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PREFACE

This communication grew out of a graduate course presented at Yale University
during the Fall Semester of 1982. The purpose of the course was to explain
nonparturbative methods to non-specialists, and to point ocut their importance
in various areas of theoretical physics. Because of the prominent role of gauge
theories, the potential relevance of magnetic poles, the rapid progress made during
the last years, and the possible experimental observation of a monopole, we selected
those methods which have been successfully applied to the study of magnetic poles in
gauge fleld theories. The purpose of this communication is the same but the emphasis
has shifted. Only if it is necessary for completenese we repeat material which can be
found in other review articles., Qur concern, instead, will be on recent developments
in the theory of magnetic polea. The final aim is to review snliﬁnn theoretic methods
a5 well as complex manifold technigues which have been successfully applied in the last

two years to construct multi-pele solutions,

I would like to thank my colleagues at Yale University and at the Dublin Institute
for Advanced Studies for many helpful discussions and especlally Professor L. O'Raifeartaigh
for his encouragement in producing this communication. I am indebted to Miss E.R. Wills
for editing and to Mrs. M. Matthews for typing the manuscript. Financial support from
the Max Kade Foundation during the time I presented the course, and from the Alexander
von Humboldt-5tiftung during the preparation of the work for publication, is gratefully
acknowledged,

J. Burzlaff
Dublin Inatitute for Advanced Studies
2 May, 1983,






CHAPTER 1: TOPOLOGICAL EXCITATIONS

To familiarize the reader with the questions which will be raised in this communici_
tion, and some of the answers we will give in the case of non-Abelian gauge theories, we
study analogues of magnetic poles in this introductory chapter. The models with nontrivial
topology which we discuss are the ¢4 theory, the sine-Gordon model, the €P" model, the
Abelian Higgs model, and Euclidean Yang-Mills theory. 1In all these models the energy can
be minimized in a topolegical sector by solving first-order differential equations. We
present the corresponding topological excitations and discuss methods to find them which

have counterparts in the theory of magnetic poles.
1.1. KINKS AND SINE-GORDON SOLITONS

To explain the concept of a topological quantum number we choose the &3 theory as a

simple example. Its dynamics is given by the Lagrangian density
L= $(30)% - §(a0)? - ule), (1.1)

with
TR SYF A Y (1.2)

The energy of the configuration ®(t.x) is therefore
E o= J__ax[(3,0)% .« §(3,0)% 4 u(e)]. (1.3)

At any time t,

Xatsy

has to hold for a smooth (say C”) finite-energy configuration. These configurations
therefore belong te four different classes according to the four different combinations
of the asymptotic values %a. Within each so-called homotopy class any configuration can
be continuously deformed into any other one, but configurations from two different classes
cannot be continuously deformed inte each other. The classes are topologically inequivalent,
and can be labelled by a topological quantum number.

The solutions which minimize the energy in each topological sector can easily be found.
(The method was used first by Bogomol 'nyi (1976) for the % theory, the Abelian Higgs model,
and non-Abelian Yang-Mills-Higes theory.) For a time-independent field the inequality

E = 3 Jdxl(a,0 3/20)% + 2/200 8]
#(+m) . 453
» 2 ,l’”_m]dh"“iﬂ = Jﬁa n (1.5)

holds, where n = 0, 11 label the trivial and nontrivial topelogical sectors for the ¢4



theory, The lower bound is attained for Tlelds which satisfy
P e = = S {1.6)
X

Thus the ground states ® = #a with zero energy minimize the energy in the topologically
trivial sectors and the kinks

# = =a tanh {/ax) (1.7]

with cnergy E = 4+72%/1 winimize the energy in the topologically montrivial sectors.

We hawe found the homotopy classes and solutions with the tﬂrrfﬂpﬁhdiﬂg tapalogical
gquantum mmbers for the ¢4 theory in one space dimension. To do the same for non-abelian
gauge theories in three space dimensicons is the main problem of this communication; we
will use a mmber of different techniques te selve the problem. Une of these techniques
will be introduced now, in the context of the sine-Cordon theory.

The sine-Gordon theory is described by the Lagrangian demsity (1.1} with

U = 1 - cos 4. (1,8}

For smooth finite-energy configurations
A lin yo4. 8 = keXZ (1.9}

holds. Thus the model is topologically momtrivial and has infinitely many topologically
inequivalent classes, labelled by the topological guantum mmber

R o= ialee) - sl-sl]. (1.10)

Finite-energy solutions with popzers quantun pusber n are called sine-Cordon soliteons.
(For a precise defipition of a soliton see for instance Scott, Chu & McLaughlin 1973.)
The ground states with topological quantum number n = 0 and energy E = O are
€ = Z2ak, kK ¢ . To obtain the solitons with n = 21 we saturate the lower bound for the

inequalicy (1.5} by solving eq. {1.6). The salution

# = 4 tan” exp (ix + c) (1.11)

has topelogical quantunm number n = +1 and energy E = 3. Before we generate solitops with
n 7 2 we rederive this l=soliton solution.
Te this end we write the equation of metion for the sine-Gordon theory in characteristic

coprdinates
£ = Heaxd, n = Lt - x), (1.12)

which yields

g ¥ = - sin &. (1.13)



Instead of solving this second-order differential equation, we generate a family of new

solutions ¢ ¥) from a known one ¢, by solving the first-order equations

agale = og) = ¥ sin 400 4 0y),

aale + 850 = - ¥ sin (e - e). (1.14)

These equations are only censistent if ¢ as well as ¢, is a solution of eq. (1.13). The
transformation from 45 to @, ¢ = B#s, is called a Backlund transformation. With this
Biacklund transformation we can generate. from the vacua Py = 2Wk, k ¢ &, a family of
l-soliten solutions, which contains the time-independent soliton (1.11) as the special
case T = 1,

Iterating this procedure seems to be difficult because the seed solution ¢, becomes
more and more complicated. The addition formula for sine-Gorden Ricklund transformations
however reduces the problem to an algebraic one. In fact, two Bicklund transformations

By. By with parameters vy and vo commute:

i
1 = Hlilz: i BIHE% = EEHI",G =3 HE'II]' ‘lqls}
and for ¢'
] T;_ 1 Tf:l
tan (¢ - ¢,) = — = tan J(# - &) (1.16)
T

holds (see App. A). After solving the differential equation (1.14) once, which is easily

done for g, = 0, we only have to solve the algebraic equation (1.16). Using this fact

Barnard (1973) has generated n-soliton solutions for the sine-Gorden theory.

1.2, TP" INSTANTONS
Since the simplest epN medel, the 0(1) model, is related to the sine-Gordon theory

and all €PN models in two space dimensions have many features in common with four-dimensional

Yang-Mills theories, it is natural to proceed by discussing these models. The relation

between the sine-Gordon theory and the 0{3) model with Lagrangian density

L= Maa) - (9,
q €5 w = 0,1, CLLTF)
and metric diag (41, -1} is the following (Pohlmeyer 1976): If g satisfies the equations of

motion for the Lagrangian (1.17), then characteristic coordinates £,n with

+ 2
Bbp = B2 =1 (1.18)

- -+
{qiE: = gy etc. ) exist. In this coordinate system



¢ = cos ! 1&.5. a0 (1.149)

satisfies the sine-Gorden equatien {1.13).
To prove the existence of a coordinate system with the property {1.18), we use the

fact that
2,2 - (5.5 - 1.20
[q!{]:" [I'I:h]::. - n [ ]
iz a copseguence of the eguation of motion,
ﬁ:[.“ " [ﬁ:!; - ﬁﬂﬂ}ﬁ = [ ':I'El}
Hence, eq. (1.13) holds in the coordinate system (f ,n } defined by
de g} = JIE,EE];_, an'ta) = /3,240 i1.22)

In this new coordinate system we express q,0¢ and ,nn in terms of 3, ,p and J,n:

& _ + a 1 -
q'f{ = -':l"'hE ':I.;EEtE"- Hl—“":ﬁ Ta
ypgn = -a-ﬂln—#lln ﬁ.t + 4., ., otg e, (1.23)

amd derive the sine-Gordon equation Tor #:
fap, - - ﬁ.“ - 4, /sin ad, = - sin e, 11.24)

This result suggests that we look for a generalization te the O{3) moedel of the
metheds which work fer the sine-Gorden medel. This has already been dope successfully in
some cases, and we will stwdy ene of these metheds and use lts analogue for Yang-Mills-Higgs
theory in Chapter 3. For the moment we study the tepelegical excltatlons of Euclidean cph
models which are in some sense similar te the tepologleal exeltations of Euclidean Yamg-HWills
theories [Glrsey & Tze 1980, of ., Maison 19B0).

The topology of the medel (1.17) is nontrivial if EI can be compactified. Then the
continuous mAps

q: st gt
belong to topolegically inequivalent classes, the elements of the homotopy group 112':52},
labelled by the quantum msnmber

. p
n = g [ d°x £ijk fev i [i-FqJI] (3,9}
1 +
- Es fdzx sim 8 [3j83ze — 3q83p8) « X, q' = leos ¢ sin®, sing sin & cos &l (1.25)

We mow cast this result inte a form which can be easily generalized.

if p« {:H”', W =1, iz the nermalized eigenvector of 4 . &, with Pauli matrices oz,
corresponding to the eigenvalue -1:



(@3 = -5, pect, (1.26)
the spectral decomposition of § - 7 takes the form
(q - ﬂ]'ljk = ij - Epjﬁk {1.27)

(PFi is the complex conjugate of pi). In terms of p the topological gquantum number n and the

Lagrangian density £ now read

2 - i
n = - T%F ] d™x £y tF (3 - @ (iu q - 9) (3, q - 811
= - rd'e (0P .0 P, (1.28)
Zn TV W
and
L o= fer(a,§.8)(a,§.8) = 2(n,B)* - (D). (1.29)

Here we have introduced the covariant derivative
Dpﬁ = {Hll-l - .};iappi}-ﬁ' fl;s‘:’}

The 0(3) model is thus the first in a series of CP" models, N > 1, defined by eq. (1.29)
and (1.30) (D'Adda, Lischer & DiVecchia 1978, Eichenherr 107%. Gole & Perelomav 1978).
For all N the Lagrangian (1.29) is invariant under the V(1) transformation

E—rﬁ' o8 EiE{I}5' (1.31)

a: 3
If we consider, instead of E, the whole equivalence class of p s which are equal up to

a U(1) factor, we see that the topology of the CPV models is interesting. Indeed, if the

class goes to a constant at infinity,

[p] — [pal. [p] € CPY, (1.32)
then
P w(X)p, (1.33)

has to hold with a map w which maps the circle at infinity te U(1). These maps belong to
different homotopy classes of ﬂlfU[l}J, and are labelled by tie topological guantum number
given in eq. (1.28):

i 2 -
o= e [ d=x & au[pjaupjl. (1.34)

Furthermere, the action is bounded from belew by the topological quantum number:
P L TR ;
A = [d*x [{nHﬁ tie D) - [Dpﬁ t g, D.B)

- s oy 4 -
¥ Eltpv{ﬂup} . {DUP]'] z 4=|nj, {135]'

and the sclutions to the(anti-) self-dual equations



nua = :L:hunuﬁ [1.236)

minimize the action in a tepological sector. These solutions are called cef [mrti-]

inatantons.
Far N = 1, Belavin & Polyakev [1%75) gave sclutions o eq. 11.36) in the form

b, = B -f'ipﬁli'f « 1P213, (1.37)

where the Fi are polynomials of degree n in =z = xp + iwy or %, respectively. These P
satisfy Dgf = O or D, = O, respectively, and thus are er¥ {anti-] instantons. Oarber,
Rul jeenaers, Seller & Burns (1978) have shown that the corresponding §'s are the only
continuous naps from B2 te 52 with finite and stationery action. Thus, for W =1 all
amooth finite-action solutions are (anti-} self-dual.

That thia is not trus for arbitrary N can be aeen as follows (Din & Zakrgewski 1980
a,b, cf. Corrigan 1980): For real F R the squation of motion

Dltuhﬁ * [Duiil o o) B =0 [1.38)

reduces ©o the equaktion of motion (1.21) for the 0{3) model, because Fi*pl"i = O holds.
Further, any Tinite-sction 0(3} selution is a finite-action ¢P2 poluticon. Ginee only
congtant real § can be self-dual or anti-self-dual, we conclude that for N 3 2 there eulst
finite=potion golutions whish do not minimize the action Ln thair topological sectors.  We
will speounter & similar situption when we study finite—energy Yang-Mills-Higgs salutione.

1.3. VORTICES AND YANWG=HILLS IRSTANTONS

In +his sestion we introduce gauge fisld theories with which we will be cancerned for
the rest of this aprticle, A aimple example of a gauge fimld theory is the Abelian HigES
nodal with the Lagrangisn denaity

TR [ L 2
L = —‘.i'F“F + BiDTE) Du!-Eli'-l—lll ¢ &> Oy 11.39)

Here & im a complex fiald, & = &) + Loz, FH“ ig the electromagnetic field,

Fou = 38 - CHE [1.40]

given in terms of the geuge potential A, and nui iz the covariant derivative,

I;lp_l- - ﬂut + :I.F.u_ll. tl.a1k

Here and throughout we put the gauge coupling constant equal to one.
The Lagrangian (1,39} is invariant under the U{1] gauge transformation

@ =4 = axpliale,

A = # 8 i
FLF—* p .H.u W5 (1.42)



with 8 = 8{x). Therefore we can simplify our discussion by choosing the A= 0 gauge. If
we restrict our attention to time-independent fields we can in addition transform the radial
componeant Ar to zero.

In two space dimensione (p,v = 0,1,2 with metric diag (+1, -1, =1)) this model is
topologically nontrivial (see Jaffe & Taubes (1980) for a rigorous discussion). In fact,
for smooth finite-energy configurations, ¢ is continuous at infinity and maps the unit circle
at infinity te the unit circle of complex numbers, these maps %= therefore belong to topo-
logically inequivalent classes, the elements of the homotopy group H1[51}. The topological

quantum number is the winding number

i 2= — de
g de o ——= ; L4
n =+ ID b e mRe z (1.43)
Since
=+ Lim I d°x Bs = n (1.44)
21 Fsm  |[x|<p 2

holds the corresponding topological excitations describe a magnetic flux through the xq=¥g
plane and are called vortices,

We have studied the topolegy for the Lagrangian {1.39) and interpreted the topoclogical
excitations. We would like to find the corresponding solutions to the equations of motion.
For the special value i = 1/4 this task can be simplified. In this case (A = 1L/4, A, = 3.8

= Etﬁi = 0) the energy can be cast into the form

E = [ d% {4[F, ¢ EMEI +e%, - 1)]2

2

+ B[ (2101 — A182) £ (3282 + A2e1)])°
o Bl(3207 = Aas) T (3785 + A9,)]% 2 %F),) (1.45)

by partial integration. Therefore, to find solutions for which the energy takes its
minimal wvalue E = v|n| in the topological sector n, three first-crder equations have to be
solved. Using these equations one can prove (Jaffe & Taubes 1980} that solutions for all n
exist. Furthermore all finite-energy sclutions satiafy these first-order equations.
However, an explicit solution is not yet known.

Let us consider in which respect non-Abelian Yang-Mills theory is similar to the
Abelian Higgs model and the CPMN model. For sU(2) Yang-Mills theory in four Euclidean
dimensions the Lagrangian density reads

L = ¥ er Fuquu' ey = 1.2,3.4, (1.46)
with metric EHU' F,y are the gauge Tields
Fuw = 3,8, 0,8, + 4[4 A)] {1.47)

given in terms of the gauge potential Au(x] ¢ su{2), L is invariant under the gauge



translornatlions
A, =AL = uﬁuu'i . L[a"u]u-l. w e SUC2]. (1.48]
For emooth fields with finlte action F nust wanish at infinity, and A, 1s pure gauge
A, —e il3 wlul, w g BU(2). (1,43}
111-.*___ d

Henoe, w mape the 3-sphere at infinity intoe BUCZ2), which is topologically equivalent To a
d-gphares. These maps therefore belong ko topologically insquivalent classes, the elemenis
aof the henokapy group -3[53]. The topological quantum nunber is the Pontryagin index

1 .
e g atx tr P
1 4
= oe? § a% tr Ewan By VAR, + iKAA ALY €T, {1.50)
where Fl|, are the dual fislds
-
Fru ™ % una Foar (1.51)
Far the actlon A&, the equatiasn
- 4 LR
A ¥ Ja%x e 1rhh i Fuw] T Ban (1.52]

nolds. The action is therefore bounded from below by 8n2|n|, and attains its ninimum for

{antl=) self-dual fields,
-
Foo = *F {1.53)
The [anti=) self=tual solutions are called (anti-) instantons. (Anti=] instantons satiafy

auvtomatically the eguations of motlion
DFpet = 8,Fu, + 1[A,F,] = 0. {1,547
This follows not only Trom the fact that they ninimize the action in a topological sector

But aleo Trom the Blanchi identities
DR = O, {1.58)
which are & congeguence of the definition (1.47) alone.

(anti-) self-dual solutions for all topological quantum numbers have been found
{ef, Actor 1878, Olive, Sciuto & Crewther 1979, Prasad 19301. For the angatz

Ay = = Negg Ui dav ¥ Xgd, 1o,
hy = t Kog3, lny, {1.5&}

the self—duality equationa are satisfied if ¢ satisfies the eguation



aHauw = 0. {1.57)
"t Hooft hes shown that for the salution
2
ﬂ i
no 1 (1.58)
* =1 + E
=1 |x-b1[2

the singularities in the potentials (1.56) can be gauged away. These ﬂp are therefore a
This family contains, as the special case n = 1,
The most

regular Sn parameter family of solutions,
the first instanton found (Belavin, Polyakov, Schwartz & Tynpkin 1975%) (BPST).
general 8n=-3 parameter family of instanton solutions has been constructed by Atiyah, Drinfeld,

Hitchin& Manin (1978) (ADHM). We will come back to the ADHM construction in Chapter 5.
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CHAFTER II1: TOPOLOGY AND MAGHETIC CHARGE

In this chapter we apply the topological concepts already discussed to the study of
nen—Abelian Yang-Mills-Higgs thecries, and recover the Dirac monopole as a topological
excitation in the form of the 't Hooft-Polyshow monopole.  Coloeman (1975) and Goddard & Olive
[15978) heve already described this in a detailed and pedegogic way and so we only repsat
thoge facts essential Tor our discussion and elaborate on sone less well known devaloprents.
To illustrate topological aspects in groups other than SUTZ), we discuss point-singular
nonopoles and spherically eymmetrlic monopole solutions which aatiafy the Hogomol'nyi equaticna
ag well as those which do mot.

2.1. TOPOLOGICAL EXCITATIONS IN YANG-MILLE-HIGEE THEORY

We will pow study the topology of Yang-Milla-Higgs theory (seec Jaffe & Taubes {1850)
for the precise fore of the assumptions and decivational, The Lagrangian density of a Yang-
Hills=Higgs theary is

L o= = WFE* Fy, + X0%8)T - D e - Ulel, (2.1)

with p,v = 0,1,2,3 and metric diag {+1, =1, =1, =1},
FRY = FEYT, = aPAY - a¥AF + 1]aF,a¥] (2.2)

are the gauge fields, T, the Hermitlan generators of a compact connected gauge group G which
satiafy 2triT Ty) = &5, and Ak = ART, are the gauge potentials. ¥ ie an i-tuple of real or
complax scalar Tields,

i T L BT | (2.3}
iz the covariant derivative with an L=dinensional representation AY, and

v o= ¥a()el? - 137, a4 =0, {2.4)

is the Higgs potential.
This theory Le fpvarlant under the gauge transformation

=¥ = ul

L N e o L T T [2.5)
with a group element w. Thus, as in Section 1.3 we can study smooth time-independent
finite-anargy configurations in the A, = A = O gauge. Here, Tor G = =0(2) and three real
soalar fields 8y the gonkinuocus mapas & at infinity map 5% intoc the set of zeros of U which

iz mlsa a 2-spher=. These mapa therefore belong to the homotopy classes of (5] labelled
by the topological quantum numbar
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i
n = -é-* fsz d’ﬂ Eijktﬂmialajib]ﬂkac E E' {2-,5]_
ﬁi = tif|i|. i = 1.2.3

lef. eq., (1.25)). Whare the topological current is defined its divergence ie Zero because
aiﬁ ig orthoponal te $. Hence only the zeros of § contribute to the topologlcal charge, and
have to be interpreted as the locations of the topological excitations.

We have seen that the topological charge of a vortex is proportional to its flux,
Analogously, the topological charge of a smeoth finite-energy SU(2) Tield configuration is
related to its magnetic charge

g = limﬁ+w|f| HFUi §, Bl (2.7)
=l =

through the equation

g = dmn. (2.8)

The SU(2) magnetic field is defined in term= of FEY gm
" [ . k
Bl = - %oy plk, (2.9)

and the Bl in direction of §, corresponding to the unbroken U(l) symmetry, is interpreted
as the U(1l) magnetic field. Because the eigenvalues e,= *¥ of ¥§,0, are the charge quanta
in this theory we have recovered Dirac's quantisation condition (Dipac 1931, cf. Goddard

& Olive 1978, Coleman 1982).

Accopding to Dirac's quantisation condition the minimal magnetic charge a monopole
can carry is E-feﬂ. We will ges in Section 2.3 that this is still true in 8 more realistic
model than that just discussed. If such a monopole passes through a superconducting loop
it has two flux quanta, as defined in eq. (1.44), added because the unit of charge in this
equation is the charge of a Cooper pair and therefore 2e,. Hence the current which flows
in the superconducting loop to sustain the magnetic flux, changes by the corresponding
amount. This change has been cbserved in an experiment by Cabrera (19582) which constitutes
the only candidate event for a magnetic monopole,

Let us go back to the problem of finding a corresponding classical solution. In the

spirit of Chapter I we again minimize the energy in a topological sector. From

E

J a3x[xel gl 4+ X(Die), (Die), + U]

[ &3 1 %[l ¢ (ple);)? 1 8l (Dle), + w) (2.10)

it follows that the energy is bounded from below by
| [ a®ml (ple),l = | J a®0i(sl o)
= | f adxai(el o )| = an|n| (2,11)



L2

for mmoeth finite-snergy Tielda. In the Bogomol'nyi-Prasad-Sonmerfield (BPS) linit of
vanishing Higgs potential, 3—=0, the energy attaina ita lower bound for fields which satisfy
the Bagomsl'nyl equaticns

Bl = #plg = 2 [ale + L[A,e]), [2.12)

# = liaifE.

If we identify ¢ with o new Ay, our Yeng-Mills=Higgs theory in the BPFS limit is nm=rely a
Euclidean Yang-Mills theory for time-independent fields, and the Bogomol'nyi equakions
basoma the self-duality conditlone.

We have reduced the problem of finding magnetic pole sclutions in the BPE limit ko one
of @olving the Bogomol'nyl equations. The asymptotic behaviour of |+,

1§21 - 2lnl (2.13)
r

+m r
Ehen gives us the topological quantum nunber of the solution, becauwse (2.13) yields

E o= [ afwiptal inie), = [ afxkalatie®
= 4nlnl. (2.14)

Hence the solution with asymptotic behavieur {2.13) i8 an n-pole with magnetic charge g =4=n
and enecgy E = da|n. To find these n-poles Ie the final aim of this comnunication.

2.2 POINT-SIRGULAR MOROPOLES

Eecause smooth finlte-snergy solutions are hard to find we relax our conditions for a
sonent and look for point-singular solutions first. This turns cut o De & much easler
problen, and & relevant ope LT we are only interested in n-poles Far away from thelr cores.
In this case we can &leo easily carry our analysis beyond SULED,

Far away from the cores of the magnetic poles

uiel = o, nig <0 {2.15)

is a good approximation. These equations are solved by

-ineTy —14Ts (O
t = @ & lﬂ}
1

gim nmé Sin &
coB §

cos b Bin &}
L]

Al s - dife,ate], (2,16}

where T; are the SU{2) generators in the adjoint representation. Obwiously the topological
quantum number is n for | given by eg. (2.16).
The potentials Al lead to fields

Fil = — i[ale, 3de] = = J%ﬁluik°~ 12170
padd
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which satisfy D;F*J = 0. The fields {2.16) and (2.17) are therefore a point-singular

solution to the eguations of motion

: al
D;D = - TR

I}JFU = i[e,Dig] . {2.18)

Because F1J diverges like r=< at the origin, the energy of this solution is infinite.

We have found point=singular solutions for arbitrary magnetic charge in SU(2) Yang-
Mills-Higps theory. These solutions can be generalized to higher SU(N) groups (for SU(3)
golutions with arbitrary quantum numbers see Cho (1980); for generalizations to SU(4) and
S5U(%) see Kim, Koh &Park {(1982) and Koh, Kim, Park, Kim& Kim (1981)). In general, the
topology of a gauge theory with gauge pgroup G broken down to the little group

H = {heG: hi; = $,1, (2.13)

with Eﬂ a zero of the Higgs potential, is given by nE{EfH}. For SU(2) broken down to U{1l},

for each pair of zerosgs of the Higge potential Il, EE,H group element w,, exists with
-+ -

b ol oo T
the topology, which is therefore given by nEtSE}.

SU{2) acts transitively on the zeros of . In this case ¢ alone determines

This is no longer true for G = SU(3) with a Higps field in the adjoint representation,
¢ = ¢,0. /2, aml, ..., B, and the potential {E.dj,{;a are the Gell-Mann matrices.) If a
Ag=1like ¢ breaks down the symmetry to U{1l) x U(1), the formula

12[GHH] = ker ﬁl[Hﬁ-+n1{E}
= x1{H) for m1(G) = O© (2.20)

tells us that the magnetic poles are classified by the two topological guantum numbers of
miuf1}) = =mp{u{1}). Furthermore, the generalized guantisation condition reads in this case

exp [ 1 (MEqiq + Mggagl] = 1, (2.21)
which implies

g3 = 4uln-¥n'), gg = 2#/3n"', (2.22)
with integers n, n's: The magnetic charges are defined as

i ke
By = [ de EijkE tr ($FJI%),

gg = [ doley g2 tr (83'FK), (2.23)

with & ag —1like #' erthonormal te the normalized B,

A ¢ which can be gauge-transformed to 13fE. and exhibits the full homotopy group, is
g g
. " R—— ] (]
z
~inte(=Xaz + N3ng) —ier,/2 =—i(n=¥n')®ig/2 =i®Ars/2,
e

W o= @ e & (2.24)
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The arthonornal IH_-l:Lh:u ' is

8 - yﬁﬂ-ﬁi =u%h4. (2,25}

To find the gauge potentials we solve Dly = O for A, using {(#.24) and {2.25). That

gha aclution is
glo= alg 4 oa'lg' - il#,av6) - i et ), (2.26)

with arbitrary functions al and a'l, can be proved by writing Dlg in terms of hge b and w.
In the singular § = 14/2 gauge these potentials read
a't = alyge s a'higse - 2iftelu=tituag/2)
v trlu=lyludps2)]. {2.27)

It i= eapy to calewlate the traces in eg. (2.27) for o given in (2.24), and to aee
that for

al = =0 cos“apdg, Al = 0, [2.78)
2@
the gauge potentiale take the form
AL = - [in-¥n01t3 4 LAa 28] comaaly. [2.28)
2 F4 2
This aquation inpliss that the gauge Tialds are
iy - A k 1
| —o el [in=¥a 8+ ofntE ] (2.30]

in the nonsingular gauge. These FiJ satiafy bjriJ = Q. Thus we have Tound point-singular
i3l soluticns for arbitrary magnetic quanktum numb-ers,

2.3, SPHERICALLY SYNNETRIC MONOPOLES

To find a solution which minimizea the energy in a topological sector, L.e8., satisfies
the Bogonol'nyi equations in the BFS limit, we smooth cwt the pointe=singular SU(2) solution
for n = 41, The ansatsz

_ Hir}
+ = BTy,

sloe -1 - RV IR T T {2.31)

is spherically synmetric becauss it satisfiess The sguatlions
[_ilijk ljah + Ti"‘] = 0,

[-ieqjn :HJEH + Ti.hA7] lejtmbm. 12.32)
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This ansatz leads to

i d Hya.n HE .i=
D = —_— - =t S
¢ S B RETy v R
sl o ey M R4T; - dK aiij'_rj. (2.33)
e dr

and to the following solution to the Bogomoel'nyl equations:

r

- . {2.34)
ginh r

H = ¥ (rcoth r=-1), K =

This solution to the equations of motion in the BPS limit was first found by Prasad &
Sommerfield (1975} (PS8) without the use of the Bogomol'nyi equations.

H—=*{r-1l) for r = = {2.35)

shows that (2.31) is an n = #1 monopole selution. It is in fact the most general l-pole
golution for SU(2) up to translation. For arbitrary semisimple gauge groups other spherically
gymmetfric sclutions to the Bogomol'nyi equations are known (cf. Bais 1979, 0Olive 1980).

For nonvanishing Higgs potential, i # 0, we cannot use the Bogomol'nyi equations.
Hevertheless we can prove that a solution of the form (2.31) exists. To this end we

calculate the energy and obtain

E = anfy dr[k'2 &+ L (ru1-n)2

2rd
2He Bogd
+ —]'-—[1-1{2)2 i uﬁ--li— . il{H_-IJE]. (2.36)
2re r2 2 e

For later reference we have introduced a constant o, which is equal to one for the
ansatz (2.31)., The corresponding Buler-Lagrange equations are the equations of motion
{2.18) for our ansatz (2.31). Therefore, the configuration which minimizes the energy (2.36)
is a solution to the equationa of motion. That the energy attains its minimum was proved by
Tyupkln, Fateev & Shvarts (1975) for a = 1, and the corresponding solution is the 't Hooft-
Folyakov monopole ('t Hooft 1974, Polyakov 1974).

The 't Hooft-Polyakov solution has analogues in SU(2) theories with Higge fields which
do not lie in the adjoint representation (Michel, O'Raifeartaigh & Wali 1977, O'Raifeartaipgh

& Rawnsley 1978, see App. B for a detalled discussion). A spherically symmetric ansatz is

AaT

l:'“ i 214+1 ¥;{¢'EJ H::“r}’ 1 = 1*2"‘"" M = -Ip-i-pIq {2-3?]

where the ?a are spherical harmonics of order I, together with the potentials of (2.31).
For this ansatz the equations of motion reduce to the Euler-Lagrange equations obtained from
the energy (2.36), where a = XI1{1+1).

Since only a is different for different I, the technique used by Tyupkin et al. applies

for arbitrary I. In fact, it can be shown in all cases that for & minimizing sequence
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(h, = %:a“—l. Ky = Kl
kgl 10 = [[5arie®h7? + ka1 + n3010 + kRILI]% < = {2.38)

holds., Fron this it follows that a limdt thy k) wilh
Elhg,kg) € limy,, Elfyky) = inf E(h,k) {2.39)

exigts., The energy attaing its minimum for (hg.kg), which hence is a solutien, These
galutions for arbitrary I are the only known monopole solutions in the realistic case aof
ronvanishing Higegs potential .

For vanishing Wigps potential we can gtill prove the existence of & aolution for the
ansatz [2.37) by restricting our attention to ninimizing sequencea with hyl=] = 0. Ginee
there is no Higge potential to guarantse that h,l=} = 0 holds, we need the inequality

by (x| ¢ ([Tare?n)? [Fardy¥ ¢ £ (2.40)
r

to ensure the correct agynptotic behaviour for hy. Thus even in the BPS limit solutions for
arbitrary I exiat,

These moluticns can be embedded inte SU(I + 1) gauge theory with a Higgs field in the
adjoint representation. In these theories the Bogomol®nyl equations make senae, and we may
ask whether they are satisficd by the embedded solutions. The answer ia negative [see
Burzlalf 1551 for I = 2 and App. B). We have a situation sindlar to the one we encountered
in our discugsion of the €PN model.

Except for the PS monopole mone of the solutions (2.37) is known in clesed form. The
geymptotic form of the 't Hooft-Polyakow monopole is

KEvoleTl, H = ra0le2iry, i2.41)

Bince the nass of the nassive gauge particle is m = 1, and the mage of the Higgs particla
18 p o= 2% in our units, according to eq. (2.38) the mass of the monopole is

N = asmfiil, {2.42}

with fi0) = 1 in the BFS limit. Monopoles in Grand Unlfied Theories with m 1.1:':11':' Gew, which
night be realistic modela, are therefore very hesvy. [On Grand Unified Theoriss ses a.g.
Ellis {1980]), Tye {(1982}.}

Sinea in all realistic models the synnetry group G is broken down to a aymmetry which
cenkaina the electromagnetic W1) group, and G is senisinple for a unified thescy, monopoles
ahould exist according to formula (2.20). In physiceal terms, monopoles are created as
tepological defects during the symmetry breakdown (Kibble 1981). & corresponding clasalcal
monopele solution can be easily given fop BUIS) Grand Unified Theory by embedding the 't Hooft-
Polyakoy solution.
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SU{5) contains as subgroups

su(a) I
sSu{3) = [ ), sui2) = (
Ia a2

and the two U(1l) subgroups generated by the weak hypercharge Y and the charge matrix @

regpectively:
= At disg(1,1,1, - ol = E:I,r = Eaﬁ - 4"3'\'. {2.43)

A Higegs field in the adjoint representation with asymptotic form

' 1 diag{1,1,1 2 3‘1 (2.44)
. | m— & i - == F
T o e R T B

and a Higgs field in the fundamental representation

H = Hﬂ = G :E-lﬂ-ﬁ}

= 0000

break the symmetry down to SU(3) x LJI:_T.,'I.-"E:_I,
The three pessible embeddings of the 't Hooft-Polyaskov monopole with H = H, and
asymptotic field ¢, which at each point at infinity can be pauge transformed to (2.44), are

H{vSr /¥12)..
H = Hg ¢ = - %iTy + T,
Al = — 4[1-K{/B r VTE)) [ijTj.ﬂiikTh]. (2.46)
with
0
1 1 1 3 1| 0
T = Ediag[l'lr T i _E]* T, = 2 ag | (2.47)
O
ar
e SR 1 e T .1 1 _3
T = Az di=ell, -5, 1, at"ah T = ¥15 diagl- 5 1.1, 4" E}'

and the corresponding SU(2) generators Tj.

For the solution (2.46} and (2.47) the asymptotic behaviour of the gauge fields is

i-.] - l o
Fid & 3 Ffijhxkxlrl' (2.48)

which at each point is gauge equivalent to



1B

i 1 a5l 1
Pli 2 ?Hi,]k.!kﬂiq + = mlg!‘. [2.48)

Hence the chargea q =-=%, -%, —%, 1,0, the magnetic charge g = 2w, the color charges
Qe = 1/&49, 1/&3, - 1/¢3, @, O, and the color magnetic charge g, = Anf¥E, satisfy the
generalized quantisation condition

B+ g, = 2k, [2.50]

focording to (2,50} the ninimal magnetic chacge ig 29, which corresponds to the flux change
Cabrera has detected.
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CHAPTER III: SOLITON THEORETIC METHODS

Since spherically symmetric ansatze do not yield solutions with magnetic charge
greater than one, we start with axisymmetric ones. These reduce the Bogomol'nyi equations
to the Ernst equation. Using seolution generating techniques known from General Relativity
for the Ernst equation, axisymmetric n-pole solutions have been constructed by Forgacs et al.
Following thase authors, we set up a Riemann-Hilbert problem to generate a family of n-pole
solutions with the maximal number of degrees of freedom. Here our aim is to make the basic
ideas transparent {(cf. Forgdcs, Horvath & Palla 1981¢), and a comparison with other techniques
pogeible, In the following chapter we will concentrate also on the explicit form of all 5U(2)

n=pole solutions.
2,1, AXISYMMETRIC CONFIGURATIONS

In Section 1.3 we saw that SU{2) n-instanton sclutions are not hard to obtain. To find
their time—independent analogues, which are the magnetic n-pole solutions to the SU(2)
Bogomol 'nyl equations, proves to be a harder task. ©GSo far we have solved this problem for
n = *1 only using a spherically symmetrlc ansatz. If we want to go te higher magnetic charge
a spherically symmetric ensatz will not be sufficient (Guth & Weinberg 1976). (On axisymmetric
configurations see alsc O'Haifeartaigh & Rouhani 1981a.)

In fact, one can put an upper bound of 1 on the topelegical quantum number |n| for a
spherically symmetric ansatz. Here the topoleogical guantum number is the generalization of

formula (2.6) with the leng-range magnetic field b = b/|b],

1"2;151 = b':'ﬁ-rﬁ} A 0, {3.1}

instead of §, which need not lie in the adjoint representation. Spherical symmetry means

that
and

[-i&ijkxjﬂk + Ti,Am] = i:imnﬁn - iEmTi (3.2)
hold, with T3 e 5U0(2) and rA; approaching ti(#,8) or aj(e,8) respectively at infinity,
Equations {(2.32) are the speclal case with constant Tj of the general definiticn of spherically
gymmetry.

Using eqs. (3.2) the formula for the magnetiec charge can be cast into the form {see
O'Raifeartaigh (1977) for details)

1 . 1 .
In| = |35 / dede sin & tr(BX;t )| € 37 [ deds sin s 2tr (%, t, 5. (3.3)
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The spherical symmetry of gl on the sther hand implies

[etrif,T,1% = 1]¢, - 0. i3.4]

id kL

Since % ~8 cannot be identically zere for a B which is neither identically sero nor eingular
at the origin, 2eri#;T{}® = 1 holds fer all r, and therefore at infinity. This establishes
the upper bound of 1 on [nl| in eq. (3.3).

The proofl just sketched shows that for n-poles with |n| 3 2 & spherically sympetric
ansatz will not be sufficlent. We therefore try an axisymnetric angat®, with & and Ay
satislying

[=i3, + Toe#l = [-13, + To,a ] =« [-i@, + Taefyl
= [=idg + Tohg) = O [3.5)

in eylindrical coordinates {p,¢,2}. After a gauge transformation with w = exp [i#Tg),
Ty ¢ aulf), the new fields satiafy eqs, [3.5) with T, = 0. In this gauge

# = 0Tz ¢ 0Ty A, = -MiTy,

Ay = =byTp - baTy, Ay = =-#gTy, Ty = 03/2, (3.6}

with Tunctions #5, 8, and b, depending on p and = only, is obvicualy & subset of the
axigvametric ansftze. It ie the most general axisymmetric ansats in the Ty = O gauge which
is alag mirrorsynnetric, L.e., sysnetric with respect to the tranaformation x.-x, Tp --Tj,
lp+ —Ip, fig® =hy. In the T, = Ty gauge, the ansatz im mtill of the form [3.6), with T,
instead of Ty and T,/0 instead of Ty (T de + T,dé = Tydu + Tpdyl.

For this ansatz, which was first given by Jang, Fark & Wali (1978} and Manton [1978],

the Bogomol'nyi equations,
Ah # = = F,., pD ¢ = Fgg, Dg# = = oFzp, (3.7]

reduce to five equations for #,, 8, By (o = 1,2). Three of theese equations are solved if
we express 8, ag, and by in terme of two unknown functions Tfleg.2] and #ip,z] as follows:

1 1
¢ = §jzu, #, = = F*zf'
1 . -1
‘1 - ;apﬁ' HE = f‘iz‘l
by = - Eaw, Bz o Tf. 13.8)

The two rempaining equaticons can then be combined into one complex equaticn for
£ = f + ib (Wikken 197%:, Forgdes, Horvath & Palla 19400
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(Re e) Mo Fe) = plFe) " (Fe) = 0,7 = (8,08, (3.9)

We have reduced ocur problem te one of solving eq. (3.9). A generalization of this result
to arbitrary groups has been given by Bais and Sasaki {see Bais 1981).

Equation (3.9) is the Ernst equation {Ernst 1968}, which has been carefully studied
in General Relativity (see Cosgrove 1980). This is why many properties of the =solutiona
and solution generating techniques for this equation are known. The Ernst equation is
furthermore related to the 0(3) model. This can be seen when eg. (3.9) is expressed in

terme of

L2 o ¢E} -f"lv
T = . {3.10)
_f,.-l,11 1

and reads

Worl T 1) = O. (3.11)

In this form the similarity to the equation of motion of the model (1.17):

3 {1'_13“1;} = 0, det 1 = =1, T = § . &, {3.12)

ig obvious, It therefore comes as no surprise that some of the methods used for the sine-
Gordon model can be generalized beyond the 0(3) model.

Forgacs, Horvath & Palla (198la) used two of the symmetry transformations already
known for the Ernst equation to construect solutions for axially symmetric magnetic n-poles.
Houston & O'Haifeartaigh (1980) have shown that axisymmetric and mirrorsymmetric monopoles
with charges of equal sign cannot be separated. The generating technigue we are going to
discuss in the next section can therefore yield only solutions corresponding to moncpoles

located at one point.
3.2, THE HARRISON TRANSFORMATION AND THE MWEUGEBAUER-KRAMER MAPFING

To apply Harrison's BHcklund trensformation (Harrison 1978}, we first cast the Ernst

aquation into a new Torm. After the coordinate transformation

L1 = p+ iz, L2 = p - iz, ﬁu = ifiﬂu: o = 1,2, {3.13)
eq. (3.9) reads
Bgtﬁl—faicl = %Ea}‘aa* = ATTE 1+ {33e + 35e). {3.14)
1+ &2l
In terms of
My = _ljlc, Ms = "LHIE {3.15)

af 2F
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arnd
Wy, = F,, a8 = 1,%, [3.16)

6q. (3.14) and its complex conjugate equation can Both be written in two different ways:

1

EEHI = HL{HE - ]'Il:l - m ['Il & H?].
-1

agMz = Ma(Ny - Nzl - 2(Cq » Ca) My + Mal,

1
agHy = Hy(H; - Myl = m (M) + Mal,

1
aqhs = HolMy — Myl = m My + M5l (3,17}

These equations are a systen of first-order equaticns for M, and W,. Any solution (W, N ]
to these squations which satisfies She reality condition [3.,16) yields a solution to Che
Ernat sguaticn.

The next atep is based on Harrizon's proposal of & peeudopotential. Harrison was
guided by the following considerations: To linearize the probles of solving nonlinear

pmuaticns we nesd an associated linear systen,
. B i
Ii"lj. = tﬂ.‘lﬂ.d:ﬂ ] d#E - “I:F"I'ﬁ-d':ﬂ' [3.18)

for 4, whose consistency condition ia the nonlinear equation. Given the so=called Lax-palr

(3,18}, q = wofyy satisfies the Riccati type equation
L] . i ]
dig = [:.;1 + fuy = 1y)q - 'rEqE]d.-:n_ [3.181]

Boing awars of the uaefulness of a Lax-pair, we suspect that a peseudopotential q might mlso
prove useful, and in fact cur suspicions will prove correct.

To Tind a pseudopotential for the system (3.17), Harrison ueed, not a Lax-pair, but the

f B
a a

gimplified the problem considerably. Using the eguations (3.17) it ia not difficult to ahow

ansatz {3,19) directly with ¢ and u_ depending on M  and N linearly only. This assumption

that one solution to the congietency condition is
a9 = (Mg - Wylg = pluwl (M - Hya@l,

3.0 = [Ny - Wylg + p=liu) (Hy = Hoa®l, {3.20)

|: W= 1&2
p wl = 1Iu R “.1 [3.21)

and an arbitrary conatant w ¢ €. (The calsulations invelved in the derivation of ege. [3.200,

with
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(3.23) and (3.25) though long are elementary.)
The system (3.20) for q, My, N, is consistent if M,, Ny satisfy egqs. {3.17). This
implies that § is another pseudopotential if it satisfies (3.20) with

IMp = =Mo + 20" IMao = = Mj + ﬁ%,
P 1 5 1 (3.22)
Hl = = Hl + E. INE = - E + .ﬂ_ﬂl -

instead of M,, N,, because {3.22) is a symmetry transformation for eqs. (3.17), the so-called

Neugebauer-Kramer mapping (Neugebauer & Kramer 1962). In terms of g and p, a reads

v, QT . i {3.23)
L+pq
because the right-hand side satisfies egs. (3.20) for the Neugebauer—Kramer transforms IM,
and IN, if q gatisfiss (3.20) for M, and N_.

To penerate a new solution, we substitute

HM

for M, and N, inte eqs. (3.17), and expand. After using the equations for M,, N, and g, we
are left with equations for their coefficients in (3.24). Harrison gave one solution to
these equations, the Harrison transformation

- qip® - 1)
M gﬂl = Aopip + q)

HM cp:d
2 7 927 4001 4 pg)’
1 1 - pe
HN, = -— B
1 agl applp + gl
" qll - p?)
HN = ggh, - . (3.25)
2 2 4gpll + pa)

Another solution, in fact the one we shall use, 1s the Neugebauer-Kramer mapping

(3.22) of the Harrison transformation (2.25), which reads

1
My = IHM; = -E{:EHE+4%}.
1

My = THMz = - FlaMy + 35),

; 1.2 -3
Ny = IHN; = -3(H «00h

i 1
No = IHNs = - ﬁ{qHE + EEE " (3.26)

In oarder to iterate this Backlund transformation in the next section we need to know
the following commutation property:

IH(p,q) = H(p,d)L. (3.27)
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3.3, THE MONOROLE AND THE AXTSYMMETRIC 2-POLE

We are now lelt with the comorete task of picking a aeed solution (Mg, Hy), integrating
eqs. (3.20), and substituting the result into eqs. {3.26), In our formulation of the problem
the simplest seed salutisn ia given by a constant, pure imaginary Mp, cmgual to Ms, with &
Higgs field which satisfies

¥ = —a(My - Ng) (Mp = N3} = 1 i3.28)

and therelfore deseribes the vacuwwm without magnetic poles. Using the reality condition we
find that that seed solution is

“1 - .E - _i. Hl = HE = i. £ = ¢1‘3 4 1EE. § = -Eﬂa_.. '“1 = 0, 13,.29)
up to & eBign. (CF. Chakeabarti (1982), who works with spherical coordinates (r, §) insbead
of (o,5), and starts from the spherical symmetric vacuum ¥ instead of &% in a slightly
diffarent framaeork. ]

For (3.29) the pseudopotential is

g = = tanh ﬂH-'":Hr -2} 4+ p% - Bl [3,30)

Since q = § holds for real constants w and 8, (Mg, Mg} satiafy the reality condition [3.16]).
The acluticn had furthermors magnetic charge one, as

# - dlﬂi - Hal? - -%[ﬁ *al + é%[ﬂ - %JI2
= | coth (4w - 2)2 + o2 - 28)- 122 (3

(w=z]® 8 p® rom

phows for B = 0. To aveid a singularity g hae to be chosen egual to zero. Since the zero
of 4 iz at [p = 0, 2 = w) Tthe monopole is located there. We have recoverad the FE nonopale,
whose 32 i given By eg, {3.31).

To iterate the BHcklund transformation (3.25) (Foarghcs, Horvath & Falla 19810} we do
ot hewe to integrate egs. (3.20) again for a new geed solution. As for the sine=Gordon
theory, & conposition theorem reduces the probles to an algebraic one (see App. A for detailal,
In fact, if (g, py) and [qE. pE] with different constants (w,, 8, ] are solutions to the
egs. [(3.20) with (Mg, Myl then

(q = _ diPz = d2P1 | poy {3.32)
q1tﬁ1n1 - ﬁﬁpgl

is @ solution to (3.20) with iHﬂ“. HH“] genarated by iﬂl. D111 Thua iterating (3.26) once

results in

IH(pa, §) THipy, 91} = Hips, q) Hipy, a1} {3.33)
with g given in (3.32].
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After this iteration uizl and H;E} read sxplicitly

2 2
2 P19; - Ppap Py - P
2 = agy My + ————},
P9 = P19y 4e{pag; - Py95)
Poly = P19 ps - p
Nézl = qq; { Na + 2 t ) » (3.34)

2
P19 - Ppda 4ppiPaipiq; - Podpl

The analogous formulaa for Hég} and Hizl show that the reality condition (3.16) can be
satisfied for the seed solution (3.29) and real (w,, £,). However for this choice of
parameters ¢~ is singular. The 2-pole therefore cannot be generated from the l-pole for

which w; is real.
The reality condition for the seed solution (3.29) can also be satisfied by choosing

wy = Ws = inf2, By = 0, 85 = =in/2. (3.38)
For this cholice of parameters
F, = 9308 = a3l |aay ) = 1, (3.386)

and the generated ¢° is regular. On the z-axis ¢° reads

2= 2 : (3.37)

—_— 1 =

82 = A - ————r—
| 2% + w2/4 Z+m

and therefore belongs to the Z-pole solution.
We have succeeded in going beyond the PS5 monopole solution. Iterating the algebraic

technique used to construct the 2-pole Forgdca et al. (198la) generated n-pole solutions for
arbitrary n {(gee App. C, ef. also Lee 1981). It has not been proved so far that these solutions
are regular. We do know however that the monopoles are all located at one point, because these
solutions are axi- and mirrorsymmetric. To generate solutions for geparated monopoles, whose

existence has been proved {Jaffe & Taubes 1980), we have to use a different technique.
3.4. THE RIEMANN-HILBERT TRANSFORMATION

We have seen that from a Lax-pair of a special form a pseudopotential can be constructed
and that a pseudopotential can be useful for generating solutions. To demonstrate that an
associated linear system itself can lead to =& generating technique, we consider again, as a
simple example, the 0(3) model with its nonlinear equation of motion (3.12). Since in

characteristic coordinates (1.12) the consistency condition for

& i 5
H-E'!' = r-—ET a'_ETIII' = 1 = EHEY,

=0 -1 al
Ay = TTAEY = o, ¥, (3.38)

1+ C 1 + K
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det ¥ = 1, ¥IO) = I, L« €, {3.239)

i@ the eguation of motion (3.12), the lin=ar syatem (13.38) eonatitutes the LaM-palr we are
apaking.

From a solution ¥ to (3,38} we can generate s new solution ¥ by neans of the Riemann-
Hilbert {FH) transformation {see Ugno & Nakamurs 1381): We assume that ¥ is holomorphic in
Cu€,, where © 16 an annulus in the g-plane, and B _(C_) is the Lnslde [outside, reapectively)

of C, and that a pair ¥_. halonorphic in 0 W ':t' with
x (e} = x ted ¥ie) gie) volieh, ¢ <0, (3.40)
¥ for - I,
exiats, Here g is a function of ¢ alone, which is analytic on C and satiafies the conditions
& o
gHizy gled = I, det g = L. 13,41}
Since ¥, is analytic in © u G,

det 1+III:] = det x_(£) = det r+':ﬂ:- s 1, & £ @&, [3.42)
holds and cherefors

vigh: o= o ded ¥iE) = oy fe) ¥ie) gHED & e (3.43)
satielies the conditiens [(3.38). Furthermore

+1-g) (agx, ) agd oogx, volyy Teyd

ft1-e) (30 )l 4w vl oo
[ - —_ = [

- kz3 % i0) + er=la T, {2.44}
(1] + o]

i

-]
v rﬂ:f'{:c’

holds because of the analyticity properties of ¥,. This implise that ¥  is a solution te
[3.38) with

B - a{if[.:.;. e T - ant (0] + a1, [3.48)

Ta et up the analogous RH problem for the self-duality equations [1.53) we need an
amsociated linear system. In the next section we will ase how Ward's geometrical interpretation
leadsa o the Lax-pair

(A g = Ch otk = B[3, - €3 o) k=2 A0k, (3.46]
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a = 1,2, % = ale. .
(xye,) & (i%, 1),

dxulﬂ = Apd‘.ril-'1 b o= 1,2,3,4, & € C.

The Lax-pair (3.46) was found independently by Belavin & Zakharov (1978). Whichever method
we ugse to reach egs. (3.46), given these equations it 1is easy to check that the compatibility
conditions are the self-duslity eguations.

Equations (3.46) imply that for any kifg,x) with {Du1k} k1 linear in ¢ and det k = 1,
the Aﬂ.ﬁixi defined in (3.46) are automatically self-dual and traceless. The problem is to
find a k with these properties. This can be reduced to the RH problem of finding a G{x,g)
and kt holomorphic in C u C, with det G = 1 and

DG = 0, kG = k_, % cC. (3.47)

Since for k&

(o b dksl = (D kWL, £ oeC, {3.48)

holds, [Da' k+j k;l ig indeed linear in L because of the analyticity properties of k, , and

aince
det k,{z) = det k.(¢) = det k,{0) (3.49)

holds, we can always normalize ky to guarantee det k. = 1. Given a solution k holomorphic

in-g,
6 = kgk™', D g = 0, det g = 1, {3.50)

is a possible starting point for the solution of the RH problem (3.47), which will yield a
new solution, the RH transform k= b k.

The splitting of G in eq. (3.47) into k, is determined only up to a £ -independent
matrix I with determinant one, because h; = @k, solves the RH problem 1f ht does. The

transformation k+-+H; is a gauge transformation

A" =1 , -1
A th = L 1{aurun1n {3.51)

for the potentials. We can use the gauge freedom to impose the condition k°: = k_ (g = =) = I,

which implies Au = 0, since

12

; s} oy=1
1{au,1k+} {k+] ;

iy, .k (k21 (3.52)

=]
[n%]
|

hold with kf: = HE{L = 0}. Furthermore, for time-independent configurations we can assume
8997 = — X235, and identify the Higgs field ¢ with A,.
In the A ., = 0 gauge the Lax-pair (3.46) was given by Pohlmeyer (1880). This is the

gauge Forgdes, Horvath & Palla (1982} work in to construct solutions for separated monopoles,



They start from the groumd state (3.29) in the "u'E = 0 gauge, which in terms of hf reads
kf = diag (2"%, &%), mnd calculate kig) from egs. (3.46]) and (3.%2}. For the ansatz
: fr

r-—l':‘"r

k,(2) = T+ {3.63)

whera R and u. are [-indespendent and the u, satisfy certain differential equaticne, they
write down the RM transform k. = k, {0)k¥ and identify the axially symmetric solutione from
Section 3.3. Ieposing constraints, which are not yet solved explicitly, they are aleo able
Lo identify a an=1 parameter Tamily of n-pole solutions. Since 4#n-1 48 the maxinal nunber
of degress of frecdom [Weinberg 1978) this femily might be the nost genaral n=pole salution.
we will not discuss this approsch further here because se will study a different
golution to the BEH problem in detail in the next chapter. What we sined to do in this section
waE to Bet up the problem and supply the information needed to ahow the relation betwean The
two methods of solving Lt. The reader who would like further details should consult the
ariginal articles by Forgacs, Hocvath & Palla.
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CHAPTER IV: WARD'S METHOD

In this chapter we discusga Ward's geometrical interpretation of self-dual fields and
the method based on it (see Ward 1982b, 0'Raifeartaigh & Rouhani 198la). This interpretation
will lead to the linear system and the Riemann-Hilbert problem discussed in the previsus
section. The solutions to the Riemann-Hilbert problem for magnetic poles given by Ward, by
Frasad & Ressi and by Corrigan & Goddard are reviewed. We also study the relation of this
complex manifold technique to Yang's approach, which is interesting in its own right, and teo

the method based on it which was applied by Prasad & Rossi to the monopole problem.
4.1. GEOMETRY OF SELF-DUAL FIELDS

Ward's method is based on the observation that self-dual fields vanish on anti-self-dual

planes {Ward 1977, Atiyah & Ward 1977). An anti-self-dual plane is defined by the two equations
X = xn, n #£ 0, {4,1)

with two 2-spinors x“',nu (a,@’ = 1,2), and the qualernion

y -z

z F

PR ug + dxg xp o+ ixg
X = X, +iX ¢« 0 = ) = fﬁ(

-Xa + ixl g = 113

{4.2)

for the complex coordinates u, € € of d4-dimensional Euclidean space-time, It is called anti-
self-dual because

L]
ﬂuur = d“u ﬂju-dxﬁ ﬂ]H = = ﬂuu' dxn= dyn= 0, {4.3)

holds for any displacements in the plane: this can be proved eazsily for the three different
combinations of indices.

Equation (4.3) implieg for self-dual field Fu the eguation

..'1'

1 ST - =
Fuydx,dy, = AF 2, = J{FHU Fuulﬂhu = % Lkt

and therefore yields the result we were trying to prove: A self-dual field Fuu vanishes on

any anti-self-dual plane., This holds of course in particular for the anti-—self-dual planes

given by nT = (1,0), (0,1}, (1,1). 1In these speclial cases the self-duality equations (4.4)
read
FEF = rrz = F&ﬁ + FzE = 0 (4.5

(F e dy = F . o dx® %dyB'B) Equation (4.5) is the starting point for Yang's method,
(TR it e Y o a,B'B
to which we will return in the next section.
In this section we elaborate on eq. (4.4) (see Corrigan, Fairlie, Yates & Goddard 1978a).

That the gauge fields vanish on an anti-self-dual plane means that the potentials are pure



gaUge an anti-gelf-dual planas:
hde, = :II:'l-"u}lu‘Id.n.H. de o = O (4.6}

Mere uw is an element of the complexification of the gauge group, i.e. an element of SLIN,E)
for the gauge group SUK). Equation [4.6) allows us to integrate between any two pointe =
mnd ¥ on the plane to obtain & group element &as the path-ordered exponential

uplixy) = P oexp =i dx ), (4.7

wWhers

[ﬂ]=11va::.‘[!].ﬁ-[:]‘l:".n-‘ﬂ. [4.8]

labels the planes.
On the ome hand eqe. (4.3} tell u: that the set af anti-aelf=dual plases is isomorphic

TP, l,‘.Pj' because we have to omit thoews . for which o =0 noelds. Egquatioan (4.7) on the
other Wand permits we Lo define the porcllel Transport of F-gpimors % over the plane as

Vo)t = wpg)laa) Vig]'¥le ¥ig) & Vig ) (4.9)

If parallel transported ¢'s at different points are identifiad, 'i'iB] im an W-dimensional
vector space in the case of the gauge group SUIH). We have constructed an N-dimensional
vestor bundle over CPE% EFl: This is the geometrical interpretation of self-dual gauge fields
we wore looking Tor.

We can get up coordinates for this bundle i the following way: e epl can be

covarad by the tuo coordinate patches

11"”1 ]
x1 - . fip # 0,
[B] szﬁl ]
0 tlfﬂe
xd = o My E D, 4,10
[ﬂ| . E# 2 L !
x5y

and #[E][xi-a.l:l and bla][:fa]] aFe the correspending coordinates in the fibre. "[E;“EE]}
and O [I[EI]] are related by

'[E]uiﬂ']} - uml[:'tal,:] "[E]H'R?B]:' 1-[“][:?5]]- [4.11)
nl = e 1
Et!, ] “[&][![E]. I[ﬁ]] (4.12]

{5 the so-called trangition functiss into which we have coded the information about the asell-
fual field we began with, Since G iz homegeneous:
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Glx,n) = G{AX, An), X e €, (4.13)

it in fact dependa only on
2s e 2 o 1
L o= m/ng,u o= 1405, v o= iXng. {4,14)

This means that D,.G with D, defined in eq. (3.46) vanishes, and eq. (4.11) turns out to be
the solution to the RH problem (3.47) with

k=h= g %, %2 ), Hlim & = {x,%1 (4.15)

+ = "'I-E]l: E ?E] = f.l.l[ﬂ] 1 [E]}l
where k; have the correct analyticity properties. We have seen that to each self-dual Tield
there corresponds a Laurent-decomposable transition function G(u,v,r).
Given a Laurent-decomposable G, we Tind the corresponding self-dual potentials with

the help of egs. (4.11) and (4.6). By solving the RH problem (4.11), we cbtain k, with the

correct analyticity properties. For ky eq. (4.6} resds

Agiy - BAgin = i(D_,k,) kI, (4.16)
bacause dxn,z = -gdxn.l holds on an anti-self-dual plane. S0 we have recovered the linear
eigenvalue problem (3.46). It remains to choose transition functions which can be split

into k; and correspond to magnetic poles.
4.2, CONSTRUCTION OF MAGNETIC POLES AND RELATION TO YANG'S FORMULATION

If, for SU(2), g = 61 is of the special triangular form

e alg,u,v) .
g = P d » T o= E po{w)t, {4.17)
the RH problem is easily solved. (That D, G vanishes 1s reflected in the eguations a ¥ p m 0.)

The analyticity properties of ik*l e k, k‘l = h) and the equation gk = h imply

k = E k' {x)zT, h = % pr+n_.r
Z2a rall oo 2o Feefi 20 !
Lo
k = - E kL E p_ griE-n
la it} 2a S B T
=
hl'-'.l = I k Eﬁ‘s R 1 a=1,2, [d-]-E‘.:'
r=0 E—--m

together with the Z(n-=1) constraints

B wr Peep = O, L €8 €n -1, (4.19)
r=0 Za

on the 2(n+l) functions ki, (x). |For the generalization to SU(N) see Burzlaff 1982). After
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the condition det &k = 1 is imposed, 3 arbitrary functions remain, This reflectz The gauge
fraedom (3.51F.

We haye btaken the first atep in our construction of magnetic poles by constructing
galf-dual fields, Hext we impose the conditione of time-independence and reality. For this
we avall curselves of the following equivalence relatlon:

g and ; are sgquivalent, @ = E.
if A+ ¢ SLI2,C) holomorphic away from £ = =or [ = 0O, rospectively, exlat with det hx = 1

and

Eloau,wl) = d_dgu,vl glouwl dde,uvle [d,200

L%
£ and E are called aguivalent because E can be split using 'I"!_ - k_.!.:i.. k# =k A, , and leads

to the same gauge potentials {3.52).
The time-independence of the solution is now gueranteed if E gatialies

/

EE:.U.\'J = E'itn‘r]-. Tow 0= W, 14,710
Ginoe r
o= Mg 4+ 1oty o w81 [4.22]

is independent of x4, so also le E, and finally aleo the potentiale (3.52].

To guarantes that the potentials are real In sone gouge for raal Ka o we impose the
condition
gt L, =%, -0 4,23}

gic,u,wl = =T

for %, = %, ¢ B, That this condition is sufficient can be proved as follows (Ward 18800
u i
In terms of k and h we can rewrite eq. {4,.23) for x, ¢ K ag

holz,x) WH-z=Lx) = Ky le) KE-T a0 = alxl. (4.24)

" T
The analyticity properties of ki inply that the left and right-hand side of (4.24) are
independant of f.

Under tha gauge transformation

b

A
iy = By, [4.25)
L ghanges to & A &Y, We can therefore alwaye choose an B such thet

L, = £I [4.26)

holds in eg. (4.24). This leads to the equation
S A - _ L —— M ——1
faibgie, ) KTV = aEliagy » Tl ,0 K_I-E 1] e-li-g 1, {4.27)

and therelore to

. _
(&)= ‘“121 = A, + TAg [4.28]
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that is, to the reality condition a: = ﬂu. {The condition (4.23) is also necessary, but
since this will not arise in our work we will not prove it here.)

Given a E which satisfies the condition (4.23}, it therefore follows that the potentials
constructed from E are real in some gauge. From the proof given sbove we learn also how to
construct the potentials in the real gauge. Equations (4.24) and (4.26) tell us that in the
regl paupe

K-y = k(o) (4.29)

holde. Using for k; the expressions

P L -1
k, = akA, k AkAT, (4.30)

e

we calculate
e = ppenedpoe =k feopd, {4,31)

where the superscript zero labels the r-independent term of the corresponding Taylor expan=-

sion in ;'l or { respectively. From thizs equaticn we determine g up to a unitary transformation

9 = wi,, wat = 1, {4.32)

which reflects the gauge freedom we still have in specifying the gauge potentials calculated
from (4,30),

To the conditiens guaranteeing time-independence and reality we must now add the
condition of regularity and (2.13) for the right asymptotic behaviour of the n=-pole solutions.

Since for Laurent coefficients of the form P, = nixdﬁr{E},

¢2 = 1 - 3;3; 1n det p{M (4.33)

holds {Prasad 1981, cf. 0O'Raifeartaigh & Rouhani 198l1a), where pinl jg an N ¥ n matrix with

alements

[:-]'_Eg] =Ry 1<r, 8 £n, (4,34)

n+l-r—-st

the second condition is a condition on the Laurent coefficients p,. The regularity condition
will be discussed in Section 4.3. Thus at this point one must find a transition
matrix which will yield the correct asymptotic behaviour for det D{n}, in addition to
satisfying all the other conditions discussed above. This can be done for arbitrary n by
using the transition matrix itself or by using the EE in the framework of Section 3.4, or
in Yang's R gauge (Yang 1977, cf. Prasad 1980) )

Yang's formulation of self-dual fields starts from eqe. (4.5). Two of thesge equations

can be integrated, and then yield pure gauge potentials
Ay = 1{a, D) D=1, A, = i1{3,D) D-1,

ar



= == = =-1
ag = alagBIET, Ay = aa) DT, {4.35)
for fixed ¥,% or fixed y,z respeckively. Since tr Ay = 0 holds we can normalize:
dat b = det D = L. [4.36)

We see that ege. [4.35) can be obtained from the Lax-pair [3.46) and the solution to the RH
problen [3.47) by identifying D with k? and § with k- [(see eqs. (3.321).
If we now darine

1

J = DD, [4.37)

the third of the sguations [4.5) can be weltten
T PN TP e B (4.38)

(Wotice the similarity to the equation of mation (2,12} of the {3} model.) Since J can be

paramatrized as
J o= ¥ (4,39}

pg. (4.368) 15 eguivalent to the three equations

1 .
(dydg + Bgdz) In @y +|‘.E'I:i,.n"‘i;nz - E-g:-‘afr-21 = 0,
Y Lo
a?"’gaﬁ'p :' & a!i.%alp :' - 0 ¥
L, = L o2
ir[rg‘!rﬂ 1w is[gﬂiiﬁ 1 = 0O, E-ﬂ.d':l]
(=]

far the threes functions -ln.nI. and p”.
1f ane can aclve these sguations for :nu,pi, and =, one will obtain J, Then J can Tor
sygmple be aplit into D and § of the special triangular form:

S 1 et
. - Jia  ia
BH=0= A== - (4,41]
! 1
— B I
.-'T; .-"ﬁ o 1-"1-:

From [4.41) we obtain the potentials [4.36) in the R gauge. This formulation tharafors
corresponds te the solution of the BH problem with k3 of the form (4.41) into which they can
always be cast by using the gauge freedom (4.25]. &nother forn of the gauge potentials which
leads to eqa. (4.40) is
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3 =
MTuuduly _“puavp;
1
A“ L] - E_ ' EdidE}
wﬂ' + 5 2 3 a
Muwdyl =Muudyly
il &
rl]l.l'hl = t’ﬂip‘-‘ + ai.l-la‘-'d - Eiuﬂud, L = l'|1 * .i.l‘iE-.

Starting from the transition matrix (4.17) the potentials (4.16) can be cast into the form
{4.42). 1In this case the solutions ‘n,pll and nz of eqe. (4.40) read

I#D - tn{ﬂ}‘-l}ln. nl = "{Dl:n':l-l}lli pE L] {D{n}_l}m ldfdgn

in terms of the Laurent coefficients of the transition matrix {(Corrigan et al. 1978a)., (Yang's
parametrization of self-dual fielde has been generalized to SU(3) by Brihaye, Fairlie, Nuyts
& Yates (1978), Prasad (1978) and Singh & Tchrakian |1981).)

4,3. SU(2) MAGNETIC n-POLE SOLUTIONS

The remaining problem is to find the right transition matrices (4.17). We use the
transition matrix for the PS5 monopole for this task. This matrix reads {Ward 198la, Manton

1978)
(1) el - &7
K 1]
g = . p“] = gl + ¥ =——ey (4.44)
0 et
With
e¥ 9 0 _aM
A = Ay = g {4.45)
0 eV el rya~Y
. u
the equivalent g is
¥ oasy
E = 4_gA = . {4,46)

X
E is time-independent and satisfies the reality condition (4.23),
Since no other monopole solutions exist within the ansatz (4.17) with n = 1 (Manton

1978), Ward (198la) chose the following ansatz with n = 2:

EE PtEJ » v
o g ¥2 4+ w2ia { }

which generalizes to arbitrary n as
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Bl % il o —— =, r R,

a6

S e o (a1t

3{'.11-:'

. Hl:l'l.l - E I_T - Tﬂ_:lr 'fi - j_gl_n # 1 = EEJ- [4-4“:

a=1

The n—pole solutions corresponding to {(4.48) for n 2 & have been found by Prasad & Rossl
(Prasad 1981, Prasad & Rossi 198la,c, of. Ros=i 1982, and see also Marain 18@1) much of

whose work i in Yang's B gaugs.
Using the following generalization of (4.45):

== |I'III =g
A o= N . (4,49
u} ¥ ||="'1 r.ane‘”
wie obtaln
n_=v -1
g’ + (=11 & [-z1"m
H
n
E - . [4.50)
o LI "ok § Hye™Y

This establighes the proof of time—independence and reality,
To find the magnetic charge of thess selutiena i & more difficult problem. One must

uee the the asynmptotic form of the Laurent coefficients q{“*#xh. which read in terms of

Cauchy integrals

i':.:!:u_ﬂ-l- a ) .

e S J27 4y gmist=2p cos¥ fal2xsy - 2ip sinw) .
FE—— ; -
. " ° Hp (2%, - 2p ain b}
* - L4
IL tIE o8 .
finh = for odd n
fn[ﬂ] =
' cogh = for even n.

Prasad & Rossd [188la,b) extracted the asymptotic behavicur of &, from (4.51) by neglecting
exponentially damped terms, with the result

$E — 1 - zp’f‘lr_lp,% = xf o+ oxh o+ Dy - vp)EL [4.52)
This is the asympiotic bahavicur of an n=pole. We still have ©o prove the regulacity of the
agluticns, which means we must prove that the determinant of the matrix (4.34) doss not vanish,
For n = 2,3 this has been shown explicitly, but a complets proof for n 3 4 18 atill belng sought
(mes O'Raifeartaigh & Aouhani (1881a} for the problem of establishing regularity).
Wa do khow, howsver, that these solutions possess axial and mirrorsymmesty (Fragad &
Rom=i 1981k}, and cannot describe separated moncpoles., (4,51} and {4.42) already show that
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the potentials are independent of ¢. Ward (1981b) therefore generalized the ansatz (4.47)
to include solutions for two separated monopoles, and Corrigan & Goddard (1981) extended his
ansatz to magnetic n-peles. The Corrigan-Goddard ansatz, which satsifies the time-independ-

ence and reality condition, reads

_En 1
P (-] e
g = . (4.53)
=K K,
=1 -1
rhe H, e
with
K -k
n— =1
e + (=117 &
g = e '
T
Hy, = S 8n.1 s S BT + A = “1 (v - Tr}.
bag |
= n T =7g o s : \
o = {2 E mn " = r A ESRPRL O - S Ao 4,54
fn-1 2 r=1 © sfr Ypr Vg - H-
The integers ng.,
(0, By =g l) for odd n
My = (4.558)
ELL a3 wes =17 for even n,

are the smallest with the property that the zeros of H will be cancelled by the zeros in the

numerator. Thea Erii.i'dﬂ are polynomials of degree {n - r) in ¢ and ;"1 which satisfy
anle, 1) = a.(-T1, -E). (4.56)

Because of this condition, Hnlg) = Hn{-E"l} holds and the number of resl parameters in the
ansatz is nin + 2).
In order to solve the RH problem for the ansatz, further constraints must be imposed.

The transition matrix (4.53) can be cast into the triangular form (4.17) by using the matrices

f> -1 fI,
& 0 Hpeta &

-1 = e o e 4.57
AT . £ P Y rl ; { )
L] ] —a n]

if Kj_7 allows for the decomposition K, 3 = f; - fo with Taylor series fyiu,v,8 and fE{u,v,ﬂ}

in ¢ and =1 respectively. This decomposition is possible if the nin-2) conditions
1 .4t
E:;ﬁ‘r‘hréa = 0, r=1,..,n-2,-Fr £8 £ r, (4.58)

are satisfied. Together with the normalization condition for ¢° at infinity this reduces



the nunber of free paranaters to dn-1, which is the degree of freedon of pagnebic n-poles
(Wainberg 1979). That the ansatz (4,53) indeed describes an n-pole can be deduced from the
agyvaptotic form of the ansatz and The egquation

e, = bp {4,659

whoae spherically symmetele solutions mre of the form &%/r. Formula {(4.33) then leade To the
correct asympbotic behaviour.

The soluticne £o the cspetraint equations (4.538) in gensral are not known explicitly.
Ope special class of solutions describing a one-paraneter family of separated n-poles
(gee wWard [1981b) for n = 2 and Arown, Prasad & Hossi (19810 for m » 3), and the solution for
gnall values of the parameters (0'Raifeartaigh, Rouhani & Singh 19B82a), have been found.
Howewer, cwen for given selukions te the conatraints, the non-axieymnetric potentials could
not yet be constructed explicitly.For o= # the problem has been seduced to the aolution af
@ quartic polynomial (0'Raifeactaigh & Founand 1281h, 0'Raifeartaigh, Aouhand & Singh 13820,
Brown 1983)}. For n oz 3 all the details of the sclutions have yeb Lo be worked out,

Howewver, the strusture of the 56E{0) n-pole solutions is known ug to the proof of
regularity, dus to the ansatz [4.53), because this ansatz is guarsnbeed To contaln all
magnetic n-pole solutions [Hitchin 1882). As far as the twistor conatruction of all SU(N)
magnetic poles is concerned only the first steps have been taken {Ward (1881ic, 1082a) and
Athorne (1883, 1882]1), To get more control of the SU(21 sclutions, and to take a different
approach o SU{NH) solutions, we will now study yeb ancther Technlgue.
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CHAPTER V: THE ATIYAH-HITCHIN-DRINFELD=-MANIN CONSTRUCTION

In this chapter we study the formulation of the self-duality conditions given by
Atiyah, Hitchin, Drinfeld and Manin (ADHM) (see Atiyah 1979, Rawnsley 1978), and the relation
of this method to the twistor approach. We apply this methed to the instanton problem, which
will be reduced to purely algebraic conditions. We then develop the technigue of Nahm, whe

adapted the ADHM instanton conetruction for monopoles.
5.1. THE RELATION TC THE TWISTOR METHOD

In Section 4.1 we have seen that to any self-dual field correspond fields (4.9) which
are covariantly constant on anti-self-dual planes defined by eg. (4.1). Indeed the Lax-pair
(3.46) means exactly that the covariant derivative of kix) = m[g]tx,yl along the anti-self-

dual plane STE]‘ i.e., in the direction of the tanpent vectors,

n' w {lgy -gaedy 1)y 00 =8 T, foeel; (5.1)
1 2
vanishes. Looking at the twistor construction in this way, we can say that the covariantly
constant flelds on anti-self-dual planes contain all the information about self-dual fields.

In the ADHM technique [(Atiysh, Hitchin, Drinfeld & Manin 1978, Drinfeld & Manin 1978)
on the other hand, all the information about self-dual fields is carrlied by three linear
spaces A, B and C. Following Witten {L97%a) and Osborn (1982), we want to show how to construct
these linear spaces, and how te relate them to the covariantly constant flelds discussed above.
To recover the covariantly constant fields, we first solve the linear equation

ﬂ'l - . - [+ R
Duu. L ol S {iu + LH"] [Eu}uu‘ N = 0, (5.2)

B = E—iﬂ. IE}' e = l:i;l IE}-

For an SU(N) self-dual field with topological quantum number n, there are n linearly indepen=
dent solutions to (5.2) with asymptotic behaviour

*a'f Hu.u S
x) % )4 caxl¥). (5.3)

(See Osborn 1982 and references therein for a discusaion of the asymptotiec behaviour and of

the dimensions of the linear spaces.) These n spinors #°  span the space C.

The space B is spanned by the 2n + N linearly independent solutions (Q, @ . ga!

E-] of

the linear equations
L]
Danr 8 ° = Dyt @3 = O, (5.4)

Pl R L ng: e (8.8)
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with aaymptotic behaviour
v bel®], [5.4)

In terma of the sclutiens %', which we sssume to be assembled a8 A row vector, eq. [5.5)

for the row wvector of soluticns 0 reads

DE'“E - 1lltl'ﬂlutl . {&.7)
whera &'T is the n x {2n+H) matrix

2'% = 2" oy ™ (5.8)

To find the consistency conditions for ege, (5.2) and (5.7) we use the following
identitles:

Daa:0?' = :u,,u:i'.sfL -;::F“'- FrHY [n,,]]f. (%.9)
with the anti-self-dual tenmor

q;“1 - Eun“ Ehu:? . [&. 100
and

o )%'% (3 )gq = 262630, [5.11)

They show that we can define the two linear spaces spanned by the solutions to ege. (5.2)
and (5.7 for self-dual Tlields only.
Given [1"|, ﬁr", 01, we solwe the eguation

e N T PTE b ELNE (8.12)

and defips w; = 9" which satiafiss

e R T i M LA R (5.13)
Uaing the relations (5,11} and
=T
B, = moCE,E (5.14]

we can ehow That the lnujk'nﬂu are two bLangent vectors to the anti-self-dual plane 5[&]-
The left-hand side of eg. (5.13] is therefore the covariant derivative along the anti-self-
dual plame. Since the right-hand side vanlshes on 5[g), v is covariantly constant on 5:5,]-
Copversely, it can be shown that all covariantly constant fislds on 355] can be constructed
from eq. (5.12), t.e., are in the kernel of the map g @ B+ C,

fawt, a% By, n%:v'} Eiﬂlﬁ}

L

{8 nnfﬂ:::ﬁal:l'l.l' = *'w'. (5.15)
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However, in general w is not a function of [8] alone. Only when we have identified
all covariantly constant fields on S[g] which differ by fields vanishing on E[EI-] will the
resulting equivalence class depend on [@] only. To characterize the fields which vanish on
S[g] we consider the linear space A spanned by the n linearly independent solutions to

per., £ o o, (5.16)

D "

e "

with asymptotic behaviour

“ﬂ'u
lﬂl b ':I:I'E' _ﬂ. ﬂuK{H.’- {5&1?]
Ix|
In terms of Ayt We can dafina
38 = - i, (5.18)

(PP 1Py P I P 4 BT T TRy {-D"'“:Lﬂ,x“'ﬂ N5 e D
P“'“H, = *P“'B,“. (5.19)
and the map I : A =B,

flu'w. pa'ab,, Fulnﬁlw. Pﬂlﬂluw, Pg:?lw} fiﬂ;ﬁ}

(- lB.xE 'unﬂw s 8y, F':"ﬂ“'n&w + P“'EP“I'H'H.

Pumﬂ1nuw'+ Pg:ﬂ_ W) = iﬁv‘.ﬂu”’v'.n::v‘}. (5.20)

The definition of P::'r' and eq. (5.16) imply
p pY = 0. (5.21)

oo gy
That this equation aleo holds for the ather components of P’ can be deduced from their
definitions. If we compare these equations and eq. (5.19) te eqs. (5.4) and (5.7),

respectively, we see that 0 can be written in the following way:

i
(=2, %x %, 2, ) = (aa?, ab ). (5.22)
Because of this identity, the equation
qa® = 0O (5.23)

holde for @, and

= &8 + b, % P (5.24)
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1t will be ahown that we need know enly &7 for the constouctlon of instanton solutions. But

now we will Tinlsh cur discussion of the relation between the ADHM and the twistor method,
It is cbvigus from the definition of f that all fields %' which are eleapents of

im f{n, %), i.8., for which

Bt = agelxt - =" T lw {s5.25)

helds, wanish on S[g]. What is not obvious, but neverthelass true, is that all Tields which

vanish on E[ﬁ] can be constructad this way. Henos,

E[“] = wer gin,2) / im £la,x} (G.26)

depands anly on (@] snd includes all covariantly constant scalars on 5[“]' This completes
the construction of the N-dimensicnal vector bundle cver CP % CPL from Seetion 4.1 in terms
of the linear spaces and maps A,B,C,f and g. In the next scction we will see how @e can
reconstruct the instanton flelds from 4% alene.

5.2. ALGEEREAIC CORETEUCTION OF INSTANTON S50 LUTIONS

Without relylng on our previous analysis, or the sathesatical background for the ADHW

construction, we will now discuss the conditions the matrices & and B in
ilx] = A &« Bx (5.371]

nust satisfy to nake it possible to copstruct 5U02) instanton solutions from & alone (see
Corrigan, Fairlis, Goddard & Templeton 1978b, or Christ, Weinberg & Stanton 1978; cf.
Corrigan 1979, and see Osborn (1982} for & discussion of the corresponding conditions on the
linear spaces &, B and 1. In eq. (5.271, A and B are constant (n + 1} % n matrices whose

antrias ""i..j and 3” are quatarnions:

Ay = afgey, Bij = bije,. i%,28]

B is the matrix whose sptriss are B'i_i:"" The conditions on A and B are such that the entriea

of the n % n matrix 474 conmute with quaternions,
a"{n*nﬁ = #n'n;eu, (B, 28)
L.#., are real numbers times the unit matrix, and that

det ata £ 0O {5.30)
holds.

Given &, one has to aolve the linear esquations
at(x) alx) = 0 [5,31)

for & vector of guaternions g% = (af, ﬂI,..., ﬂ;ﬁ which satiglies the nornalization condition
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ata = aia, 4 ... 4 RiR, = I, (5.32)

In terms of 8, the potentials read

- + -
A" = ig EHH. (5.33)

Since these potentials define self-dual fields with Pontryagin number n, as we shall see in
the following, we can construct the spaces A, B and C from them. Hence A carries all the

information about the instanton solutions.
Because of the normalization condition (5.32), Au iz Hermitian and traceless, i.e.,, the
gauge pntentialiﬂzﬁx) are real. The corresponding gauge fields are

iFyy = 3,8%(1 - aa*) a8 - a@*(1 - aa*) a,.a. (5.34)

To show that F,, is self-dual we use the identity

I -t = s(ata)hat, (5.35)
Since the condition (5.30) holds, the right-hand side in eq. (%5.35) is defined, and is equal
to the left-hand side because both are projection operators onto the n-dimensional subgpace
orthogonal to @, and their product in either order equals a:ﬂ*ﬁ}“l.ﬂ+. Using the condition
(5.29), and again (5.31), we obtain

e (a*8)7l = (a*ayle , (8.36)

(3,8%)a = - o*Be,, (5.37)
and finally

iFyy = a*Bla*a)~! [ege, - e ] B'a. (5.38)

This F,, is self-dual because e, ,8,- e, 8, is manifestly self-dual.

We will not prove here that this construction leads to potentials whose singularities
can be removed by a gauge transformation, and that it yields all SU(2) instanton sclutions
{see Atiyah et al. 1978, Drinfeld & Manin 1978). We will however show that it yields a family
of solutions with the maximal number of degrees of freedom, that is, 8n-3 (Atiyah, Hitchin
& Singer 1977, Brown, Carlitz & Lee 1977, Jackiw & Rebbi 1977, Schwartz 1977): To begin with,

A and B have 8n(n+l) parameters. However, for constant matrices a and b,

atb, aBb, a £ Sp(n+l), b ¢ GL{n, R}, (5.39)
lead to afi for the scolution of eq., (5.31), and therefore to the same potential (5.33) as A
and B itself. This removes 3n° + 5n + 3 parameters; since the condition (5.29), which must
hold for arbitrary x, adds 5ni{n-=1) constraints, only 8n-3 free parameters are left,

It remains to be shown that n really is the instanton number. To show this, we uze the
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fdentity [Deborn L979)

F* | = - a2a2 ip det (a+al, {5,400

tr EFu'.I -

mnd write the instanton nunber (1.50) as & surface integral:

=1
= 2 2 +
ho= E [ do |%|= x,3,3% 1n det a™a. [5.41)

Since at infinity

R B+a) x| 2,
1n det A%A I:'I: In det B*E + 2n 1n |x| (5.42)
holds, the right-hand side of [5.41) ie egual to n.

We Bee that the instanton probles has been reduced to one of finding all constant
matrices A and B which satisfy the conditions (5.29) and (5.30}. 3o far thers is no explicit
golution to this problem. However, the ability to reduce the self-duality equations to purely
algebrale conditions represents enornous progress. Thiz im especially true because we know
that sll stable, finite=action solutions are self-dual (Uhlenbeck 1978, Bourguignen, Lawson
& Simone 1978]1. Therefore we woild like to devalop a formalism for menoposles, on similar
lines to that developed in Sections 5.1 and %.2 for instantons.

5.3. MNAHN'S CONSTRUCTION FOR NONOFOLES

To show with a simple example how the formalism developed in Section 5.1 can be adapted
to the nonopole problem we will construct explicitly the teanslitlon matelx for the PS monopole
solution {Osborn 1982, Burzlaff & Mornos 1862);  the PS5 monepole solution can be written in
the form {Manton 1973}

i
Ay = Tla, - Eueuhau 1n & (5,43]

with
a = %uin'hr alt (5.44)

For these potentiale, eg. (5.7) i5 satisfied by
(]
e gt - R L (ba), {5.45)

where
b = —%nlnh B :ht. {5.48)

That the instanton number is infinite is reflected in the parameter s in (S48}, and in

the Torm of & 7,

.
a0, kg, = =ldgdam = Fages (5,47}

and of &,
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f = a~l/2 (gi=xy (5.48)

am!
Heres we have assembled the two solutions 4, of eq. (5.7) as a 2 x 2 matrix.

Given #E' and 4'%,, we write eq. (5.12) in the form

1 ol i i T E' (5.43)
[o 98 45 (a'gng+bip xV)vd = 0 ;

which by partial integration zan be reduced to

an e p 21 ! ‘_Er

te Mg dg v - "?Eulﬂlx v = 0. (5.50)
This equation admits two solutions
-iEREfHE
o e
! 1
¥ = -iEIlr"nl r ""2 = ® :5-51}
e L8]

which we assemble as a 2 x 2 matrix v . Since w = fé;}v' depends on [8] only, this is the

covariantly constant field we are looking for. MNow we can calculate the transition matrix

B o= m{x?:'ﬂ]]l w1 {x2 (5.52)

)
[e]
for the twe coordinate patches (4.10). After we apply the equivalence transformation
A_EN, = g with

0]

/2(1-e")
T

A

L]

Y. ..=1 4o ¥
= ,L-; b
2{1-e¥) "'J 2{1-e¥)
A fﬁgl-e“!
2(1-e" ) v

u

A= . ; {5.53)
¥ p(1-eY) c

g has the required form (4.44),

Lal

As could have been expected, for the PS moncpole an infinite dimensional space tensored
with the quaternicn space replaces the (n+l)-dimensional guaternionic vector space for
n-instanton fields. Nahm (1980) chose the complex Hilbert space LE{—H. ¥) as the infinite

dimensional space, and

(i3g + R) vix,8) = 0,

%

I-H

de v*(x,8) vix,s) = 1,

A“ = -iff;ds vH{x,s) auv{x,sJ. (5.54)
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This is the ADHM formulation of the PS5 menopole (for a complete description in Terms of the
apaces A0 and C see Osborn (LBB2)).

Hahm {186la,b) alsc generalized the formulas [5.54) to include nagnetic poles of
agrFbltrary magnetic charge n and all gauge EFOURS SUCMY, SpiB), and QiM)}. For BUIN] the
natrix differentisl operator 4 reads

b o= 43 #I, +x 8 I + 0 0Tis). {5.56)

In terns of the normalized aclutiona vy,
*

.IC_ da ‘JI‘TJ - iil]l' 1m.BE)
to the equatidsn

FAL T | [&.57)
the gauge potentials are defined as

+
(Al =—1 J':_ ds vy 3y v i5.58]

The proof of self-duality given in Sectlon 5.2 can now ba tranacribed to the monopala
eade by replacing the acalar product in a finlte-dimensional vector space by the scalar
product in a Hilbert epace. The proof etill setands if ia*81~! ia defined and commutes with
quaternicns. The Tiret condition is satisfied for anti-Hermitian Ti, 1T

a*a = (i3 + xd]a + ixl + iTi;*~ {xi + 1TIJ (5.59)

is bounded below by & positive constant. The second condition is satisfied if the anti-
Hernl tlan '['1 obey the non=linear cguations

3Ty = epqp TyTes TL = -Tg, L = 1,2,3 {5.80)

s. hae to be chosen in such & way that N normalizable sclutiona over the interval s_g£sge,
exigt. Under these conditions, A, is an SU(N} potential and Nahm's tonstruction ylelde &
fanily of n-poles with the naximal nunber of degress of freedom (Mahm 198la).

The equations (5.60], which are analogues of the algebraic constraints for instantons,
are integrable [ef, Atiyah 1961), For sxially symmetric configurations they reduce to the
integrable Toda lattice equations. For n = 7, they have been golved explicitly [Hahm 138la,
Brown, Panagopoulos & Prasad 1882), and the problem of salving eq. (%5.87] has bean reduced
to one of Tinding the zeros of the seme guartic polynonial which occurs in the twiater con=
gptruction [(Brown et al. 1962, Panagopoulos 1963). Hahe's ADHM technique thersfore seems o
be as powerful m nethod as those we discussed previcusly. Frobably the question of regularity
can be decided even more easily within this framewcri.
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APPENDIX A: COMPOSITION FORMULAS FOR THE SINE-GORDON THEORY AND THE ERNST EQUATION

To derive eq. (1.16) we assume that the commutation relation (1.15) holds. This yields

two algebreic equations for 8 :

Baple' — ag) = ¥y sin K(ey + 85} + Yz [sin X(e' — 8;) cos %{9; + 8,)

+ cos %(e' - ¢.) sin Ble® + 0,)] = v, sin %o, + #,)

+ 7y [sin X(#®' -~ o) cos %(0, + 0_) + cos ¥(e' - ¢,) sin (e, + 0 )],

%a (o' - ¢,) = vl sin %(ey - &) - v51 [sin %(e' - o) cos %(&; - ¢)
- cos K@ - &) sin %, - ¢,)] = Y31 =in Kle;, -¢,)

- Y7 [sin (o' —9,) cosX(0; ¢, ) —cos X(#' - 0 )sin¥(e -9 }]. (A1)

The rootsof the twe guadratic equaticnzs are

(Yp T Yo) (% cos K(0y + ;) + cos X9z + 0_))
(¥7 = ¥5) (sin X(#; + #,) + sin K{es + #,))

tan (4" - #,) =

I

and

(v, £ v,) (= Kie, = ¢ ) = K(e, -~ #.))
tan X(o - o) 1 > -EﬂE 1 . cos K0, ﬂ} . (x2)
'“'1 - Ty} (sin %(e;, - ¢ ) + sin X(e, - 0_))

regpectively. Their common root is
"I'l + "I"E
tan %(e' - ¢ ) = T — ;2" tan X(8; - o). {A3)

This is the necessary and sufficient condition for the commutation relation to hold. That
¢' is indeed the Bicklund transform ¢' = BoBi#, can now be shown by using the explicit form
of 4' in eq. (A3).

To prove the composition formula (3.32) for the Ernst equation we proceed analogously

(Forgéce, Horvath & Palla 1981a). We have to solve the Riccati equation (3.20) with the new

seed solution, which means we have to molve the equation

2
H Py -1 aya(l + pyal g+ p
dg = [—Hl%q¢1+p2qh+l12_l {q + pa) + { £z E}']dﬁj‘
1 % 4 P + 9y 1+pa
1 - pf 19 (pg+ q) 1 + poq

1 1 = q
N TR — ) =N L WEecr - 2
T e, T Memna e ) e e (T v prades ~ Tey ¢ ayipg! | 9%

(aa)



From the assumption g = qlpy, P 9, 9z we get

Cl 89 M LW
dg = ;g" dgy « Yo dgz = ip dpy = ap dpa, [AS]
1 2 1 2
with dql mnd qu given by =g. (3.201 and
2
Py = 1 1
dp, = A [pndti + E dEg [« (RG]

Te find out whether our assumption about the form of q is correct we equate the cosfficient
functions of MadEy, NadEs, and dg . and gee whether the resulting equations have a aclution
q = aipys Pas d3. 92l

The resulting equations are

q_ By o
g, il + pagd + i, qzfl 4 ppgpl = ![_1 afl + poaql,

33 i 4
. } ! Pzl = g+ el
agy 1t PP Y oag, Y92 P2 q 4

ig

i 1 EL
agqy 4p + 13‘_1.:I +

d i 1 1
1y lag + p—; = af; 19+ E"E:'p

aq o3 a4 1z

M gL+ 2y 3 g 014 250 = gyiigll o« A

aﬂl 1 F1 df 2 Pz 17 Pa '

3 g gyall + pad) @ + Po

B e 2o = - _A+Pa
.F‘]_*'ql 1"]:'1:'1

P
:_‘I-_P?"'.,ﬂ_“‘z'l_l‘l‘f 2;_‘_““’2*“]_ L+p8
L WPz Pz Py (14 pyaglps (py + ayles

The firat two equations as well as the third and fourth equaticon yleld sxpressions for
i/ 8. The conslstency conditions arse

Py (895 - ) af4.a - ¥fa.b

::-Elulﬁl— uE?iE y u;_,&___, - ﬂ.fﬂiaﬂ '

4,8, - Hoq, a9 - 4,4
1-akel

Their cosmon root ie given by eg. (3.321. That (3.32) indeed solves the last four egquations
of [AT), and therefore {(Ad4), can be shown by an explicit calculation.

[ag]

e ———
ﬂllll = “E‘EE
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APPENDIX B: NON-MINIMAL SPHERICALLY SYMMETRIC FINITE-ENERGY SOLUTIONS

The spherical harmonics in eq. (2.37) are defined recursively in terms of Clebsch-
Gordan coefficients as

I
gl Lofek+ 1 yi. M = -I, ~I+1, v, I,

M 42

2l - 1 =

1 +
¥ = 1, !Fl = ©COoE a_rfl = :J:EBinEE_i‘

i 3 {B1)

(see e.g. Brink & Satchler 1968). They satisfy the following commutation relations with the

W
angular momentum operator L = = iR AT

(L ¢ iLy, Y] = 7/ I(T 17 = WOW £ 1) Yoy,

[Ls, ¥yl = H‘i{.q {B2)

and have the properties

T . (.M -
Yo (=Fyl, Ilygl® = 1. (B3)

We are now locking for a (2I + 1) - plet of operators Tﬁ which satisfies the
commutation relations (B2) with, instead of £+ the generators T of isospin rotations for
ispapin I/2. Using the maximal SU(2) subalgebra of SU(I + 1) the adjoint representation of
SU(T + 1) can be SU{2) decomposed as

I{I +2) =305 ,..8 (21T + 1), (Ba)

Therefore, the Lie algebra of SU(I + 1) contains a {21+ 1) -plet T; with the properties

(g)* = (=M1l vl = 0,

tr fTﬁ Tyd % 857, tr {T!:,I‘: TEH'} u By ({BS)
A (21 + 1)—tuple of real Higgs fields which transform accerding to the adjoint
representation of SU(T + 1) can be defined in the following way (cf. eq. (2.37)):

Hi H
¢ = ¢ PH; yi (TR = % (BE)

{c is a normalization constant for §). Since tr § = 0 and o+ =¢hold, ¢ lies in the algebra

of SU(TI 4 1). The real Higgs fields are the coefficient functions of the normalized

Hermitian generators TI, Tﬂ > {T%]+. and i[Tﬁ - [Tﬂ}+}.



The Higps field [B6) satisfies the sguation
iL+7T, ¢l = o, (B7)
i.e., # im spherically asymmetric. From thia equation and the definition of the gauge
potentiala (2,310,
Al = 1o KRy gy T (B8}

we obtaln

-5 H KH
piy = ¥ I:FJ-1I + i Eigk ®5 (Tea #]- (B8)
Since the covariant derivative is a linear combinatisn of the operators of the [2I + 1) -plet,
and the magnetic field

K2 = 1 . . .

Bb = - K'ay #:F & —— Ey (8101

ig & linear combination of the three S5UL2] generators, the Bogonol'nyi aquations (2,12} are
satisfied only by the trivial soluticn Bl =B =0 for T 4 1,

Of the other hand, a nentrivial solution of the equaticons of motion {2.18) exists for
arbitrary 1. This can be proved as follows {Tyupkin et al. 1975): Equations (B3] and (B10)
l=ad ko the energy functional {2.36), which can be cast into the farm

E = 4 J: dr (02 & Befe'® o e o 28® . 4T (811}
wlth
a = H, T 1= lH*l-.
2
SINT 1) ] —a X
a 1= ‘—;-—ﬂir-;ir. Boi= Ty :--’Er1{1+23.

Mow any solubtion to the corresponding Euler-Lagrange equatlons iz a solutlon to the eguablions
af motion {2.18) for ocur ansatz (B6) and [B8). Thie cen be proved by an explicit caloulation,
ar by wsing the Coleman-Fadesy principle [see Joddard & Olive 1978)]. Thaerefore, if the anergy
(Bi1) attaine 1ts minivum, & Cinite—energy solution not only to the aubncdal (811} bukt alas
to the eguations of motieon (2,18] exists.

To prove that the energy attains its ninimun we consider a minimizing sequence (0, Tl
which by dafinition has the proparty

J'ir-n..... Eloy, tnd = inf Elo,1), Bzl
and reskrict our attention to thome elements of the sequence which satisfy
Elog, 1) « = (B13)

From the wpper bound (EL3) we conclude that the sequence is bounded in the Sobolev space

with morm

Mta, 11 = [ dr &2 + r242) 4 a2(1} » AT {B14)
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Bounded sequences in this space have a subsequence which converges weakly in the Sobolev space

and strongly in the space of continuous functions on the open half-line (0,=)., The inequality

e
which holds for the limit {uﬂ. 10]' now completes the proof of existence. Following Maison's
line of reasoning (Maison 1981), which applies to the case of arbitrary I, the regularity

of ¢ and Ay can be established.
This proof can be extended to the PS5 limit A — 0, In this case we restrict our

attention to minimizing sequences (o,, t,) with
lim _ 7th(r) = 0, (B16)

and with the same technique we show that a weak limit tﬂngtu} exists. Since furthermore

= g 19 bEE e
[tnle) | <7 88 82452 [7 )% < =, (B17)

with ¢ independent of n, holds because Elo,, 1) is bounded we obtain

lim_ tglr) = o, (B18)

b

We have found smooth nontrivial finite-energy solutions to SU(I + 1) Yang-Mills-Higge theory
{ef. Michel et al. 1977a,b, O'Raifeartaigh & Rawnsley 1978) which do not satisfy the
Bogomol'nyi equatiens for I £ 1. (For a non-minimal SU(2) sclution see Taubes (1882).)
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APPENDIX ©C: GENERATION OF n-POLE SOLUTIORE

We list the formulas Forgées ot gl. (18Ela,c) obtalned for n-pole solutions. In terms
of deterninants the Z-=pole solution [(3.34) can be weltben

i L]
9y %2 | 1 1 1 1!
Py PF| Pyay  Polp pE =
ui2l wiol L 1 R
3 - ol S 1 Y4F — ).
i1 1 Ay Oz qy L
5 N
P83 Pz |ey Pz P1 Pz
En L -1 -1
a1 Az 1@y Qz 0 F1 P2
i i
i I
23 Py Pz | Py Pzl é‘:':' A Py Pa -
wl2l - [ ] (o1 P PO £
4 1 1 1 1 an) g 1
pd;  pada) [Pye; Paag P8, Py

Theae formulas generalize to an arbitrary nupber n of B8cklund transformations (3.26) ag
followa (n = 2k + o ¢ =0, 1}:

(m] X (n) (m)
nl _ ;_yn Dy lagh Da" fa, ] (o) .1 "3 (a;)
H = (-] [ Hlf:fﬁ ————— ir
= [ml
i @) of™ ey of™! (g,

al oo in} nj
Héﬁ] . [ D{ tq,! [Bl fa, ) wicd . 1 ?é____ifij =1

nd 3 ind 4r Lind
nt o fa,) Bt iq) o, (gy)

where the DI®) ars determinants whose i-th row is given as

ujqul} 111} I qi' pi. pfqil ﬂf. ﬂ?ﬂiu--a. D%hqi ||

{241} 2 3 a 2k
B, la,) | 1. pya s pLe BLA. Beaes BY l .
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{2k+1]
By lay) i+ Py

I 1, p.q,. DEI paﬂ B pqlllll n]
ik i I7i i

L

(Zk+11 -1 2 1 _4 b -
nq T tth I PL ] Pi- piqi. Pip Fiqi!'--! P{H qil [th



for odd n = 2k + 1, or

pl2k} 2 3 4 k-1
AL PR B PO P -l SO P PO il I

pi2k) (q;) = |1, pya,, 95, play, 03, on, B2l g,
2k =
pi2%) (q;) = 11, pyay. pfs pPag. pf. ..., pRRTR, p2K |
{2k) ~1 2 3 4 s
Dy {qi} = | P4y Py PjO3s Pis P4Qgs +eay Pfk . | (ca)

for even n = 2k.

Using the reality condition we can write for the norm of the Higgs field

(n) (n)
6 = a 2R Jlp. e MR G

1 2
ﬂin] (gg) e Dé"} (ay?

p{") (ay)  piM) (qy)

-

1 - | . (cs)
a0 pin) (q) M) (q;)

The regularity condition of |#| leads to the following values of the parameters wy and Bj:

wy = 0, wap = Wapsl = irw, g7 = - tanh [ % R(D) ],
Qap-p = = e0th [% Rlwy, )] = g, ;.
Qp = = tanh [% Rlwgpyy)] = agpyg, (cs)

Riw) /lw-2)2 + 02,

for odd n = 2k + 1, or

HEI“-I = 'I_H:Er, = ifEr—l:"fE ¥

Ugpoz = =tk [XR{wg, o3 1= (g, o}
Qgp_y = = coth [4Rw, )] = (3,072, (c7)
for even n = 2Zk.
On the z-axis |¢| reads
1 k22 2k + 1

—_— 1 =
T z

|#] = |coth z - o {ca)

i1 2 + {riiEi



for edd n = 2k + 1, oF

a2z
— 1 - 2K (eg)

74 3
@ - - i
%] | tanh = rzl 22 & [Bizp-11%]® - =

for even n = 2k. We have generated axi- and mirrorsymmetric n-pole solutions.
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