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ABSTRACTWe searh for all Poisson brakets for the BTZ blak hole whih are onsistent with thegeometry of the ommutative solution and are of lowest order in the embedding oordinates.For arbitrary values for the angular momentum we obtain two two-parameter families of ontatstrutures. We obtain the sympleti leaves, whih haraterize the irreduible representationsof the nonommutative theory. The requirement that they be invariant under the ationof the isometry group restrits to R � S1 sympleti leaves, where R is assoiated with theShwarzshild time. Quantization may then lead to a disrete spetrum for the time operator.
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Most approahes to nonommutative gravity have involved deforming the ommutativeEinstein equations.[1℄ -[17℄ These approahes range from simply replaing point-wise produtsby Moyal star produts in the Einstein-Hilbert ation to the approah of Ashieri, et. al.[13℄whih preserves the di�eomorphism invariane of general relativity. Given the ambiguities ofthe di�erent shemes, it may be useful to look at other strategies towards nonommutativegravity. The one we have in mind here starts with solutions to the ommutative Einsteinequations, with the goal of �nding their nonommutative analogues. As a �rst step, one antry writing down Poisson brakets whih are onsistent with the geometry of some lassialsolution. The nonommutative ounterpart of the solution is then obtained by `quantization'.(Here, of ourse, the deformation parameter is the nonommutativity parameter � and not ~.)The Poisson brakets and resulting nonommutative algebra may not be unique. In this regard,it may be desirable to impose the restrition that the isometry of the lassial solution survivesquantization and is implementable in any irreduible representation of the nonommutativealgebra. An example of this possibility is studied here.The example is the three-dimensional (BTZ) blak hole solution, whih is haraterized byits mass M and angular momentum J , and is asymptotially AdS3.[18℄,[19℄ The BTZ blakhole geometry is known to be the quotient spae of the universal overing spae of AdS3 bysome elements of its isometry group SO(2; 2). The quotienting breaks the isometry group toa two-dimensional subgroup GBTZ . Poisson strutures (or more preisely, ontat strutures)an be obtained for the BTZ blak hole whih respet this quotienting and are invariantunder GBTZ . (Some ontat strutures have already been previously suggested in [20℄.) Herewe searh for all suh Poisson braket whih are of lowest order with respet to the four-dimensional embedding oordinates for AdS3. For generi values of the angular momentum,the allowable Poisson brakets form two two-parameter families, and are quadrati with respetto four-dimensional embedding oordinates. Depending on the values of the parameters, thesympleti leaves (surfaes on whih a sympleti two-form an be de�ned) are topologiallyeither a) R2 , b) R � R+ or ) R � S1. The sympleti leaves haraterize the irreduiblerepresentations of the orresponding nonommutative algebra. GBTZ ats nontrivially in thease of a) and b), in general induing a map between di�erent sympleti leaves. It thustransforms between di�erent irreduible representations of the nonommutative theory, andGBTZ annot be implemented as inner transformations. On the other hand, GBTZ leaves )invariant and hene also the orresponding irreduible representations. So only ase ) remainsif we impose the restrition that the isometry of the lassial solution survives quantization.Moreover, quantization of the ommutative algebra on R � S1, where R orresponds to thetime, is known to lead to a disrete spetrum for the time operator. We speulate that a similaronlusion an be drawn for ).� For us, not all ylinders need to have a spae-time signature,and the oordinate assoiated with R may or may not be a time-like oordinate. Quantumtheories on the nonommutative spae-time ylinder have been previously studied.[21℄,[22℄Other novel results were shown in addition to the disrete time spetrum, whih may also�The possibility of a disrete spetrum for the time in this setting was �rst suggested to us by A.P.Balahandran. 2



apply here. Among them is the result that time-independent Hamiltonians are onserved onlyup to modulo 2�=�.In what follows, after briey reviewing the geometry of the ommutative BTZ solution andthe quotient spae onstrution, we write down the two-parameter families of Poisson braketsand map them to the Shwarzshild-like oordinates and obtain the sympleti leaves. There isan analogous quotient spae onstrution in the nonommutative theory whih will be disussedin a later artile.[23℄In terms of Shwarzshild-like oordinates (r; t; �) the invariant measure for the BTZ blakhole is expressed as[18℄,[19℄ds2 = �M � r2`2 � J24r2�dt2 +��M + r2`2 + J24r2��1dr2 + r2�d�� J2r2 dt�2 ; (1)0 � r <1 ; �1 < t <1 ; 0 � � < 2� ;where M and J are the mass and spin, respetively, and � = �1=`2 is the osmologial on-stant. For 0 < jJ j < M`, there are two horizons, the outer and inner horizons, orrespondingrespetively to r = r+ and r = r�, wherer2� = M`22 �1� �1�� JM`�2� 12� (2)The two horizons oinide in the extremal ase jJ j = M` > 0, while the inner one disappearsfor J = 0, M > 0. The metri is diagonal in the oordinates (�+; ��; r), where�� = r�̀ t� r�� ; (3)ds2 = �(r2 � r2+)d�2+ + (r2 � r2�)d�2�r2+ � r2� + `2r2dr2(r2 � r2+)(r2 � r2�) ; (4)whih shows that �+ is the time-like oordinate in the region I) r � r+, r is the time-likeoordinate in the region II) r� � r � r+ and �� is the time-like oordinate in the region III)and 0 � r � r�.It was shown that the manifold of the BTZ blak hole solution is the quotient spae ofthe universal overing spae of AdS3 by some elements of the group of isometries of AdS3.The onneted omponent of the latter is SO(2; 2). Say AdS3 is spanned by oordinates(t1; t2; x1; x2) parameterizing R4 , satisfying�t21 � t22 + x21 + x22 = �`2 (5)Alternatively, one an introdue 2� 2 real unimodular matriesg = 1̀ � t1 + x1 t2 + x2�t2 + x2 t1 � x1� ; detg = 1 ; (6)belonging to the de�ning representation of SL(2; R). The isometries orrespond to the left andright ations on g, g ! hLghR ; hL; hR 2 SL(2; R) (7)3



Sine (hL; hR) and (�hL;�hR) give the same ation, the onneted omponent of the isometrygroup for AdS3 is SL(2; R)� SL(2; R)=Z2 � SO(2; 2).The BTZ blak-hole is obtained by disrete identi�ation of points on the universal overingspae of AdS3. This insures periodiity in �, � � �+ 2�. The ondition isg � ~hLg~hR ; (8)where (~hL; ~hR) are ertain elements of SO(2; 2). ~hL and ~hR an be expressed as diagonalSL(2; R) matries~hL = � e�(r+�r�)=` e��(r+�r�)=`� ; ~hR = � e�(r++r�)=` e��(r++r�)=`� (9)For 0 < jJ j < M`, the universal overing spae of AdS3 is overed by three types of oordinatepathes whih are bounded by the two horizons at r = r+ and r = r�. For all three oordinatepathes, g an be deomposed aording tog = � e 12` (�+���) e� 12` (�+���)� g(0)(r)� e 12` (�++��) e� 12` (�++��)� ; (10)where g(0)(r) is an SO(2) matrix whih only depends on r and the oordinate path. Theperiodiity ondition for � easily follows from (8). The identi�ation (8) breaks the SO(2; 2)group of isometries to a two-dimensional subgroup GBTZ , onsisting of only the diagonal ma-tries in fhLg and fhRg. GBTZ is the isometry group of the BTZ blak hole, and from (10) isassoiated with translations in �+ and ��, or equivalently t and �, on r =onstant surfaes.For generi spin, 0 < jJ j < M` (and M > 0), we shall searh for Poisson brakets for thematrix elements of g whih are polynomial of lowest order. They should be onsistent withthe quotienting (8), as well as the unimodilarity ondition and, of ourse, the Jaobi identity.For onveniene we write the SL(2; R) matrix asg = �� � Æ � ; �Æ � � = 1 ; (11)Under the quotienting (8): � � e 2�r+=` �� � e�2�r�=` � � e 2�r�=` Æ � e�2�r+=` Æ (12)All quadrati ombinations of matrix elements sale di�erently, exept for �Æ and �, whihare invariant under (12). Lowest order polynomial expressions for the Poisson brakets of�; �;  and Æ whih are preserved under (12) are quadrati and have the formf�; �g = 1�� f�; g = 2� f�; Æg = f1(�Æ; �)f�; Æg = 3�Æ f; Æg = 4Æ f�; g = f2(�Æ; �) ; (13)4



where 1�4 are onstants and f1;2 are funtions.y They are onstrained by1 + 2 = 3 + 4f1(�Æ; �) = (1 + 2)�f2(�Æ; �) = (2 � 4)�Æ ; (14)after demanding that detg is a Casimir of the algebra. From (13) there are three independentonstants 1�4. Further restritions on the onstants ome from the Jaobi identity, whihleads to the following two possibilities:A: 2 = 4 and B: 2 = �1Both ases de�ne two-parameter families of Poisson brakets. Say we all 2 and 3 the twoindependent parameters. The two ases are onneted by an SO(2; 2) transformation. Case Agoes to ase B wheng = �� � Æ �! g0 = �� ��Æ � � = gh(0)R ; h(0)R = � �11 � ; (15)along with 3 ! 2 2 ! 3 (16)In terms of the embedding oordinates, this orresponds to (t1; t2; x1; x2)! (t2;�t1; x2;�x1).There are three types of oordinate pathes in the generi ase of M > 0 and 0 < jJ j < M`,and their boundaries are the two horizons. Denote them again by: I) r � r+, II) r� � r � r+and III) 0 � r � r�. The orresponding maps to SL(2; R) are given by (10), withI) r � r+, g(0)(r) = g(0)I (r) = 1qr2+ � r2�  qr2 � r2� qr2 � r2+qr2 � r2+ qr2 � r2�! (17)II) r� � r � r+, g(0)(r) = g(0)II (r) = 1qr2+ � r2�  qr2 � r2� �qr2+ � r2qr2+ � r2 qr2 � r2� ! (18)III) 0 � r � r�, g(0)(r) = g(0)III(r) = 1qr2+ � r2�  qr2� � r2 �qr2+ � r2qr2+ � r2 �qr2� � r2! (19)yMore generally, if we drop the assumption that the Poisson brakets are polynomial of lowest order we anreplae the onstants i by funtions of �Æ and �. So for example, f�; �g = p1(�Æ; �)��, where p1 is anarbitrary funtion. These brakets, in general, will have more ompliated transformation properties under theation of SO(2; 2). 5



Using the maps (17-19), we an write the Poisson brakets for the various ases in terms ofthe Shwarzshild-like oordinates (r; t; �). The results are the same in all three oordinatepathes. For the two-parameter families A and B one gets:A. f�; tg = `32 3 � 2r2+ � r2�fr; �g = �`r+(3 + 2)2r r2 � r2+r2+ � r2�fr; tg = �`2r�(3 + 2)2r r2 � r2+r2+ � r2� ; (20)B. f�; tg = `32 3 � 2r2+ � r2�fr; �g = �`r�(2 + 3)2r r2 � r2�r2+ � r2�fr; tg = �`2r+(2 + 3)2r r2 � r2�r2+ � r2� (21)These Poisson brakets are invariant under the ation of the isometry group GBTZ of the BTZblak hole. The �rst braket agrees in both ases. The latter two brakets vanish at the outerhorizon r = r+ for ase A, and the inner horizon r = r� for ase B. A entral element of thePoisson algebra an be onstruted out of the Shwarzshild oordinates for both ases. It isgiven by �� = (r2 � r2�) exp��2���` � ; 2 6= 3 ; (22)where the upper and lower sign orrespond to ase A and B, respetively,� = 3 + 23 � 2 ; (23)and �� were de�ned in (3). The �� =onstant surfaes de�ne sympleti leaves, whih aretopologially R2 for generi values of the parameters (more spei�ally, 2 6= �3). We anoordinatize them by �+ and ��. One then has a trivial Poisson algebra in the oordinates(�+; ��; ��): f�+; ��g = `22 (3 � 2) f��; �+g = f��; ��g = 0 (24)The ation of the GBTZ transforms one sympleti leaf to another, exept for the ase 2 = �3whih we disuss later.The above an be readily extended to the ase of zero angular momentum by simply settingr� = 0. The region III is then absent in this ase.z On the other hand, the Poisson brakets(20) and (21) are unde�ned in the extremum ase J = M`, or r+ = r�, for �nite oeÆientszZero angular momentum also allows for Poisson brakets whih are linear with respet to the four dimensionalembedding oordinates and onsistent with (8). This will be disussed in a later artile.[23℄6



i.x The brakets, however, may be rendered �nite by �rst onsidering J < M` with theoeÆients i proportional to r2+ � r2� and then taking the limit J !M`.In passing to the nonommutative theory, the operator assoiated with �� is entral in thequantum algebra and proportional to the identity in any irreduible representation. Irreduiblerepresentations then selet �� =onstant surfaes and the isometry group GBTZ thus mapsbetween di�erent irreduible representations, and thus annot be implemented as inner trans-formations. In any irreduible representation the algebra is generated by the nonommutativeanalogues of �+ and ��. The resulting nonommutative theory di�ers from the Gr�onewald-Moyal plane sine �+ and �� are not artesian oordinates. After re-writing the ommutativemetri (4) in terms of oordinates (�+; ��; ��) and restriting to the �� =onstant surfaeone gets by ds2j�� = �(r2 � r2+)d�2+ + (r2 � r2�)d�2�r2+ � r2� + r2 � r2�r2 � r2��2d�2� (25)As a result, these metri omponents will not in general be �xed by the irreduible represen-tation. In attempting to write down a nonommutative �eld theory in this ase, one annotexpet to treat the metri as a bakground. Neither is the signature of the metri �xed by theirreduible representation, as it an di�er in di�erent regions on the surfae, whih is evidentfrom the determinant of the ommutative metri g for �xed ��det gj�� = �(r2 � r2�)� r2 � r2�r2+ � r2� � �2� (26)The surfae has a Minkowski signature for r suÆiently large, and spae-time nonommuta-tivity results in the nonommutative theory. On the other hand, there may be regions where(26) is positive whih is then assoiated with spae-spae nonommutativity.We next disuss the two exeptional ases: 2 = 3 and 2 = �3.The above results annot be applied when 2 = 3 sine �, and hene ��, are ill-de�ned.Instead, �� is entral in the Poisson algebra in this ase, where the upper and lower sign againorrespond to ase A and B, respetively. The �� =onstant surfaes de�ne the sympletileaves, whih are topologially R � R+ , parametrized by r and�� = � r��r2 � r2� (27)In terms of these variables, the Poisson brakets arefr; ��g = `2 f��; rg = f��; ��g = 0 (28)xIn the extremal ase, hL redues to the identity, and at �rst glane it appears that more general Poissonbrakets than (13) and (14), and onsequently (20) and (21), are admissible. This is beause the produts ��,�Æ, Æ and � are una�eted by the quotienting. Thus the quotienting onditions allows one to generalize (13)suh that f�; �g, f�; Æg, f; Æg and f�; g depend on those four produts. But the system redues to (13) and(14) after demanding that detg is a Casimir of the algebra.
7



Irreduible representations now selet the �� =onstant sympleti leaves. As before, theisometry group GBTZ is a map between di�erent sympleti leaves and hene di�erent irre-duible representations in the quantum theory. The �� =onstant surfaes are haraterizedby the metrids2j�� = � r2 � r2�r2+ � r2��1r (r2 � r2�)d�� + 1r2 (r2 + r2�)��dr�2 + `2r2dr2(r2 � r2+)(r2 � r2�) ; (29)whose determinant is simply det gj�� = �`2 r2 � r2�r2+ � r2� (30)For ase A, the surfae has a Eulidean signature for r > r+ and Minkowski signature forr < r+. For ase B, the surfae has a Minkowski signature for r > r� and Eulidean signaturefor r < r+.The ase of 2 = �3 is the intersetion of ase A and B. Here � vanishes and from (22), theradial oordinate is in the enter of, the algebra. r =onstant de�ne R �S1 sympleti leaves,and they are invariant under the ation of GBTZ . The oordinates � and t parametrizing anysuh surfae are anonially onjugate:f�; tg = 3`3r2+ � r2� f��; rg = ft; rg = 0 (31)The Poisson brakets an be interpreted in terms of a twist[24℄ in the deomposition of ggiven in (10), where the twist is with respet to the �rst and third matries. In passingto the nonommutative theory, we need to de�ne a deformation of the ommutative algebragenerated by t; ei� and r. Call the orresponding quantum operators t̂; ei�̂ and r̂, respetively.Their ommutation relations are{[ei�̂; t̂℄ = �ei�̂ [r̂; t̂℄ = [r̂; ei�̂℄ = 0 ; (32)where from (31) the onstant � is linearly related to `3=(r2+ � r2�). There are now two entralelements in the algebra: i) r̂ and ii) e�2�it̂=�. From i), irreduible representations selet theR�S1 sympleti leaves. Unlike in all the previous ases, the ation of GBTZ does not take youout of any partiular irreduible representation, and in this sense we an say that the isometryof the lassial solution survives quantization. The ation of GBTZ an be implemented withinner transformations. Say Xt and X� are Killing vetors generating translations in t and �,respetively. They at on funtions Â on the nonommutative spae aording toXtÂ = �1� [�̂; Â℄ X�Â = 1� [t̂; Â℄ (33){It should be noted that there exits a quantization ambiguity assoiated with the set of allowed anonialtransformations on the ylinder. So for example, the ommutation relations are unhanged under the rede�ni-tions t̂! t̂0 = t̂+ F1(r̂) ei�̂ ! ei�̂0 = eif�̂+F2(r̂)t̂g ;for arbitrary funtions F1 and F2. More physial input is needed to resolve this quantization ambiguity.8



The determinant of the metri for any sympleti leaf is a funtion of r,det gjr = � 1̀2 (r2 � r2+)(r2 � r2�) ; (34)and thus the signature, as well as the ommutative metri, are �xed by the irreduible rep-resentation. The ylinders have a Minkowski signature for regions I and III, and a Eulideansignature for region II. With regard to the entral element ii) e�2�it̂=�, one an identify it withei�1l in an irreduible representation. The spetrum of t̂ is then disrete[21℄,[22℄n� � ��2� ; n 2 Z (35)In assoiating t̂ with the Shwarzshild oordinate t, we reall that the latter is the time forthe exterior of the blak hole, but not for the interior. More preisely, Xt is time-like providedr > rerg, where rerg is the radius of the ergosphere (or ergoirle), r2erg = r2+ + r2�.Although the Poisson brakets (20) and (21) are invariant under the ation of the isometrygroup of the blak hole, they are not invariant under the larger group of SO(2; 2) transforma-tions (7). On the other hand, Poisson strutures an be onsistently assigned to SO(2; 2) suhthat it de�nes a Lie-Poisson group and (7) de�nes a Poisson map. The SO(2; 2) group getq-deformed upon quantization. The nonommmutative BTZ blak hole an be obtained fromthis quantum group by quotenting in a manner analogous to (8). This, along with an attemptat �eld theory on the nonommutative bakground, will be pursued in later artiles.[23℄AknowledgementsWe are very grateful to A.P. Balahandran, A. Pinzul and P. Presnajder for useful disussions.We also thank P. Presnajder for his hospitality during a stay at Dept. of Physis, ComeniusUniversity, Bratislava, where this work originated.REFERENCES[1℄ J. Madore and J. Mourad, Int. J. Mod. Phys. D 3, 221 (1994).[2℄ G. Bimonte, R. Musto, A. Stern and P. Vitale, Int. J. Mod. Phys. A 13, 4023 (1998);Nul. Phys. B 525, 483 (1998); Phys. Lett. B 441, 69 (1998).[3℄ A. H. Chamseddine, Commun. Math. Phys. 218, 283 (2001); J. Math. Phys. 44, 2534(2003); Annales Henri Poinare 4S2, S881 (2003).[4℄ S. Majid, Int. J. Mod. Phys. B 14, 2427 (2000).[5℄ J. W. Mo�at, Phys. Lett. B 491, 345 (2000).[6℄ M. Banados, O. Chandia, N. E. Grandi, F. A. Shaposnik and G. A. Silva, Phys. Rev. D64, 084012 (2001). 9
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