we calculate the average of the conserved quantities
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PION: simulations of wind-blown nebulae 987

contained within the volume Vi of cell i

U i =
∑

j U jVj
∑

j Vj

. (2)

(ii) The list of U i vectors is sent to the coarse grid and the coarse

grid receives data.

(iii) Vectors U i are converted to a primitive vector and assigned

to each coarse-grid cell i.

2.3.3 Flux correction on coarse grid zones abutting a fine grid

boundary

BC89 describe a method to ensure consistent fluxes across cell

boundaries at different levels of refinement, with the assumption

that the most accurately calculated flux is at the finest level. This

finest-level flux is then propagated to coarser levels as needed, and

the coarse-cell fluxes are corrected to agree with the finest-level flux.

The PION implementation is described here for two levels, which is

the only case that arises for a nested grid arrangement. It is assumed

that the coarse and fine grids are assigned to different MPI processes,

although the update algorithms do not make the MPI calls if the grids

are on the same process.

The correction is not needed for the half-step in the second-order

scheme, because this is only an approximate time-centred state used

to calculate fluxes that are accurate to second order. This means that

the full-step fluxes over two fine-grid steps must be added together

and sent to the coarse grid after the full-step coarse fluxes have been

calculated but before the coarse grid cells have their state advanced

in time.

When the coarse and fine grids are set up, the edge cells of the

refined levels are identified, as well as the coarse grid cells that share

the same edge. Any fine-grid cells whose outer face is the edge of

the fine level have up to D (for edge/corner cells) extra state vectors

allocated and initialized to zero, to record the full-step fluxes as they

are calculated.

In addition, the fine grid allocates up to 2D vectors of C-style

structs (one for each outward normal direction on the grid). Each

element in each vector represents a cell face on the coarse grid for

which the flux will be corrected by the fine grid. The structs contain

a list of pointers to the fine-grid cells contributing to this coarse-cell

face, a vector of corresponding areas of the cell faces (not all identical

for curvilinear grids), and a state vector to hold the time-integrated

flux through the fine-cell faces over the two time steps. The coarse

grid allocates a similar vector of structures to record the uncorrected

fluxes, but there is only one coarse cell and one face area in each

struct.

The scheme is as follows, shown only for one coordinate direction

(i) At the start of an even-numbered fine grid time-step, reset BC89

fluxes to zero.

(ii) Record fluxes, Fj across all fine-grid boundary cells j during

the time-step.

(iii) Calculate time- and area-integrated flux, �U
f

i , through sur-

faces of the 2D − 1 cells, j, on the fine grid that correspond to the

surface of coarse-grid cell, i. Add these to the vector of structs on

fine grid by summing the fluxes

�U
f

i = �tf

2(D−1)
∑

j=0

FjA
f

j , (3)

where A
f

j is the surface area of the face of cell j, and �tf is the

fine-grid time-step.

(iv) On the coarse grid record fluxes, Fi , through cell faces that

map on to the edge of fine grid, and calculate �U
c
i = �tc

FiA
c
i

(where �tc = 2�tf is the coarse-grid time step and Ac
i is the area of

the face of cell i).

(v) Complete the odd-numbered fine-grid step by repeating steps

(ii) and (iii), adding to �U
f

i as before.

(vi) Send array of �U
f

i values from MPI process of fine grid to

MPI process of coarse grid.

(vii) Correct �U
c
i values on the coarse grid so they agree with

�U
f

i , and modify fluxes accordingly.

2.4 Time-integration scheme

The coarse-to-fine update can only be applied once every full step

of the coarse grid for a fully consistent solution, and so the finer-

level grid must calculate two time-steps between updates, following

the algorithm above. The boundary region should be six cells deep

in order to complete two full steps on the finer level without

updating the boundary conditions (for a second-order scheme),

compared with four cells if the update was every step. The fine-

to-coarse boundaries are updated every full step on the fine-level

grid.

The following time-integration scheme was implemented, based

on the uniform-grid scheme of Falle et al. (1998) and using adaptive

time-steps on nested grids. We update level l by one step and level

l + 1 by two steps, and the algorithm is recursive.

(i) Begin time-step level l, to advance current time, t0, by �tl.

(ii) If an even step, receive coarse-to-fine external boundary data

from level l − 1.

(iii) Update any other external boundary conditions (including

from domain decomposition).

(iv) Send coarse-to-fine data to l + 1.

(v) Advance level l + 1 by one step.

(vi) Calculate fluxes on level l and calculate the time-centred state

at t0 + 0.5�tl.

(vii) Update internal boundary conditions (e.g. stellar wind prop-

erties).

(viii) Receive fine-level data from l + 1 and replace level l states

with these data (including optical depths, if raytracing).

(ix) Update external boundary conditions except for coarse-to-fine

level boundary.

(x) Do raytracing on time-centred state to calculate optical depths

for full step.

(xi) Calculate level l fluxes for full step, using the time-centred

state, saving fluxes needed for BC89 correction.

(xii) Advance level l + 1 by one step.

(xiii) Receive BC89 fluxes summed over two steps from l + 1 and

correct level l fluxes accordingly.

(xiv) Update state vector on level l to t = t0 + �tl.

(xv) Update internal boundary conditions (e.g. stellar wind prop-

erties), receive fine-level data from l + 1 (including optical depths)

and replace level l states with these data.

(xvi) Raytrace level l to calculate optical depths for next (half)

step.

(xvii) If an even-numbered step, send BC89 fluxes to l − 1.

(xviii) Send fine-to-coarse averaged data to l − 1 (including

optical depths).

(xix) Return.

After a full step on the coarsest grid, the time-step is re-calculated

on all grids and a new step is started. The refined grids use the same
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988 J. Mackey et al.

time-step for the duration of the coarse step, and so a safety factor is

included in addition to the usual CFL condition.

2.5 Radiative Transfer

Raytracing is implemented in PION using the method of short

characteristics with the On-The-Spot approximation, i.e. scattered

radiation is locally re-absorbed and so only direct radiation from

point sources needs to be transported across the grid (Mellema et al.

2006a; Mackey 2012). If radiation sources are always on the most

refined grid, then raytracing on a nested grid proceeds on the finest

level exactly as for a uniform grid. On the next coarser level, the

stored quantities (whether optical depth, column density, or radiation

density) are mapped on to the coarser grid cells from the finer grid,

and raytracing proceeds through the rest of the level. This procedure

is repeated for all coarse levels.

Raytracing must be performed on all levels when calculating

the time-step on the coarsest level (because the photoionization

and recombination time-scales also limit the time-step), and then

twice each time-step per level for the second-order scheme (Mackey

2012). So for a grid with four levels, the finest level (level 3) has 17

raytracings per coarse-grid step, level 2 has 9 raytracings, level 1 has

5, and level 0 has 3.

2.6 Summary

The upgraded MHD algorithms with static mesh-refinement are

implemented in first-order and second-order schemes, and the code

was run on different numbers of MPI processes to check for

consistency. The results for the first-order scheme for HD, MHD,

and R-MHD were shown to be byte-for-byte identical, independent

of the number of MPI processes. For the second-order scheme, HD

and MHD results are byte-for-byte identical when run on different

numbers of MPI processes, and R-MHD results show very small

differences (relative difference ≈10−4 in primitive variables) at the

end of a simulation, arising because of the adaptive time-stepping

algorithm in the implicit solver for ionization and heating/cooling.

The conservation of mass, momentum, and energy were also checked

and found to be consistent with roundoff error.

3 TEST C A LCULATIONS

3.1 Advection of a magnetic field loop

Advection across refinement boundaries can verify that the refine-

ment has been implemented correctly, and can show that the accuracy

of the nested-grid integration algorithm is the same as that of the

uniform-grid. This is demonstrated with 2D test problems using

periodic boundaries, where the whole domain is advected twice

through the domain and back to its starting location.

The advection of a magnetic field loop is a good test of the

diffusivity of an MHD scheme (e.g. Gardiner & Stone 2005; Stone

et al. 2008). A weak magnetic field loop is set up in the x–y plane

using the vector potential A = [0, 0, Az], with z-component

Az =
{√

4πA0(R0 − r) (r =
√

x2 + y2) < R0

0 r ≥ R0,
(4)

using A0 = 0.001 and R0 = 0.3. This generates a constant circular

magnetic field of strength
√

4πA0 within r < R0, a current sheet at

r = R0, and a current spike at r = 0 whose amplitude increases with

increasing numerical resolution. The initial uniform density is ρ =
1, thermal pressure is pg = 1, and velocity is v = [2, 1, 0], using

an adiabatic equation of state with γ = 5/3. The magnetic pressure,

pm ≡ B2/8π = 5 × 10−7, is therefore negligible and the field is

advected with the flow.

For the uniform-grid simulation, a 2D domain with x ∈ [−1, 1] and

y ∈ [−0.5, 0.5] is used, and for the nested-grid simulation the domain

is x ∈ [−1, 1] and y ∈ [−1, 1] (so that the field loop fits entirely in the

first refined level centred on [0,0]). In both cases, the HLLD solver is

used, and 200 × 100 grid cells per level. Results from the uniform-

grid simulation are plotted in Fig. 1, showing the initial conditions

(left-hand panel) and the final state at t = 2 (right-hand panel), by

which time the loop has advected twice across the domain at an angle

30◦ to the positive x-axis. These results are similar to those shown

for the previous version of PION in Mackey & Lim (2011) using the

linear solver of Falle et al. (1998). The decay of magnetic pressure

very closely follows the results presented in Mackey & Lim (2011)

(because the integration scheme is essentially unchanged) and is not

shown here.

Results for the simulation with one level of refinement, and a

refined grid on x ∈ [−0.5, 0.5] and y ∈ [−0.5, 0.5], are plotted in

Fig. 2, where now contours are only plotted for the refined grid. This

simulation has a larger domain from [−1, 1] to [1,1]. The loop still

advects twice across the domain, crossing both the refined and coarse

levels, but spending most time on the coarse level. Results are very

similar to the uniform-grid case, except that the extrema of ∇ × B

are slightly more pronounced, meaning that the initial conditions are

marginally better preserved. No artefacts are introduced by advecting

the field loop across refinement levels.

3.2 MHD blast wave in 2D

The expansion of a blastwave in a 2D Cartesian domain is a standard

test problem, (e.g. Stone et al. 2008). Here, we set up the problem as

in Stone et al. (2008) and Mackey & Lim (2011): the domain is x ∈
[−0.5, 0.5], y ∈ [−0.75, 0.75], resolved by 256 × 384 cells, with a

uniform background density ρ = 1, pressure pg = 0.1, and magnetic

field strength of 0.1, 1.0, or 10.0 (in units where factors of 4π do

not appear, so e.g. B = 1 corresponds to B =
√

4π in cgs units). The

field is oriented at an angle of 45◦ to the x-axis and the medium is

initially at rest. A circle of radius 0.1 is filled with gas at pressure

pg = 10 and the system is allowed to evolve to t = 0.2. Periodic

boundary conditions are imposed on all sides, although they are not

relevant to the dynamics until t > 0.2.

We calculate the three problems (weak, medium, and strong

magnetic field) using the HLLD solver with a CFL number of 0.24,

initially on a uniform grid. The results for all three cases are shown

in Fig. 3 at t = 0.2, and are comparable to results obtained with

ATHENA (Stone et al. 2008). The features visible in the contour at

ρ = 1, outside the outer shock, arise from the diffusion of divergence

errors by the ψ field of the GLM-MHD scheme. Apart from this, the

symmetry of the blast wave and contact discontinuity are maintained

well, and the HLLD solver is at least as good the solver presented in

Mackey & Lim (2011) while being significantly more robust.

For comparison, the results using a nested grid with two levels,

centred on the origin, for all three magnetic-field strengths are plotted

in Fig. 4, using the same colour scale and contours as Fig. 3. The inner

part of the solution is solved more accurately, as expected because

of the higher resolution, but the most obvious difference from Fig. 3

is that the refinement boundary has left an imprint in the form of

waves trailing the forward shock in an approximate parallelogram

shape in the middle panel (B = 1). For the case where B = 0.1, this

grid-refinement-boundary effect is much less noticeable than for B =
1. The effect is almost absent in HD calculations, similar to panel
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PION: simulations of wind-blown nebulae 989

Figure 1. Field-loop advection test, showing the initial conditions (panels a,b) and the final state at t = 2 after advecting twice across the domain (panels c,d).

The magnetic pressure pm = |B|2/(8π) is plotted in the upper panels, and the current density in the lower panels, using a linear colour scale as indicated. In the

upper panels, contours of magnetic pressure are shown from pm = 1 × 10−7 to 5 × 10−7, linearly spaced in steps of 1 × 10−7. For panel (b), the current density

contours are ∇ × B = [−0.06,−0.03, 0, 0.03, 0.06, 0.09, 0.12], and for panel (d) ∇ × B = [−0.008, 0, 0.008, 0.016, 0.024, 0.032], using broken lines for

negative contours.

Figure 2. As Fig. 1, but using a nested grid with two levels, centred on [0,0], again plotting magnetic pressure above and current density below. The left-hand

panels show the initial conditions and the right-hand panels the results at t = 2 after advecting twice across the domain. In the upper panels, contours of magnetic

pressure are shown as before, but only for the refined grid. For panel (b), the current density contours are ∇ × B = [−0.12,−0.06, 0, 0.06, 0.12, 0.18, 0.24],

and for panel (d) ,∇ × B = [−0.008, 0, 0.008, 0.016, 0.024, 0.032], using broken lines for negative contours.

(a) in Fig. 4 for which pg in the hot region is much larger than the

magnetic pressure, pm ≡ B2/2 (in these units), i.e. the plasma β ≡
pg/pm ≫ 1. In panel (c) of Fig. 4, the grid effect is visible in that the

blastwave is no longer mirror-symmetric along its axis, but the error

is not worse than in panel (b). In panel (b), the initial conditions have

β ≪ 1 in the undisturbed medium, and β = 2 in the hot region of

the initial conditions. Panel (c) has β < 1 in all regions of the initial

conditions.

The medium-field case (B = 1) was investigated in more de-

tail by running with a first-order integration scheme and using

ATHENA++ version 19.0 (Stone et al. 2020) with the same resolution

and static mesh-refinement. Results are plotted in Fig. 5 using PION

with the HLLD solver and the second-order scheme (a), the HLLD

solver and the first-order scheme (b) and using ATHENA++ (c). Both

codes show basically the same result, with small differences because

ATHENA++ uses a different integration scheme, especially with

regard to integration of the magnetic field. The first-order scheme

is more diffusive for all waves, and so features are not as sharp, but

the imprint of the refinement boundary remains.

The error appears to be related to an inconsistency introduced in the

discretized equations when an oblique shock crosses the refinement

boundary, for strongly magnetized plasma with β � 1. Significant

MNRAS 504, 983–1008 (2021)
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990 J. Mackey et al.

Figure 3. MHD Blastwave test calculation in 2D using a uniform grid with 256 × 384 cells, calculated with PION, for a background magnetic field of strength

B = 0.1 (a), B = 1 (b), and B = 10 (c), at an angle of 45◦ to the positive x-axis. Gas density is plotted at t = 0.2 using the indicated linear colour scale. Contours

of density are plotted on a linear scale starting from ρ = 0 separated by �ρ = 0.2.

Figure 4. As Fig. 3, but using a nested grid with two levels, centred on the origin.

effort was made to characterize and eliminate the issue, but no

satisfactory solution was found. The features are basically the same

whether one uses ideal MHD, ideal MHD with Powell source terms,

or ideal MHD with the GLM-MHD divergence cleaning method,

although there are small differences in each case. Removing the

BC89 flux correction also does not remove the error (or change the

solution to any great extent). It is worth noting that ATHENA++ uses

a constrained transport scheme to eliminate ∇ · B (Gardiner & Stone

2005), completely different from the methods used here, and so the

issue is not caused by the divergence-cleaning implementation.

Features introduced to the flow by waves crossing refinement

boundaries are also discussed in Stone et al. (2020, figs 38 and

39), where a simulation of the relativistic and magnetized Kelvin–

Helmholtz instability is run with a uniform grid and with AMR.

There are noticeable differences, with the uniform-grid simulation

showing much smoother and more symmetric flow. It is unavoidable

that refinement boundaries introduce some numerical errors to the

solution, but the results in Fig. 5 appear to be a worst-case scenario

in terms of the refinement boundary having an effect on the overall

solution. In particular, the results presented below for 3D simulation

of magnetized bow shocks and H II region expansion have almost

indiscernible artefacts in the flow variables at refinement boundaries,

even though in some cases β ∼ 1 in the post-shock medium.

3.3 Expansion of a D-type ionization front

The accuracy of PION in tracking ionization fronts propagating at

various speeds from D-type to R-type across a uniform grid was

presented in Mackey (2012). The implementation in the nested-grid

is very similar, in particular the calculation of optical depths and

time-stepping restrictions, applied on a level-by-level basis. In this

section, we calculate the D-type expansion of an H II region using

the parameters and initial conditions of the ‘Early phase’ calculation

of Bisbas et al. (2015).

A source of Lyman-continuum photons emits at a rate Q0 =
1049 s−1 from the origin, into a uniform neutral ISM of density

MNRAS 504, 983–1008 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
4
/1

/9
8
3
/6

1
7
8
8
5
5
 b

y
 D

u
b
lin

 In
s
titu

te
 fo

r A
d
v
a
n
c
e
d
 S

tu
d
ie

s
 u

s
e
r o

n
 2

6
 A

p
ril 2

0
2
1



PION: simulations of wind-blown nebulae 991

Figure 5. The MHD Blastwave test calculation in 2D using static mesh-refinement and two levels, for the case B = 1, with the finer level centred on the origin

and extending to x = ±0.25 and y = ±0.375 calculated using (a) PION with the second-order scheme, (b) PION with the first-order scheme, and (c) ATHENA++
verson 19.0. Gas density is plotted at t = 0.2 using the same colour scale, as indicated.

ρ0 = 5.21 × 10−21 g cm−3 composed purely of hydrogen. The gas

has a two-temperature-isothermal equation of state, where neutral

gas has temperature T0 = 100 K and sound speed c0 ≈ 0.91 km s−1,

and ionized gas has temperature Ti = 104 K and sound speed

ci ≈ 12.85 km s−1, with the temperature in partially ionized cells

linearly interpolated between these values. The Strömgren radius is

Rs = 0.314 pc (0.97 × 1018 cm), and the stagnation radius (where

the H II region is in pressure equilibrium with the undisturbed ISM)

is Rstag = (ci/c0)4/3Rs = 10.72 pc, approximately 34 times larger.

The early-phase test calculation in Bisbas et al. (2015) was evolved

for 0.141 Myr, on a grid that extends to 4Rs ≈ 3.9 × 1018 cm in

each dimension. We evolve this solution out to a larger extent of

8 × 1018 cm in each dimension, so that we can test the adaptive

resolution effectively (the D-type expansion only begins at r ≈ Rs

and the effects of numerical resolution only become clear once a

shock and swept-up shell can form). We calculate the radius of the

ionization front, RIF, from the ionized volume as follows

RIF =

(

3

4π

∑

i

yi(H
+)Vi

)1/3

, (5)

where the sum is over all cells, i, on the domain with cell volume Vi

that have H+ fraction yi(H
+) > 0.01. This allows a consistent solution

even when the shocked shell becomes distorted in multidimensional

calculations (cf. Bisbas et al. 2015).

The results for a series of 1D calculations with different spatial

resolution are shown in Fig. 6, including the relative difference

between the low resolution calculations and the calculation with

8192 cells. Here, we show results using uniform grids with 32,

64, 128, 256, and 8192 cells on the domain r ∈ [0, 8 × 1018] cm.

These are compared with the ‘thick-shell’ solution of Williams et al.

(2018), which was found to be an excellent analytic solution for

the early phase of expansion. Both the ionization front and shock

front are effectively discontinuities, for which the order of accuracy

is reduced to first order by the slope limiter, and so the relative

error of the solution improves approximately proportional to the

resolution.

Fig. 7 shows the same information but for 2D simulations with

uniform and nested grids with up to three levels of refinement and

Figure 6. Expansion of an H II region simulated in 1D with spherical

symmetry, showing how the accuracy improves with increasing numerical

resolution. Upper panel: the radius of the ionization front as a function of

time, for different resolutions, compared with the ‘thick-shell’ solution of

Williams et al. (2018). Lower panel: the relative difference between the

radius for a given resolution and the radius when run with 8192 grid cells

(absolute value). Line styles are the same as in the upper panel.

different grid resolutions (per level) from 322 to 1282. The H II region

crosses the finest level-boundary at t ≈ 0.05 Myr, and the second

level-boundary at t ≈ 0.15 Myr (shown by the cyan dotted lines).

Again the solutions are compared with the 1D calculation using 8192

cells. The accuracy of the 2D uniform-grid solutions is almost the

same as in 1D with the same resolution, as expected. For simulations

with refined grids, the solution is always better than the unform-

grid solution at the same resolution, but approaches this solution

at large radius. When the ionization front is within a refined grid,

the accuracy of the solution is comparable to that of a uniform grid

with the same cell-diameter. After the ionization front crosses a

refinement boundary, the solution accuracy begins to degrade to

that of the equivalent uniform grid with the coarser resolution. The

3D results, simulated on one octant with reflection symmetry, are

indistinguishable from 2D calculations at the same resolution, and

are therefore not shown.
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992 J. Mackey et al.

Figure 7. Each panel is as for Fig. 6, except now the calculation is for a 2D

simulation of one quadrant with different grid resolutions and numbers of

refinement levels. (a) uniform-grid results with different resolutions. (b) grid

resolution 322 with 1, 2, and 3 refinement levels. Here, the cyan horizontal

lines show the boundaries of the three levels. (c) grid resolution 642 with 1, 2,

and 3 refinement levels. (d) grid resolution 1282 with 1, 2, and 3 refinement

levels.

Figure 8. (a) Maximum shell density as a function of time for 1D simulations

of D-type expansion of an H II region, run with differing spatial resolutions

from 32 cells to 8192 cells, as indicated in the legend. (b) As above, but with

2D results overplotted in red, for nested grids of 322 cells with 1, 2, and 3

levels, as indicated in the legend.

In all cases, the error in ionization-front position is about three cell-

diameters, comparable to the numerical resolution of the scheme.

This error arises because the shocked shell must be a few cells

thick in order to resolve the shock and ionization front, whereas

the physical shell thickness is such that the shell is unresolved at

all radii for the low-resolution multidimensional simulations shown

here. This is shown in Fig. 8(a), where the maximum overdensity in

the shocked shell is plotted as a function of time for various different

grid resolulions in 1D simulations, from 32 cells to 8192 cells. This

is a reasonable proxy for whether or not the shell is numerically

resolved, although not sufficient to show that all properties of the

shell are correct (e.g. thickness). The simulations using grids with

32 and 64 cells are clearly unresolved at all radii, whereas the

grid with 128 cells approaches the correct peak overdensity for

t > 0.4 Myr, but is increasingly underresolved at earlier times. The

overdensity decreases sharply for the high-resolution calculation at

the last snapshot because the shocked shell is starting to leave the

domain. In Fig. 8(b), 2D results for grids with 322 cells and 1, 2, and

3 refinement levels are shown. The results are slightly better than the

1D peak overdensity for an equivalent resolution, but at no stage is

the shell resolved.

These results show that the accuracy of the expansion of H II

regions for multidimensional simulations with mesh refinement is

comparable to that of the equivalent 1D simulation with the same

spatial resolution. This means that the dynamics of expanding

nebulae can be resolved to approximately the same degree at all

stages of expansion. This has advantages for certain applications

MNRAS 504, 983–1008 (2021)
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PION: simulations of wind-blown nebulae 993

Table 1. Stellar wind and ISM parameters for the 3D MHD simulation of a

bow shock in section 4.1.

Parameter Value

Stellar mass-loss rate, Ṁ 10−7 M⊙ yr−1

Stellar wind terminal velocity, v∞ 2000 km s−1

Stellar surface rotation (equator), vrot 100 km s−1

Surface split-monopole field strength, |B| 10 G

Surface temperature, Teff 35 000 K

ISM density, ρ0 2.0 × 10−24 g cm−3

ISM pressure, pg 2.9 × 10−12 dyne cm−2

ISM velocity, v [−30, 0, 0] km s−1

ISM B-field, B0 [4, 1, 1] × 10−6 G

such as expanding WR nebulae (Freyer et al. 2006) and Planetary

Nebulae.

4 A P P LIC ATIONS TO STELLAR-WIND

BU BBLES

Four examples are presented here of simulations of winds from

massive stars: a constant wind from an O star driving a bow shock,

the nebula produced by an RSG that evolves on a blue loop and spins

up to critical rotation, the nebula produced by an RSG evolving to

a WR star when it loses its envelope, and the wind–wind collision

of two stars in close proximity to each other. The simulations are

mainly chosen for ease of comparison with the previous literature on

these topics.

4.1 Stellar-wind bubble in 3D with MHD

Here, we introduce the standard wind module in PION, using a

spherically symmetric, constant (in time), hypersonic wind from a

slowly rotating star (wind type 1 from Section 2.1). We demonstrate

for the first time with PION, the implementation of a magnetized wind

from a rotating star, a preliminary version of which was presented in

Mackey, Green & Moutzouri (2020).

4.1.1 Simulation setup and initial conditions

We set up a 3D MHD simulation of the bow shock produced by

a star moving with v⋆ = 30 km s−1 through the diffuse ISM, with

three grid levels. The parameters of the stellar wind and the ISM

are in Table 1, and are typical of a late O star of mass M ≈ 30 M⊙.

The ISM pressure corresponds to a gas temperature of T ≈ 7 800 K,

appropriate for photoionized gas. The standoff distance of the bow

shock is defined by

RSO ≡

√

Ṁv∞

4πρ0(v2
⋆ + c2

s )
, (6)

where Ṁ is the mass-loss rate of the star, v∞ is the terminal wind

velocity, ρ0 is the background ISM density, v⋆ is the space velocity

of the star, and cs ≡
√

γpg/ρ0 is the sound speed of the background

medium (γ is the adiabatic index of the gas). For these parameters,

RSO ≈ 0.70 pc, and we expect to find the wind termination shock with

this separation from the star. The location of the contact discontinuity

and the forward shock depend on the compressibility of the gas

through the shocks and on radiative cooling efficiency (Scherer et al.

2020).

The radiative heating and cooling prescription follows Green et al.

(2019) and the shocked wind is almost adiabatic whereas the shocked

ISM is effectively isothermal. The ISM is assumed to be fully ionized,

and to consist of hydrogen with mass fraction 0.714, and helium

with abundance one tenth that of H by number, and Solar metallicity

(cf. Green et al. 2019). There is no non-equilibrium chemistry, and

cooling flag 8 is used, corresponding to photoionized gas that is

heated by photoionizations. The heating rate is the product of the

local recombination rate nenHαB and a heating per photoionization

of 5 eV, appropriate for an O star. The recombination rate, αB, is from

Hummer (1994). Cooling is the sum of Bremsstrahlung assuming H

and He are fully ionized (Rybicki & Lightman 1979; Hummer 1994),

and metal-line cooling. For metal-lines, we take the maximum of the

Wiersma, Schaye & Smith (2009) collisional ionization-equilibrium

(CIE) cooling curve (metals only) and equation (A9) from Henney

et al. (2009) for forbidden-line cooling from photoionized CNO ions,

which would not be present in CIE because the relevant elements

would be at a lower ionization stage at 104 K.

The simulation was initialized with a coarse grid of 1283 grid cells

and size 2.4576 × 1019 cm (≈8 pc) in each dimension (each cell

has diameter �x = 1.92 × 1017cm). The simulation extents in the

x-direction are x ∈ [−19.432 × 1018, 5.144 × 1018] cm, and {y, z} ∈
[−12.288 × 1018, 12.288 × 1018] cm; the focal point of the nested

grids is at [5.144 × 1018, 0, 0] cm; and the star is at the origin. We

added two levels of refinement to the coarse grid, giving a finest level

cell-diameter �x = 4.8 × 1016 cm. We set the wind inner boundary

radius to 9.6 × 1017 cm, corresponding to 20 grid cells on the most

refined level.

We used the standard second-order-accurate integration scheme

(in time and space) described above, together with the HLL MHD

Riemann solver, to evolve the simulation for 1013 s, about 1.2 times

the crossing time for the star to cross the simulation domain, and

nearly 14 times the dynamical time-scale of the bowshock (τ dyn =
RSO/v⋆ ≈ 7.2 × 1011 s). The simulation takes about 3 300 CPU-hours

to run to completion. For reference, a simulation with 2563 and three

levels would take about 16 × longer (50 000 CPU-h) and 5123 with

three levels would take ≈800 000 CPU-h.

4.1.2 Results

Results at t = 1013 s are plotted in Fig. 9, with gas density in panel

(a) and the magnitude of the magnetic field in panel (b). A slice

through the 3D domain at y = 0 is shown, with the star at the origin.

The inner 75 per cent of the wind boundary region is set to have very

low density, hence the dark circle in panel (a) around the origin. The

typical features of the bow shock are seen: the termination shock of

the wind, closer to the star in the upstream direction because of the

asymmetric ram pressure of the ISM; the strong contact discontinuity,

where density changes by a factor of � 103 and the shocked ISM

in the bow-shaped arc. The rotation and magnetic axis of the star is

ẑ; this has no effect on the gas density profile because the field is

relatively weak compared with the ram pressure of the wind, but it

can be seen clearly in panel (b).

The magnetic structure of the wind is the classical Parker (1958)

Spiral, where the stellar field is wound up by the star’s rotation

and drops off as |B| ∝ r−1 near the equator and |B| ∝ r−2 at the

poles. The field switches direction at the equator, producing a current

sheet similar to the Heliospheric Current Sheet in the Solar wind.

Downstream, the current sheet is swept into the wake behind the star

and remains near the z = 0 plane, but in the upstream direction, this

sheet is swept to large z and back with the flow of the bow shock

along the contact discontinuity between wind and ISM. The weakly

magnetized polar regions are also swept back in the shocked wind

MNRAS 504, 983–1008 (2021)
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994 J. Mackey et al.

Figure 9. (a) Gas density, log10

{

ρ/(g cm−3)
}

, and (b) magnetic field magnitude, log10(|B|/G), in the x–z plane through y = 0 are plotted on a logarithmic

scale as indicated, for a 3D MHD simulation of a bow shock produced by a massive star. The star is at the origin and moving in the +x̂ direction. The magnetic

axis of the star is ẑ, the stellar surface field is B = 10 G, and the upstream ISM field is B0 = [4, 1, 1] × 10−6 G.

to the wake behind the star. These are the typical features also seen

in MHD simulations of the Heliosphere (e.g. Pogorelov, Zank &

Ogino 2006), but on larger scales because of the stronger wind. In

general, the magnetic and rotation axes may be misaligned (as is the

case for the Sun), but this requires a significantly more complicated

inner boundary condition (e.g. Pogorelov et al. 2013; Daley-Yates,

Stevens & ud-Doula 2019) and is deferred to future work.

The changing resolution is most clearly visible at the contact

discontinuity, for which the thickness of the transition layer is

mediated by numerical diffusion and therefore scales with the cell

diameter. For the HLL solver used here, the transition is spread over

approximately 10–15 cells, because the Riemann solver does not

contain a contact discontinuity. Shocks are resolved by 2–3 cells, by

contrast, and so the effect of resolution is not as obvious. Artefacts

such as reflected waves introduced at the resolution boundaries are

not visible in Fig. 9 in the way that they were for the MHD blastwave

in Fig. 5; the resolution effects are primarily related to the numerical

diffusion.

The shocked ISM is asymmetric in the sense that the bowshock

is thinner and has higher density in the upper half-plane, although

the effect is weak. This is because the ISM magnetic field is closer

to the shock normal direction in the upper half-plane than the lower

half-plane, and so the magnetic field is less compressed through the

forward shock and hence provides less pressure support. The angle

between the shock normal and the star’s velocity vector is also larger

in the upper half-plane; a geometric measurement of the symmetry

axis of the bow shock would therefore be a (in this case, only slightly)

biased estimator of the relative velocity between star and ISM.

4.1.3 Stronger stellar magnetic field

A simulation was also run with a stellar magnetic field 10 times

stronger, and the results are plotted in Fig. 10 in the same way as

for Fig. 9. Such a surface field (100 G) is allowed by observational

upper limits for most O stars (Fossati et al. 2015), although here the

Alfvénic Mach number of the wind,

MA ≡ v∞
√

4πρ/ |B| , (7)

has a value MA ≈ 10 (in the freely expanding wind this is indepen-

dent of radius near the equator because both
√

ρ and |B| decrease

as r−1). An Alfvénic Mach number much smaller than this would

lead to a non-spherically symmetric wind and would require a more

complicated inner boundary condition.

Here, there is some accumulation of wind material at the equatorial

current sheet (panel a of Fig. 10), on account of the reduced magnetic

pressure in this region compared with the neigbouring regions. The

contact discontinuity also has a feature near z = 0 in the upstream

direction, apparently from the sweeping of the current sheet to the

upper half-plane. This could be related to similar features seen in the

Heliosphere for ideal MHD simulations (Washimi & Tanaka 2001),

for which a deeper understanding requires a multifluid description

of the flow and/or kinetic theory (Pogorelov et al. 2006). This shows

approximately where we expect to reach the limits of applicability of

our imposed boundary condition and the single-fluid approximation,

i.e. as long as MA � 10 the wind prescription is reasonable.

4.2 Time-varying stellar wind for a rotating star

Chita et al. (2008, hereafter CVL08) studied the formation of ring

nebulae around blue supergiants (BSGs) as a result of single star

evolution. An RSG embarks on a blue loop, spins up to critical rota-

tion as a result of contraction of the envelope, ejects an equatorially

enhanced wind, resulting in a ring nebula around a BSG. We use

their work as a test calculation against which to compare results

obtained with PION using the latitude-dependent and time-varying

wind module (type 2 in Section 2.1). For this test calculation, we

use the stellar evolution model F12B calculated by Heger & Langer

(2000) and whose circumstellar medium was simulated by CVL08.

MNRAS 504, 983–1008 (2021)
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PION: simulations of wind-blown nebulae 995

Figure 10. As Fig. 9, but for a simulation with a 10 times stronger stellar surface field of B = 100 G.

Figure 11. Wind properties for the simulation in Section 4.2: (a) Mass-loss

rate, Ṁ , and Effective Temperature, Teff, and (b) rotation velocity, vrot,

critical velocity, vcrit, and wind terminal velocity, v∞, as a function of

time (since the birth of the star). The RSG phase begins at 18.9 Myr, the

phase of critical rotation at 20.035 Myr as the star evolves to hotter surface

temperatures on a blue loop.

4.2.1 Stellar evolution calculation and initial conditions

Fig. 11 shows the wind evolution for the evolutionary track F12B,

starting at the end of the main sequence at 18.8 Myr, through an

RSG phase lasting just over 1 Myr, a blue loop lasting ≈0.5 Myr and

finishing with a second RSG phase lasting ≈0.25 Myr. The beginning

of the blue loop is marked by a spike in mass-loss rate driven by the

star reaching the �-limit as it contracts.

The circumstellar medium was first simulated in 1D with spherical

symmetry, up to a point mid-way through the RSG phase, at t ≈
19.5 Myr. This is plotted in Fig. 12, where we show H number density,

temperature, radial velocity, and H ionization fraction, y(H+). This

calculation was performed on a simulation domain extending from

Figure 12. Circumstellar medium produced by the F12B stellar evolution

calculation in a 1D spherically symmetric R-HD simulation, with the

snapshot taken midway through the RSG phase of evolution. This snapshot

is mapped on to the 2D grid and used as the initial conditions for modelling

the later blue loop.

the origin to r ≈ 52 pc, resolved by 4096 uniformly spaced grid-

cells. The shocked RSG wind forms a diffuse shell at r ≈ 1 pc with

nH ∼ 1 cm−3, confined externally by a hot and low-density wind

bubble from the main-sequence phase. This simulation snapshot was

then mapped on to a 2D cylindrical grid with 10 refinement levels

and 512 × 256 cells on each level. The coarsest grid extends to z ∈
[−38.9, 38.9] pc and R ∈ [0, 38.9] pc with rotational symmetry in

the azimuthal coordinate, and the inner wind boundary has a radius

of 0.025 pc (84 grid cells on the finest level). The radial resolution

on the nested grid is comparable to that used by CVL08: they used

900 zones to r = 2 pc, and we have 256 + 5 × 128 = 896 cells to

the same radius. The angular resolution of CVL08 is superior at the

wind inflow boundary (they use 200 cells for θ = π /2 and we have

132, i.e. our angular resolution at the boundary is 0.◦68).

MNRAS 504, 983–1008 (2021)
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996 J. Mackey et al.

Photoionization plus gas heating and cooling is solved using

the ‘MPv3’ microphysics module that was used for modelling H II

regions in Mackey et al. (2013) and photoionization-confined shells

around RSGs in Szécsi et al. (2018). Radiative transfer of ionizing

photons is included although the stellar temperature only reaches

11 000 K in the BSG phase and so the EUV output of the star is very

weak. Collisional heating from shocks is the main heating process

active in the simulation (cf. CVL08).

4.2.2 Results

The 2D simulation presented below starts at 19.5 Myr in the middle

of the RSG phase and ends at 20.1 Myr, encompassing most of

the RSG phase, the period of rapid rotation, and the first 50 000 yr

of the BSG phase. The outer boundary conditions are outflow, but

the boundary condition for the RSG wind bubble is effectively the

confining thermal pressure of the hot and low-density bubble from

the main sequence that was modelled in 1D, and which is not shown

in the plots below.

Fig. 13 shows snapshots of results (a) at 19.5 Myr in the middle

of the RSG phase, (b) just after the phase of critical rotation

at 20.04 Myr, and (c) 20 000 yr after onset of critical rotation, at

approximately the same time as the final panel of fig. A.4 of CVL08.

There are differences in our results for the structure of the RSG wind,

compared with CVL08: the termination shock is approximately at

the same radius, but there is significantly more post-shock radiative

cooling and compression in the CVL08 calculation. This can be

traced back to differences in the wind velocity during the RSG phase:

we find v∞ = [10 − 15] km s−1 whereas CVL08 calculate v∞ =
[30 − 40] km s−1. This appears to be related to a typo in equation (2)

of Eldridge et al. (2006), where the wind multiplier βw is erroneously

multiplying v2
esc instead of vesc. This would introduce an error of a

factor of up to
√

8 for RSGs which can explain the difference.

This modelling difference means that the RSG wind density is

different by the same factor at a given distance from the star, and

that the interaction of the BSG wind with the swept-up RSG wind

proceeds somewhat differently. Nevertheless, the middle panel of

Fig. 13 shows that the early part of the wind–wind interaction is very

similar in the two studies. A dense equatorial ring is expanding slowly

away from the star, and two polar lobes are expanding rapidly, driven

by the (now almost spherical) BSG wind with v∞ ≈ 350 km s−1,

sweeping up the slow wind from the RSG phase. Once Teff > 104 K,

the parameter βw = 1.3, and so our wind prescription gives v∞ larger

than that of CVL08 by a factor of
√

1.3. Fig. 11 shows that our v∞
peaks at v∞ ≈ 370 km s−1 whereas CVL08 have a peak value of

≈ 320 km s−1; the difference is consistent with
√

1.3 times.

The bottom panel of Fig. 13 can be compared with the lower panels

of fig. A.4 of CVL08: the BSG wind has swept up a shell to r ≈ 1 pc

in the polar direction, and the shell is thin, radiative, and weakly

unstable. In the equatorial plane, a dense ring has expanded to r ≈
0.25 pc and this slowly receding ring creates a bow shock in the BSG

wind. The termination shock of the BSG wind is well-separated from

the swept-up shell in all directions except the equatorial plane. These

results are all consistent with CVL08 except that they find the equa-

torial ring has expanded almost three times as far in this time. This is

probably related to the initial injection velocity of the ring, because

at all latitudes the wind velocity is multiplied by the parameter βw.

4.2.3 Including magnetic fields

A stellar magnetic field can be easily included given a prediction or

assumption for the time-variation of the surface field of the star. As a

Figure 13. Density and temperature for the 2D simulation described in

Section 4.2: the wind bubble during the RSG phase shortly after mapping

the 1D simulation on to the 2D nested grid (top panel), just after the phase of

critical rotation (middle), and when the swept up wind reaches the termination

shock of the RSG wind (bottom). The left half-plane shows log10T in K and

the right half-plane shows log10ρ in g cm−3. Not all of the simulation domain

is shown (the full domain extends to 39 pc).

simple example, Fig. 14 shows the density and temperature field for a

similar simulation, but this time assuming a stellar surface magnetic

field of

B(t) =
(

10 R⊙

R⋆(t)

)2

10 G, (8)
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PION: simulations of wind-blown nebulae 997

Figure 14. As Fig. 13, but for an MHD simulation with a simple prescription

for the stellar magnetic field. The left-hand half-plane shows log10T in K

and the right-hand half-plane shows log10ρ in g cm−3, with colour mapping

indicated in the colourbars. Not all of the simulation domain is shown (the

full domain extends to 2 pc in all directions).

where R⋆(t) is the time-dependent stellar radius. Again, we assume

that the surface magnetic field is a split monopole swept into a

Parker spiral by the stellar rotation, as in Section 4.1. We assume

an ISM magnetic field strength Bz = 10−6 G. In this case, we could

not map the 1D simulation on to a 2D grid because the stellar and

ISM magnetic fields break the spherical symmetry, and so we started

the simulation at the beginning of the RSG phase, expanding into

a uniform ISM with gas density ρ0 = 2.338 × 10−24 g cm−3 and

pressure p0 = 1.318 × 10−12 dyne cm−2. This sets the stagnation

radius of the RSG wind bubble, which we chose to be approximately

consistent with CVL08.

This simulation used a much smaller domain as a result of the

simpler boundary condition: the largest grid extends to z ∈ [−2,

2] pc and R ∈ [0, 2] pc with rotational symmetry in the azimuthal

coordinate. We use six refinement levels with 640 × 320 grid cells

in each level, and the inner wind boundary has a radius of 0.025 pc

(128 grid cells on the finest level, resolving the angular direction by

402 cells over 180◦).

The results are very similar to the R-HD calculation, except that

the termination shock of the RSG wind is at slightly smaller radius

in the MHD simulation and has been overrun at nearly all latitudes

by the BSG wind. While the magnetic field here was deliberately

chosen to be sufficiently weak that it has little dynamical impact on

the nebula, the field configuration and strength is still useful when

predicting non-thermal emission such as synchrotron radiation (cf.

del Valle & Pohl 2018).

This module can be used, when coupled with results from stellar

evolution calculations of single rotating stars, to study the ring

nebulae produced by, e.g. spin-up to critical rotation due to stellar

contraction, thought to be a potential explanation for the polar caps

of Sher 25 and other BSGs (Gvaramadze et al. 2015, CVL08) and

for the bipolar structure of nebulae around some LBVs (Langer et al.

1999). The presented R-HD calculation takes ≈9000 CPU-h running

on 32 cores; an equivalent high-resolution 3D simulation would take

�106 CPU-h. The runtime could be significantly reduced by mapping

from 1D at the end of the RSG phase instead of at the middle. The

Figure 15. Evolution of stellar and wind papameters for the 35 M⊙ evolu-

tionary model used in section 4.3, from Garcı́a-Segura et al. (1996b). The

mass-loss rate, effective temperature, and wind terminal-velocity are plotted

around the evolutionary transition from RSG to WR.

calculations are more demanding than the constant-wind simulations

of Section 4.1 because of the radiative transfer and the requirement

for high angular resolution at the wind boundary.

4.3 3D R-HD simulation of an expanding WR nebula

Garcı́a-Segura et al. (1996b) and Freyer et al. (2006) modelled the

circumstellar medium of a 35 M⊙ non-rotating star that evolved

from main sequence to RSG to WR before explosion, using 2D

hydrodynamic and R-HD simulations, respectively. Here, we use

the same evolutionary calculation, and focus on the RSG→WR

transition, for which the wind and surface temperature properties

are plotted in Fig. 15. We use the time-varying stellar wind boundary

condition (type 1 from Section 2.1) in a 3D R-HD simulation.

4.3.1 Initial conditions and simulation setup

We simulate the main-sequence and RSG phases using R-HD on a

1D grid with 4096 cells covering 100 pc, with a background ISM

density of ρ = 2.338 × 10−23 g cm−3. This is sufficiently large so

that the H II region stays in the simulation domain up to the end of

the RSG phase, at t = 4.7542 Myr. This density field is mapped on

to a 3D grid with 2563 grid cells on each level, and four refinement

levels, using zero-gradient boundary conditions. The coarse grid has

a range {x, y, z} ∈ [−30, 30] × 1018 cm (approximately ±10 pc)

centred on the star. The finest grid has a cell diameter of �x ≈
2.93 × 1016 cm, and the wind boundary region has a radius of 20

cells (r ≈ 5.86 × 1017 cm, or ≈0.2 pc). In comparison with the 2D

simulations of Garcı́a-Segura et al. (1996b), the finest-grid �x ≈
0.0095 pc is comparable to their radial resolution �r = 0.012 pc

for the ‘slow RSG wind’ case, and slightly lower resolution than

the �x = 0.00625 pc used by Freyer et al. (2006). In terms of the

grid used, Freyer et al. (2006) have comparable geometry to ours,

modelling one quadrant of the 2D plane with 1252 grid points per

level, whereas we model the full 3D space with 2563 cells per level,

or 1283 per octant.

4.3.2 Results

The top panel of Fig. 16 plots log10 of gas density and temperature

10 000 yr after the simulation starts. The RSG wind is being swept

MNRAS 504, 983–1008 (2021)
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998 J. Mackey et al.

Figure 16. Log of gas density (left-hand panels) and gas temperature (right-hand panels) for a 3D simulation of an expanding WR nebula. In both panels, a

slice through the x–z plane at y = 0 is shown, with the star at the origin. The axes show the domain in parsecs. The first row shows the CSM 10 000 yr after the

RSG→WR transition; the second row after 20 000 yr; the third after 30 000 yr.
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PION: simulations of wind-blown nebulae 999

up into a thin shocked shell that is dynamically unstable, and a strong

reverse shock has formed in the WR wind, heating gas to �107 K.

Both the RSG and WR winds are spherically symmetric and so the

instabilities are seeded by the grid-scale integration errors. The CSM

has already been flash ionized and there is no neutral gas on the

domain, except that some of the clumps in the swept-up shell have

become optically thick and have partially recombined, but do not

cool below T ∼ 103 K.

The hot gas at r � 3 pc is the relic wind bubble from the

main-sequence phase, and this provides the external pressure that

previously confined the RSG wind. The RSG wind has been ionized

and heated from T ∼ 102 to ∼104 K, however, and is now strongly

overpressurized, expanding into the surrounding hot medium at

approximately its sound speed.

The diagonal features in the temperature plot in the freely expand-

ing wind are integration errors arising from the advection of thermal

energy in the strongly kinetic-energy-dominated flow (total energy

is conserved by the finite-volume scheme). They do not affect the

nebula because the post-shock gas properties are independent of the

pre-shock temperature for a large-Mach-number shock.

The second panel shows the gas density and temperature 20 000 yr

after the WR wind switches on. The same unstable clumps in the

swept-up shell are present, but have grown and have expanded

to larger scales. The expansion velocity of the swept-up shell is

approximately 1 pc per 10 000 yr (100 km s−1), and so the forward

shock is strongly radiative whereas the reverse shock is adiabatic. The

third panel plots the results after 30 000 yr, just before the swept-up

shell reaches the edge of the RSG wind bubble. The clumpy nature

of the shell means that not all directions will break out of the RSG

shell at the same time. The symmetry in the solution arises because

the hydrodynamic solver is almost perfectly symmetric (to roundoff

error), and so the integration errors from the grid discretization are

very similar in each octant.

Fig. 17 shows the later evolution as the swept-up shell breaks out

of the RSG wind and into the relic main-sequence bubble. This is

reminiscent of the simulations presented by Rogers & Pittard (2013),

except that their calculations were performed in a dense and turbulent

background medium and the WR wind interacted with this interstellar

gas and not purely the wind of previous evolutionary phases. Here,

the perturbations in the swept-up shell were seeded by the grid

geometry rather than a random process, and so the shocked WR wind

escapes through eight regularly spaced channels into the low-density

surroundings (in this plane; in 3D, there are many channels, but they

have a regular spacing), entraining cold RSG wind material as it does

so. A more realistic model would introduce clumpy substructure in

both the RSG and WR winds, which would break the symmetry

and better reflect the reality that winds of massive stars are strongly

clumped (Puls, Vink & Najarro 2008), possibly driven by turbulent

sub-surface convection (Cantiello et al. 2009; Grassitelli et al. 2015).

4.3.3 Interpretation

Our results are not comparable to Freyer et al. (2006) because they

used a wind speed for the RSG phase of v∞ = 75 km s−1 whereas our

calculation (based on Eldridge et al. 2006, see above) gives a wind

speed closer to the ‘slow wind’ calculation with v∞ = 15 km s−1

(Garcı́a-Segura et al. 1996b). We find that the nebula expands to

1 pc in 10 kyr, 2 pc in 20 kyr, 3 pc in 30 kyr, i.e. expanding at

vexp ≈ 100 km s−1. Koo & McKee (1992) calculate the expansion

speed of wind-blown bubbles in power-law media, and their equation

(3.1), for the case where the reverse shock is adiabatic and the forward

shock is radiative, predicts that the shock radius scales as R ∝ t for a

constant wind expanding into a density profile ρ ∝ r−2. The constant

prefactor of this equation gives the (constant) expansion velocity as

vexp =

(

Ṁwrv
2
∞,wrv∞,rsg

3Ṁrsg

)1/3

. (9)

For the WR wind parameters shortly after the transition

(Ṁwr ≈ 2.75 × 10−5 M⊙ yr−1 and v∞,wr ≈ 1200 km s−1) and RSG

wind parameters mid-way through the RSG phase (Ṁrsg ≈ 8 ×
10−5 M⊙ yr−1 and v∞,rsg ≈ 10 km s−1), this corresponds to vexp ≈
120 km s−1, in good agreement with our numerical results. Garcı́a-

Segura et al. (1996b) found somewhat faster expansion (their fig. 7),

but the differences are probably not significant. The qualitative

appearance of the results are very similar, given that the grid geometry

is different and the development of instabilities is not expected to be

identical. The formation of clumps in the thin shell, persistent through

its expansion, followed by blowout once the edge of the RSG wind

bubble is reached, is the same.

This calculation took about 15 000 core-h, run on 32 cores for

20 d. Higher resolution is desirable for better resolving the instability

of the swept-up shell, and is required for modelling rotating stars

with clumpy winds to resolve the spatial and temporal variations

in the wind. Running with 3843 cells on each level would take

≈ 75 000 core-h, whereas 5123 would require ≈ 250 000 core-h.

4.4 3D MHD simulation of wind–wind collision

Colliding-wind binary systems are fascinating environments to study

astrophysical fluid dynamics, shocks, and instabilities (Stevens et al.

1992; Lamberts, Fromang & Dubus 2011; Parkin et al. 2011; Madura

et al. 2013), magnetism (Walder, Folini & Meynet 2012; Kissmann

et al. 2016), and particle acceleration (Pittard & Dougherty 2006;

Grimaldo et al. 2019; White et al. 2020). In principle, the nested-grid

setup of PION is suitable for modelling such systems, although some

code improvements would be required, including implementation

of orbital motion for stellar-wind sources, radiative heating/cooling

routines that are appropriate for the high densities and chemical

abundances encountered, and possibly a wind acceleration region

for close binary systems. Here, we present a preliminary 3D MHD

simulation of wind–wind collision based on the 2D hydrodynamic

calculation of the V444 Cyg system by Stevens et al. (1992) using

the constant wind module (type 0 in Section 2.1).

V444 Cyg is a well-studied eclipsing binary system consisting of

two massive stars with powerful winds, a WR primary (spectral type

WN5) and an O-type secondary (spectral type O6). For the modelling

of the colliding winds, we took the orbital and stellar wind parameters

from Stevens et al. (1992), presented in Table 2. We make a number

of simplifications to the system, partly so the setup is comparable

with Stevens et al. (1992)

(i) We inject the winds already at the terminal velocity at the wind-

boundary radius, and radiation and gravitational forces are neglected.

We set the wind boundary radius for both stars at r = 2.6 × 1011 cm.

(ii) The orbital period of the system is 4.2 d, nevertheless during

this 3D simulation, the orbital motion is neglected, because of the

extra complications this would introduce (the system geometry will

change, and must be simulated for much longer to reach a stationary

state). Thus, we consider that the stars were at rest in an inertial

frame with cylindrical symmetry along the x-axis, except for the

stellar magnetic fields which break the symmetry.

(iii) We use an optically thin cooling function appropriate for

photoionized bow shocks (Green et al. 2019), although this is likely

MNRAS 504, 983–1008 (2021)
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1000 J. Mackey et al.

Figure 17. As Fig. 16, but showing results at 35 000 and 45 000 yr after the RSG→WR transition, and zoomed out to show the expanding nebula.

Table 2. The properties of the stars of V444 Cyg system, where primary is a

WR star and secondary has spectral type O6, taken from Stevens et al. (1992).

The rotation velocities and surface split-monopole magnetic-field strengths

are notional, for demonstration of the methods only, and both have axis of

symmetry ẑ.

Parameter Primary Secondary

Mass-loss rate, Ṁ (M⊙ yr−1) 1.4 × 10−5 10−6

Terminal wind speed, v∞ (km s−1) 2000 2000

Surface rotation speed, vrot (km s−1) 200 200

Surface split-monopole magnetic

field strength, |B| (G)

100 1

Radius of wind boundary (cm) 2.6 × 1011 2.6 × 1011

Position of star (1012 cm) [−1.84, 0, 0] [0.96,0,0]

a crude approximation given the large densities and the hydrogen

depletion of the WR wind.

The simulation is run with three grid levels, each with 3843 cells

and with the two nested grids centred on the origin at the centre of

the domain. The coarsest grid has {x, y, z} ∈ [−1.024, 1.024] ×

1013 cm, the next level has {x, y, z} ∈ [−5.12, 5.12] × 1012 cm, and

the finest level has {x, y, z} ∈ [−2.56, 2.56] × 1012 cm, with a cell

diameter of �x = 1.333 × 1010 cm. Outflow boundary conditions

are employed at all boundaries.

We added stellar rotation and split-monopole magnetic fields for

each star, such that the magnetic field in the wind will be swept

into a Parker spiral at large radius. The field strengths were chosen

such that the magnetic field is too weak to affect the dynamics of

the unshocked wind, i.e. the Alfvén Mach number of the wind is

large in both cases. The stars were set rotating well below critical

rotation so that latitude-dependent effects are not expected to be

strong.

At the first stage, we run the simulation with adiabatic hy-

drodynamics, without taking radiative cooling into account. The

simulation is run for 70 000 s, which is enough time for a stationary

shock structure to form around the stagnation point of the flow.

The dynamical time-scale of the wind–wind collision is the stellar

separation divided by the wind speed, 14 000 s. The results of the

simulation are plotted in Fig. 18 for gas density and magnetic field

strength. A stable wind–wind collision has been set up and the weaker

wind of the O star gets swept back by the stronger WR wind. The

MNRAS 504, 983–1008 (2021)
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PION: simulations of wind-blown nebulae 1001

Figure 18. 3D MHD simulation of wind–wind collision from Section 4.4, for the adiabatic case at t = 70 000 s. Above: log10 of gas density in the x–z plane

(left-hand panel) and the x–y plane (right-hand panel). Below: log10 of magnetic field strength in the x–z plane (left-hand panel) and the x–y plane (right-hand

panel).

collision region, shaped like a bow shock, consist of two shocks and

a hot plasma between these shocks.

For the second stage, we continue the simulation including

radiative cooling. As noted by (Stevens et al. 1992), for this

system the cooling time is comparable to the advection time for

the shocked wind, and so the gas cools and can be compressed

to very high densities. The wind-collision region is unstable, i.e. the

shocked region gets narrower and eventually an oscillatory thin-shell

instability arises.

Fig. 19 shows the same plots as Fig. 18, but at a later time after

radiative cooling has been switched on for some time. The shocks

oscillate between strongly radiative and weakly radiative near the

stagnation point of the flow. This appears superficially similar to

the case of overstable radiative shocks with velocity ≈ 150 km s−1

(Innes, Giddings & Falle 1987), but is actually arising because

the advection time and cooling time for the shocked gas are very

similar for this setup (Stevens et al. 1992). Small perturbations in the

hydrodynamics can make the difference as to whether a parcel of gas

can cool strongly or not before it is advected away from the stagnation

point. The features seen in all panels near the stagnation point

are transitory and unsteady, with knots and rope-like overdensities

forming and advecting away to the domain boundaries. The shocks

MNRAS 504, 983–1008 (2021)
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1002 J. Mackey et al.

Figure 19. 3D MHD simulation of wind–wind collision from Section 4.4, at t ≈ 2.4 × 105 or ≈1.7 × 105 s after radiative cooling has been switched on. Above:

log10 of gas density in the x–z plane (left-hand panel) and the x–y plane (right-hand panel). Below: log10 of magnetic field strength in the x–z plane (left-hand

panel) and the x–y plane (right-hand panel).

far from the symmetry axis of the flow are strongly radiative and do

not show this oscillatory behaviour. This is because the shocks are

oblique, with smaller Mach number than along the symmetry axis,

and so the post-shock temperature is lower and the cooling time is

shorter (cooling time has a maximum at T ≈ 2 × 107 K and decreases

for both lower and higher temperatures).

Gas compression factors of between 10 and 100 are achieved in

the radiative shocks (limited by the grid resolution), with somewhat

weaker increase in the magnetic-field strength because only the

component perpendicular to the shock normal is compressed. For

the small separation of the two stars, the magnetic fields of the two

winds near the stagnation point are still more radial than toroidal,

and only the toroidal component is amplified. The magnetic-field

amplitude in the x–y plane is less than in the x–z plane because the

former contains the equatorial current sheet of both stars.

A detailed investigation of the V444 Cyg system would require the

inclusion of orbital motion (cf. Lamberts et al. 2017), the finite size of

the stars, their wind-acceleration regions, and perhaps also radiative

inhibition (e.g. Parkin et al. 2011). In future work, we will improve

the radiative cooling function and implement orbital motion, and use

MNRAS 504, 983–1008 (2021)
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PION: simulations of wind-blown nebulae 1003

higher resolution simulations to investigate the MHD properties of

shocks in colliding-wind binary systems. The simulation presented

here took 10 000 core-h, running with 128 MPI processes.

5 POST-PROCESSING SIMULATION

SNAPSHOTS

5.1 PYTHON library for reading and plotting snapshots

A PYTHON library (PYPION
1) has been developed to read PION

snapshots into NUMPY arrays for plotting and further analysis. This

enables simple post-processing and visualization on all simulations

using PYTHON.

PYPION contains two core scripts that contain modular routines that

can be used depending on what type (1D/2D/3D) of PION simulation

is run. The library also works on simulations with refined grids with-

out modification. An additional script (Plotting Classes.py)

provides some examples of plots that can be generated from PION

data. Most of the figures in this paper showing multidimensional

simulations, including e.g. Figs 9, 10, and 16–19, have been produced

using this library.

(i) SiloHeader data.py contains a class with methods to

open a PION snapshot in SILO format2 and read metadata from

the header directory. This data includes the axes dimensions, level

dimensions, number of levels, simulation time, number of MPI

processes.

(ii) ReadData.py contains a class with methods for reading the

data for a requested variable (e.g. Density) from a SILO file, returning

it as a single NUMPY array per level. When PION is run with multiple

MPI processes, each process calculates a subdomain of the grid for

each snapshot and saves its data under a SILO directory. This class

reads each subdomain in turn and adds its data to the correct region

in the NUMPY array to form an image.

(iii) Plotting Classes.py contains classes to take data

from ReadData.py and make some commonly used plots using

MATPLOTLIB. Several functions have been set up to accommodate

different user needs.

5.2 Radiative transfer with TORUS

We have implemented a method for post-processing 3D nested-grid

PION simulations with the TORUS Monte Carlo radiative transfer code

(Harries et al. 2019). This builds on the previous implementation

that post-processed 2D uniform-grid PION simulations with TORUS to

make synthetic dust continuum images (Mackey et al. 2016; Gvara-

madze et al. 2017; Green et al. 2019). An improvement compared

with the method of Green et al. (2019) is that we now use a passive

tracer to distinguish wind from ISM, and this is used to set the dust-to-

gas ratio to zero in the wind and to 0.01 in the ISM, with a smoothly

varying interface region where wind and ISM are mixed. Previously,

we used a simple temperature cut to distinguish wind and ISM, which

was effective but not as self-consistent as the new treatment.

PION simulation snapshots are converted to FITS format and read

into TORUS using a C++ programme, SILO2FITS, provided with the

PION source code. The TORUS reader maps variables including the

density, temperature, and dust-to-gas mass ratio on to the TORUS grid

using a bilinear (for 2D models) or trilinear (3D) interpolation. In

static mesh-refinemenet applications, each level of the PION grid

1https://git.dias.ie/massive-stars-software/pypion
2https://wci.llnl.gov/simulation/computer-codes/silo

is stored in a separate FITS file and these are read into TORUS

sequentially. Any given cell on the TORUS grid is populated by the

highest resolution PION data available. The resolution of the TORUS

grid is flexible and can reflect the structure of the grid being read in,

or adaptively refine according to its own AMR grid criteria (e.g. mass

per cell and/or gradients in any quantity), or revert to a uniform mesh.

With the physical parameters of the PION grid read in, appropriate

stellar parameters (temperature, radius, location) are added manually

to the TORUS input file. With the grid and photon sources set up,

the full scope of TORUS functionality is then available (Harries

et al. 2019). For example, this means that the thermally decoupled

dust-temperature can be computed in a Monte Carlo radiative

equilibrium calculation for arbitrary grain composition and size

distribution. For this test calculation, we use silicate grains (Draine

2003) with a Mathis, Rumpl & Nordsieck (1977) size distribution

from 0.01 to 10 μm.

Fig. 20 shows the PION gas density and temperature in panels

(a) and (b) compared with the dust-to-gas ratio (panel c) and the

dust temperature, TD, (panel d) obtained from the TORUS radiative

equilibrium calculation. The dust density corresponds very closely

to the gas density, except that inside the contact discontinuity the

dust density decreases to zero in the inner part of the wind bubble,

and so it is not shown. The dust temperature is completely decoupled

from the gas temperature because the collisional heating and cooling

rates are negligible compared with radiative rates for these diffuse

ISM conditions (e.g. Meyer et al. 2014). In the inner part of the bow

shock TD ≈ 30 K, whereas further out TD decreases to ≈20 K.

The resulting dust emission maps at wavelength 50µm are shown

in Fig. 21 from a range of viewing angles from edge-on to face-on.

The classic parsec-scale bow-shock morphology (e.g. Peri et al. 2012;

Peri, Benaglia & Isequilla 2015) is seen in the edge-on panels, where

limb-brightening makes the shocked shell much brighter than is seen

in the face-on panels. The relatively low spatial resolution, combined

with low-density ISM and small space velocity of the star, ensures

that the bow shock is smooth with no apparent instability at either the

contact discontinuity or forward shock. There is a small asymmetry

between the upper and lower half-plane, arising because the ISM

magnetic field is not parallel to the star’s motion, and so the shock

compression factor and Mach number is not symmetric about z = 0.

6 PE R F O R M A N C E A N D PA R A L L E L SC A L I N G

A number of scaling tests have been performed to assess the perfor-

mance of PION on HPC systems. All calculations were run at the Irish

Centre for High-End Computing (ICHEC) on the supercomputer

Kay,3 using the cluster nodes each consisting of 2 × 20-core 2.4 GHz

Intel Xeon Gold 6148 (Skylake) processors with 192 GiB of RAM

and a 100 Gbit OmniPath network adaptor.

6.1 Strong scaling for 3D MHD

To test the strong scaling of PION, a 3D simulation of a bow shock

with ideal MHD was run, with a resolution of 2563 grid cells on each

level, and with three levels of refinement. Note this calculation has

no radiative transfer, so there are no long-range interactions and we

expect the scaling to be good up to the point where the number of

grid cells being communicated in boundary data is comparable with

the the number of grid cells being calculated per MPI process.

3https://www.ichec.ie/about/infrastructure/kay
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Figure 20. 2D slice through the 3D MHD bow-shock simulation from Section 4.1 for the star with a 10 G surface magnetic field showing (a) gas density in

g cm−3, (b) gas temperature in K, (c) dust-to-gas (mass) ratio and (d) dust temperature in K, all on logarithmic colour scales except for dust temperature which

is on a linear scale. Dust temperature is calculated using TORUS, and regions with dust-to-gas ratio <10−4 are masked for clarity. In panels (c) and (d) contours

of gas density are plotted, linearly spaced from 0 to 10−23 g cm−3 in steps of 0.25 × 10−23 g cm−3.

Figure 21. Dust-emission map of the 3D MHD bow-shock simulation from Section 4.1 for the star with a 10 G surface magnetic field, calculated using TORUS.

From left- to right-hand and top to bottom, the panels show projections with image normal vector at an angle of 90◦, 75◦, 60◦, 45◦, 30◦, and 15◦ with respect to

the positive x-axis. The 50 μm intensity is plotted in MJy ster−1 on a linear scale. The empty region upstream from the bow shock in the upper panels is outside

the PION simulation domain.

The star has a mass-loss rate of Ṁ = 1.74 × 10−6 M⊙ yr−1, wind

velocity v∞ = 2500 km s−1, and is placed at the origin of the simula-

tion domain. The star is moving through the ISM at v⋆ = 30 km s−1

in the x̂ direction, modelled as a flow past the star (which is static

on the computational domain), and the uniform ISM has number

density is n0 = 100 cm−3. The stellar magnetic field is taken to be

a split monopole (radial field lines) with a surface field strength of

B = 10µG. The interstellar magnetic field is oriented perpendicular

to the star’s space velocity, and has a strength Bz = 25µG. The

setup is otherwise similar to the simulation in Section 4.1, just with

different star/wind and ISM parameters.

We assume that H and He are both singly ionized by the star’s

radiation field in the full domain, so radiative photoheating balances

radiative cooling at a temperature T ≈ 7500 K, following the same

heating/cooling routines as Green et al. (2019). The simulation was

evolved to t = 2.37 × 1012 s, about 25 per cent of the time required

MNRAS 504, 983–1008 (2021)
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PION: simulations of wind-blown nebulae 1005

Table 3. Strong scaling of PION for simulation of a bow shock in 3D with

three levels of refinement and 2563 grid cells per level, for 2048 time-steps.

Nproc Walltime (s) Core-h Speedup Efficiency

32 18 176 161.6 1.0 1.00

64 10 101 179.6 1.8 0.90

128 5 791 205.9 3.14 0.78

256 3 272 232.6 5.56 0.69

512 1 989 282.9 9.14 0.57

1024 1 868 531.3 9.73 0.30

Figure 22. Speedup of PION for a strong scaling test, running a 3D bow-

shock simulation with three levels of refinement and 2563 grid cells per level,

for 2048 time-steps. The solid black line shows the attained speedup, the

dashed blue line is the ideal case, and the dotted blue line is the best possible

speedup taking account of the extra ghost-cell calculations introduced by

domain decomposition, but assuming communication overhead is zero. The

data are from Table 3.

to reach a stationary state, and a snapshot was saved. This was taken

as a starting point for the scaling test, which consisted of continuing

the simulation for 2048 time-steps with MPI process counts between

Nproc = 32 (run on a single node) to Nproc = 1024 (on 26 nodes).

The results are shown in Table 3 and plotted in Fig. 22, where the

speedup, S, is defined as the wall-time to run the calculation on

32 MPI processes, T32, divided by the wall-time to run on N MPI

processes, TN. The ‘ideal’ case is perfect scaling, where doubling

the number of MPI processes will decrease the run time by a factor

of 2. The ‘best’ case takes account of the extra ghost-cells that

must be calculated when the full domain is subdivided into more

sub-domains, given that the boundary region is four cells thick, but

assumes zero communication overhead. For a 2563 grid, this is S =
11.02 for N = 512, and the ideal value is S = 16. Compared with

a simulation with 32 MPI processes, a calculation with 512 MPI

processes is still 57 per cent efficient, and the code speeds up by a

factor of 9.14 compared with a theoretical best attainable value of

11.02.

Although this strong scaling is good, and allows us to run 3D

MHD simulations efficiently on hundreds of cores, we have not

tested the scaling to �104 cores. The ratio of ghost cells to grid cells

increases strongly as the number of MPI processes increases and the

subdomains assigned to each MPI process get smaller. From Fig. 22,

it is clear that there could be significant gain by switching to a hybrid

parallelization scheme, using multithreading to reduce the number

Figure 23. Strong scaling of PION for 3D R-HD with four levels of refinement

and 2563 grid cells per level, run for 1536 time-steps. Curves are as for

Fig. 22, except that the blue dotted line now shows a scaling of N
2/3
proc, i.e. the

expected performance of the 3D radiative transfer algorithm from uniform-

grid calulations in Mackey (2012).

of MPI processes per node. We plan to implement this for the next

release of PION.

6.2 Strong scaling for 3D R-HD

Radiative transfer scales less well than hydrodynamics because we

work in the limit where the speed of light is infinite, and so there are

long-range interactions between each cell and each radiation source

that must be calculated by tracing rays from one sub-domain to the

next. The uniform-grid version of PION had strong-scaling speedup

of S ∝ N0.5
proc for 2D calculations and S ∝ N2/3

proc for 3D calculations

for the radiative transfer part of the calculation (Mackey 2012). For

the 3D nested grid, we consider an expanding WR nebulae from

Section 4.3, taking an initial snapshot from t = 4.7638 Myr, about

10 000 yr after the stellar transition from RSG to WR. The simulation

domain has four levels of refinement centred on the stellar source at

the origin, with 2563 grid cells on each level.

The simulation was run for 1536 time-steps (on the finest level),

corresponding to about 2400 yr of evolution, and the speedup is

plotted in Fig. 23. The scaling is significantly worse for R-HD than for

the MHD simulations without radiative transfer and non-equilibrium

ionization. Increasing the core-count by a factor of 8 already reduces

the efficiency by more than 50 per cent, and running this simulation

on 1024 cores requires four times more core-h than running on

32 cores. The slope of the scaling plot is approximately constant

except for the jump from 32 to 64 cores, corresponding to switching

from calculating on a single node to multiple nodes with slower

communication. Similar difficulties obtaining good scaling for R-

HD have been reported previously (e.g. Wise & Abel 2011), although

some innovative algorithms have improved scaling to larger numbers

of cores (Rosen et al. 2017).

6.3 Weak scaling for 3D R-HD

Here, we consider the expansion of an H II region and wind bubble

from a massive star into a uniform and static ISM. The medium is

dense and the wind is strong, and so the ionization front is trapped

by the forward shock driven by the expanding wind bubble. We take

MNRAS 504, 983–1008 (2021)
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1006 J. Mackey et al.

Figure 24. Weak scaling of PION for 3D radiation-hydrodynamics with four

levels of refinement and 643 grid cells per MPI process, run for ≈4.5 h

walltime.

the result from a 1D calculation with PION and map it on to a 3D

grid with four refinement levels each with 1283, 2563, or 5123 cells.

The weak scaling is tested by running calculations where the number

of grid cells per core is constant, so the 1283 simulation is run on 8

cores, the 2563 on 64 cores, and the 5123 on 512 cores. Each core

therefore computes a subdomain of 643 cells in all three cases.

The results are plotted in Fig. 24, where we show the number

of cell-updates per core per second for simulations with 8, 64,

and 512 MPI processes. The efficiency of the code decreases by

about 50 per cent when the number of MPI processes increases by a

factor of 64. The overall performance of PION for this calculation

is not optimal, running at nearly 20 times slower than simple

MHD without any radiative transfer or non-equilibrium-ionization

calculation. There is certainly scope for improving both the overall

performance and the parallel scaling of this algorithm, and the size of

simulation that can be run is currently limited by the parallel scaling.

7 C O N C L U S I O N S

We have presented upgrades to the simulation framework PION for

astrophysical fluid dynamics, including the first public release of the

source code and associated scripts and post-processing routines. The

major upgrades are the implementation of static mesh-refinement, the

improved robustness of the MHD solver (including improved diver-

gence cleaning), the implementation of the consistent multispecies

advection (sCMA method) for advecting elements across the domain,

and the addition of latitude-dependent and magnetized winds from

rotating stars following Langer et al. (1999) and Pogorelov et al.

(2004).

Test calculations showing advection and the expansion of blast

waves and ionization fronts across refinement boundaries have

been presented. The advection of a magnetic field loop shows no

noticeable artefacts associated with the refinement boundaries. Blast-

wave expansion also works very well for hydrodynamics and for

weak magnetic fields, but an artefact appears once the magnetic

field becomes dynamically important. An imprint of the refinement

boundary is apparent in the expanding shocked medium, also when

run at first-order accuracy and with different methods for divergence

cleaning. Comparing with ATHENA++ (Stone et al. 2020) when run

on the same problem, the results are very similar, even though

ATHENA++ uses a different integration scheme and a different

algorithm for dealing with magnetic-field divergence errors. Looking

at the D-type expansion of an ionization front, PION produces results

with static mesh-refinement that are at least as accurate as uniform-

grid simulations with equivalent resolution, and with a fraction of

the computational cost.

Results were presented for a 3D MHD bow shock produced by

the wind of a rotating and magnetized O star moving with 30 km s−1

through a uniform ISM, a preliminary version of which was presented

in Mackey et al. (2020). The classic features of a Parker (1958) wind

were demonstrated: the Parker spiral, equatorial enhancement of the

toroidal magnetic field, and the equatorial current sheet. It was shown

that for a reasonably strong surface split-monopole magnetic field

of 100 G, the magnetic field strength in the shocked wind bubble

can be comparable to that in the shocked ISM. For bow shocks,

where synchrotron radiation can be detected (e.g. BD + 43 3654

Benaglia et al. 2010), it may be possible to constrain this magnetic-

field strength observationally, giving a direct constraint on the stellar

magnetic field.

We revisited the calculation of CVL08 of the ring nebula produced

when a rotating RSG evolves on a blue loop and reaches critical rota-

tion. Using the latitude-dependent wind prescription of Langer et al.

(1999), we showed that PION produces results with a 2D nested grid in

cylindrical coordinates that are comparable to the 2D spherical-grid

computations of CVL08. We largely confirm their results, although

there are some small differences in the details of the hydrodynamic

flow. We also demonstrated how an MHD simulation of such a nebula

can be calculated by making a simple assumption about the surface

magnetic-field strength. A more realistic calculation would estimate

the stellar magnetic field strength from the properties of the stellar

envelope. The code is efficient enough that 3D simulations of ring

nebulae are feasible with reasonable computational resources.

Comparing PION with another classic calculation of a circumstellar

nebula, we used a 3D nested-grid to simulate the expansion of

a spherically symmetric fast wind from a WR star into the slow

wind from its previous RSG phase of evolution. We used the same

stellar evolution calculation as the 2D simulations by Garcı́a-Segura

et al. (1996b) and Freyer et al. (2006), and our 3D simulation

has comparable spatial resolution to the previous 2D work. Again,

our results are comparable to previous work, although there are

some differences in the details. We showed that the WR wind

bubble expands at almost constant speed as predicted by Koo &

McKee (1992) for a wind expanding into a r−2 density profile.

The symmetry of the winds means that instability is seeded by

the integration errors associated with the grid discretization, and

so the solution is artificially symmetric compared with a real nebula.

Implementation of some random or clumpy component to the wind

boundary condition would break this symmetry and produce more

realistic nebulae. We plan higher resolution simulations of this wind–

wind interaction for comparison with observations of WR nebulae.

Finally, we revisited the 2D simulation by Stevens et al. (1992)

of the wind–wind collision in the WR + O-star binary system V444

Cyg, using 3D MHD simulations including moderate stellar rotation.

We find very similar results for the hydrodynamics of this system,

which is marginally in the regime where strong cooling is expected

to produce thin-shell instabilities and strong distortions of the bow

shock structure. This proof-of-concept calculation requires a number

of enhancements in order to reach state of the art, especially the

inclusion of orbital motion and a better implementation of radiative

cooling for hydrogen-poor plasmas. It is nevertheless encouraging

that one can obtain good results with modest computational re-

sources, and we intend to develop this setup significantly in future

work.

MNRAS 504, 983–1008 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
4
/1

/9
8
3
/6

1
7
8
8
5
5
 b

y
 D

u
b
lin

 In
s
titu

te
 fo

r A
d
v
a
n
c
e
d
 S

tu
d
ie

s
 u

s
e
r o

n
 2

6
 A

p
ril 2

0
2
1



PION: simulations of wind-blown nebulae 1007

The parallel scaling of PION is shown to be very good for MHD

calculations without radiative transfer, as long as each MPI process

has a local subdomain of � 323 grid cells per level. Beyond this,

the ratio of boundary cells to grid cells becomes sufficiently large

that the computation and communication overhead is prohibitive. We

anticipate that this scaling can be further improved significantly by

implementation of hybrid MPI + OpenMP parallelization, because

of reduced communication overhead and fewer boundary cells with

duplicated computation. Scaling for 3D R-HD simulations is less

good, losing two times in efficiency when the number of MPI

processes increases by eight times, and significant work is needed to

get this running efficiently on large supercomputers.

We introduced the PYPION library of PYTHON routines for reading

PION snapshots and making various plots of the gas properties as

a function of position. We demonstrate a method for converting

PION snapshots to FITS images that can be read by the TORUS Monte

Carlo radiative transfer code (Harries et al. 2019) and post-processed

to calculate thermal dust emission maps. This method can also be

extended to enable plotting of emission maps from spectral lines,

thermal X-rays, or any form of radiation where the emissivity is a

simple function of density and temperature.

It is hoped that PION will be a useful tool for the community

to model nebulae around evolving massive stars. The source code

can be obtained via a git repository from https://www.pion.ie/, and

contributed code can be added using a mirrored repository on GitHub.

A mailing list is also available for user support and discussion at

https://groups.io/g/pion. The methods developed here will be used

in future work to study bow shocks and wind-blown nebulae around

massive stars with 3D simulations. Comparing synthetic and real

observations will allow us to test the predictions of stellar evolution

calculations, to learn more about stellar mass-loss, magnetism, and

particle acceleration.
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Haid S., Walch S., Seifried D., Wünsch R., Dinnbier F., Naab T., 2018,

MNRAS, 478, 4799

MNRAS 504, 983–1008 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
4
/1

/9
8
3
/6

1
7
8
8
5
5
 b

y
 D

u
b
lin

 In
s
titu

te
 fo

r A
d
v
a
n
c
e
d
 S

tu
d
ie

s
 u

s
e
r o

n
 2

6
 A

p
ril 2

0
2
1

https://www.pion.ie/
https://groups.io/g/pion
https://www.pion.ie/
https://bitbucket.org/tjharries/torus/
http://dx.doi.org/10.1111/j.1365-2966.2011.18507.x
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.3847/1538-3881/aabc4f
http://dx.doi.org/10.1093/mnras/staa255
http://dx.doi.org/10.1051/0004-6361/201015232
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1093/mnras/staa474
http://dx.doi.org/10.1093/mnras/stv1659
http://dx.doi.org/10.1086/172676
http://dx.doi.org/10.1086/157368
http://dx.doi.org/10.1051/0004-6361/200911643
http://dx.doi.org/10.1006/jcph.1997.5773
http://dx.doi.org/10.1051/0004-6361:200810087
http://dx.doi.org/10.1016/j.newar.2015.06.001
http://dx.doi.org/10.1093/mnras/stz1982
http://dx.doi.org/10.1006/jcph.2001.6961
http://dx.doi.org/10.3847/1538-4357/aad333
http://dx.doi.org/10.1016/j.jcp.2018.03.002
http://dx.doi.org/10.1146/annurev.astro.41.011802.094840
http://dx.doi.org/10.1111/j.1365-2966.2005.09938.x
http://dx.doi.org/10.1093/mnras/250.3.581
http://dx.doi.org/10.1046/j.1365-8711.1998.01506.x
http://dx.doi.org/10.1051/0004-6361/201526725
http://dx.doi.org/10.1086/376937
http://dx.doi.org/10.1086/498734
http://www.gnu.org/software/gsl/
http://dx.doi.org/10.1016/j.jcp.2004.11.016
http://dx.doi.org/10.1093/mnras/stv251
http://dx.doi.org/10.1093/mnras/stv2272
http://dx.doi.org/10.1051/0004-6361/201321226
http://dx.doi.org/10.1051/0004-6361/201527289
http://dx.doi.org/10.1051/0004-6361/201731542
http://dx.doi.org/10.1051/0004-6361/201834832
http://dx.doi.org/10.3847/1538-4357/aaf6ee
http://dx.doi.org/10.1093/mnras/stv1995
http://dx.doi.org/10.1093/mnras/stw3257
http://dx.doi.org/10.1093/mnras/sty1315


1008 J. Mackey et al.

Harries T. J., Haworth T. J., Acreman D., Ali A., Douglas T., 2019, Astron.

Comput., 27, 63

Harris C. R. et al., 2020, Nature, 585, 357

Harten A., Lax P. D., Leer B. v., 1983, SIAM Rev., 25, 35

Heger A., Langer N., 2000, ApJ, 544, 1016

Henney W. J., Arthur S. J., de Colle F., Mellema G., 2009, MNRAS, 398, 157

Hummer D. G., 1994, MNRAS, 268, 109

Humphreys R. M., Helmel G., Jones T. J., Gordon M. S., 2020, AJ, 160, 145

Hunter J. D., 2007, Comput. Sci. & Eng., 9, 90

Innes D., Giddings J., Falle S., 1987, MNRAS, 226, 67

Janhunen P., 2000, J. Comput. Phys., 160, 649

Keppens R., Teunissen J., Xia C., Porth O., 2021, Computers & Mathematics

with Applications, 81, 316

Kissmann R., Reitberger K., Reimer O., Reimer A., Grimaldo E., 2016, ApJ,

831, 121

Koo B.-C., McKee C. F., 1992, ApJ, 388, 103

Lamberts A., Fromang S., Dubus G., 2011, MNRAS, 418, 2618

Lamberts A. et al., 2017, MNRAS, 468, 2655

Langer N., 1997, in Nota A., Lamers H., eds, ASP Conf. Ser. Vol. 120,

Luminous Blue Variables: Massive Stars in Transition. Astron. Soc. Pac.,

San Francisco, p. 83

Langer N., 2012, ARA&A, 50, 107

Langer N., Garcı́a-Segura G., Mac Low M., 1999, ApJ, 520, L49

Mac Low M.-M., McCray R., Norman M. L., 1989, ApJ, 337, 141

Mac Low M.-M., van Buren D., Wood D. O. S., Churchwell E., 1991, ApJ,

369, 395

Mackey J., 2012, A&A, 539, A147

Mackey J., Lim A. J., 2010, MNRAS, 403, 714

Mackey J., Lim A. J., 2011, MNRAS, 412, 2079

Mackey J., Mohamed S., Neilson H. R., Langer N., Meyer D. M.-A., 2012,

ApJ, 751, L10

Mackey J., Langer N., Gvaramadze V. V., 2013, MNRAS, 436, 859

Mackey J., Mohamed S., Gvaramadze V. V., Kotak R., Langer N., Meyer D.

M.-A., Moriya T. J., Neilson H. R., 2014, Nature, 512, 282

Mackey J., Gvaramadze V. V., Mohamed S., Langer N., 2015, A&A, 573,

A10

Mackey J., Haworth T. J., Gvaramadze V. V., Mohamed S., Langer N., Harries

T. J., 2016, A&A, 586, A114

Mackey J., Green S., Moutzouri M., 2020, J. Phys., 1620, 012012

Madura T. I. et al., 2013, MNRAS, 436, 3820

Mathis J. S., Rumpl W., Nordsieck K. H., 1977, ApJ, 217, 425

Meliani Z., Keppens R., Casse F., Giannios D., 2007, MNRAS, 376, 1189

Mellema G., 1994, A&A, 290, 915

Mellema G., Iliev I., Alvarez M., Shapiro P., 2006a, New Astron., 11, 374

Mellema G., Arthur S., Henney W., Iliev I., Shapiro P., 2006b, ApJ, 647, 397

Meyer D. M.-A., Mackey J., Langer N., Gvaramadze V. V., Mignone A.,

Izzard R. G., Kaper L., 2014, MNRAS, 444, 2754

Meyer D. M.-A., Langer N., Mackey J., Velázquez P. F., Gusdorf A., 2015,

MNRAS, 450, 3080

Meyer D. M.-A., Mignone A., Kuiper R., Raga A. C., Kley W., 2017, MNRAS,

464, 3229

Meyer D. M. A., Petrov M., Pohl M., 2020, MNRAS, 493, 3548

Mignone A., Zanni C., Tzeferacos P., van Straalen B., Colella P., Bodo G.,

2012, ApJS, 198, 7

Miyoshi T., Kusano K., 2005, J. Comput. Phys., 208, 315

Mohamed S., Mackey J., Langer N., 2012, A&A, 541, A1

Parker E. N., 1958, ApJ, 128, 664

Parkin E. R., Gosset E., 2011, A&A, 530, A119

Parkin E. R., Pittard J. M., Corcoran M. F., Hamaguchi K., 2011, ApJ, 726,

105

Peri C. S., Benaglia P., Brookes D. P., Stevens I. R., Isequilla N. L., 2012,

A&A, 538, A108

Peri C. S., Benaglia P., Isequilla N. L., 2015, A&A, 578, A45

Pittard J. M., 2009, MNRAS, 396, 1743

Pittard J. M., Dougherty S. M., 2006, MNRAS, 372, 801

Pittard J. M., Parkin E. R., 2010, MNRAS, 403, 1657

Plewa T., Müller E., 1999, A&A, 342, 179

Pogorelov N. V., Zank G. P., Ogino T., 2004, ApJ, 614, 1007

Pogorelov N. V., Zank G. P., Ogino T., 2006, ApJ, 644, 1299

Pogorelov N. V., Suess S. T., Borovikov S. N., Ebert R. W., McComas D. J.,

Zank G. P., 2013, ApJ, 772, 2

Powell K., Roe P., Linde T., Gombosi T., de Zeeuw D., 1999, J. Comput.

Phys., 154, 284

Puls J., Vink J. S., Najarro F., 2008, A&A Rev., 16, 209
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Tóth G., Roe P. L., 2002, J. Comput. Phys., 180, 736

van Marle A. J., Keppens R., 2012, A&A, 547, A3

van Marle A. J., Langer N., Garcı́a-Segura G., 2005, A&A, 444, 837

van Marle A. J., Langer N., Yoon S., Garcı́a-Segura G., 2008, A&A, 478, 769

van Marle A. J., Decin L., Meliani Z., 2014, A&A, 561, A152

van Veelen B., Langer N., Vink J., Garcı́a-Segura G., van Marle A. J., 2009,

A&A, 503, 495

Walch S. K., Whitworth A. P., Bisbas T., Wünsch R., Hubber D., 2012,
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