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1. Introduction

For the past while there has been intense interest in finite N partition functions for

Yang Mills theories, especially in super-symmetric ones, particularly with regard to their

construction for BPS states and the counting thereof [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].

Much attention has been devoted to this issue for N = 4 super Yang Mills theory, it

being by now the archetypal example of a conformal field theory for which we have a

dual description in terms of string theory, by means of the AdS/CFT conjecture [16].

An example is in the assiduous efforts that have been made to explain the entropy of

certain BPS black holes in AdS5×S5 [17,18,19,20] in terms of microscopic counting of dual

operators in N = 4 super Yang Mills, with gauge group SU(N), by means of partition

functions [1]. While this problem remains unsolved to date, essentially due to the difficulty

of defining what is meant by these dual operators for finite N , there are other equally

interesting sectors of (super) Yang Mills theories where more progress with counting has

been made, examples being in free N = 4 super Yang Mills and in chiral ring sectors

involving BPS operators.

For N = 4 super Yang Mills, the half BPS sector consists of multi-trace operators

involving a single bosonic operator, Z. Similarly, the quarter BPS sector consists of multi-

trace operators involving two bosonic operators Z, Y while the eighth consists of ones

involving three bosonic operators Z, Y, X and two fermionic operators λ, λ̄. (All these

operators are here assumed to belong to the Lie algebra of U(N).)

For the chiral ring, the commuting/anti-commuting of these operators is at the heart

of why we can write very concise and elegant generating functions for the finite N multi-

trace partition functions [1]. Analysis of these partition functions, in terms of the counting

of operators, has become a sophisticated industry where such approaches as the so-called

‘Plethystic Program’ have provided substantial results [3,9].

This paper is devoted largely to the issue of partition functions for free field theory

and particularly to the counting of gauge invariant multi-trace operators for the case of two

bosonic fundamental fields. This is of relevance to the quarter BPS sector of N = 4 super

Yang Mills in the free field limit when the operators Z, Y do not commute, in contrast to

the chiral ring when they do.

The partition function for a free, massless quark-gluon gas was computed long ago [21].

This involved taking particle statistics into account using coherent state techniques and

then imposing the gauge singlet condition by integrating over the relevant gauge group.
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With some modifications to the expression thus derived we may write the multi-trace

partition function for some generic bosonic/fermionic fundamental fields in terms of an

integral over the gauge group, involving the single particle partition function [22,23]. This

is the starting point here.

For U(N) gauge theories we may easily write down the integral, though, even for this

case, its evaluation is far from simple. One approach (which we adapt here for the SU(2)

case) is to rewrite the expression in terms of an N -fold contour integral, whereby it may in

principle be evaluated by summing the contributions from poles inside origin centred unit

discs, in each of the N complex planes - similar techniques have been used in [10]. Due to

the number of poles this becomes unfeasible for higher values of N . Another approach is

to use the fact that the complex integral that interests us provides for an inner product

for symmetric polynomials - see Macdonald [24], pp. 363 - 372, for a related discussion.

Taking this point more seriously reveals an alternative route to evaluating the free field

theory partition function which exposes not only the large N case in an almost trivial way,

but also how and where this differs from the finite N case.

This treatment also reveals an alternative interpretation of the free field partition

function at finite N - it is related to a gauge group average of the cycle polynomial for the

symmetric permutation group (after a certain identification of ‘letters’ with gauge group

valued variables). This point is not dwelt on further here though makes the connection

between the partition function and Polya enumeration explicit. For single trace operators

at large N this connection has already been made [22,25] for N = 4 super Yang Mills,

whereby the partition function for single trace operators is related to the cycle polynomial

for the cyclic permutation group.1

Another issue is how to use the expression for the free field partition function to give

explicit counting of gauge invariant multi-trace operators in a Yang-Mills theory, with

gauge group U(N). The case for one bosonic fundamental field has been widely discussed

and, for finite N , the operators are counted by partition numbers of non-negative integers

into at most N parts (which is here denoted by pN (n) - no closed formula for these numbers

for arbitrary N, n exist, though they have a ‘nice’ generating function). Here, this result is

re-derived, from a symmetric function perspective, by employing the well known Cauchy-

Littlewood formula.

To proceed further with counting, for the quarter BPS sector of N = 4 super Yang

Mills, for instance, character methods prove to be both natural and indispensable. Char-

1 For more recent applications of symmetric polynomials and Polya enumeration to super-

symmetric quantum mechanical models, analysed in terms of Fock space methods, see [26,27,28].
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acters in relation to conformal field theories prove to be very convenient for encoding

the allowable representations [15,29,30,31,32,33] and for studying related partition func-

tions, [34,35,36,33]. For N = 4 super Yang Mills, it was shown in [33] that, if we are

to distinguish among primary operators with differing conformal dimensions, spins and

R-symmetry charges, such counting is most easily achieved using reductions of the full

N = 4 superconformal characters, in certain limits that isolate corresponding sectors of

short/semi-short operators. (One such limit corresponds to the index constructed in [1].)

This point may be easily illustrated for quarter BPS primary operators in N = 4 su-

per Yang Mills, the case of two bosonic fundamental fields here. (See [37] for an explicit

construction and counting of quarter BPS operators.) For N = 4 super Yang Mills, the

counting of quarter BPS primary operators is complicated by the fact that, if we are to

keep track of differing R-symmetry representations, any partition function restricted to

this sector must be expanded in terms of U(2) characters (or two-variable Schur polyno-

mials). Denoting some partition function restricted to this sector by Z(t, u), where t, u are

letters corresponding to the fields Z, Y , then by expanding

Z(t, u) =
∞∑

n=0

n∑

m=0

N(n,m) s(n,m)(t, u) , s(n,m)(t, u) =
tn+1um − tmun+1

t − u
, (1.1)

in terms of two-variable Schur polynomials s(n,m)(t, u), we obtain the numbers N(n,m) of

gauge invariant quarter BPS operators belonging to the [m, n−m, m] SU(4)R R-symmetry

representation and having conformal dimension n + m (so that they are superconformal

primary highest weight states in the corresponding quarter BPS supermultiplets). (The

case m = 0 counts gauge invariant half BPS primary operators.)

Here, the free field partition function is thus expanded in terms of Schur polynomials,

depending on the same variables as the one particle partition function, the two boson

case being a specialisation. This is quite naturally achieved using the Cauchy-Littlewood

formula (and, if we include fermions, another formula due to Littlewood). Generally, we

may obtain a result that relates the counting numbers to a sum over Kronecker coefficients.

These arise naturally in the theory of the symmetric permutation group, though remain

somewhat mysterious from a combinatorial perspective.

Specialising to the two boson case, a recursive procedure is employed here for the

counting of multi-trace quarter BPS operators in free field theory at finite N . This issue

was given considerable discussion for the large N case in [33] - here the results of [33] are

generalised in terms of a generating function that may be employed to count quarter BPS

operators for any R-symmetry charges, at large N . Asymptotic counting is also addressed

in the latter case for the numbers N(n,m) in (1.1) for large n and fixed m.

To complete the discussion, counting of quarter BPS operators in the chiral ring of
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N = 4 super Yang Mills is investigated in terms of expanding over U(2) characters as in

(1.1). An explicit formula is given for the corresponding finite N partition function, with

a short combinatorial interpretation given in terms of plane partitions, and specialised to

large N . For the latter case, the exponential behaviour of the numbers N(n,m) in (1.1) is

found for n and m both comparably large. This behaviour is consistent with a special case

addressed in [3,9]. By way of completion, a similar discussion for an arbitrary number of

bosonic fundamental fields in the chiral ring is included.

Two appendices are included; the first establishes some notation used for partitions

and gives some standard results for the symmetric group and symmetric polynomials, the

second gives some tables of numbers of quarter BPS operators in free N = 4 super Yang

Mills, with gauge group U(N), for which explicit formulae are given in the main text.

Footnotes contain further details and points of clarification.

2. Free Field Partition Functions

We start from the single particle partition function which is here denoted by f(t) for

some variables2 t = (t1, t2 . . .). The general form of f(t) is

f(t) =
∑

i

aiti , (2.1)

where each ti is a letter corresponding to a fundamental field and ai are signs, being +1

for a bosonic field, or −1 for a fermionic field.

For compact gauge Lie group G, the multi-trace partition function is then given by

[21], (see [22,23] for refinements,)

ZG(t) =

∫

G

dµG(g) exp
( ∞∑

n=1

1

n
f(tn)χR(gn)

)
, (2.2)

involving the Haar (or G-invariant, or Hurwitz) measure dµG(g) for g ∈ G (so that∫
G

dµG(g)F (g) =
∫

G
dµG(g)F (gh) =

∫
G

dµG(g)F (hg) for all h ∈ G and
∫

G
dµG(g) = 1)

and where χR(g) is the character for the R representation of G, assuming that the funda-

mental fields transform in identical gauge group representations R.

2 In what follows roman letters are used to denote a collection of variables and, for x =

(x1, . . . , xi), y = (y1, . . . , yj) for example, the shorthand xα is used to mean (x1
α, . . . , xi

α) and

z = xy to mean z = (z11, . . . , zij) where zrs = xrys. The latter convenient notation has been used

by Macdonald [24].
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For G = U(N), so that for any matrix U ∈ U(N) we may write U = V ΘV †, where V

is a unitary matrix and Θ = diag.(eiθ1 , . . . , eiθN ), 0 ≤ θi < 2π, and for some F (U) = F (Θ),

independent of V , then we may write

∫

U(N)

dµU(N)(U)F (U) =
1

(2π)NN !

∫ 2π

0

N∏

j=1

dθj

∏

1≤k<l≤N

|eiθk − eiθl |2 F (Θ) , (2.3)

which is, of course, related to the Weyl parametrisation of U(N). Thus, for such F (U), the

left-hand side of (2.3) simplifies to an integral over the N torus. Of course, as χR(U) gen-

erally depends on linear combinations of tr(U j)ktr(U†l)m for various non-negative integers

j, k, l, m then any function of χR(U) is an example of such an F (U).

We are interested in the case where R = Adj. is the adjoint representation so that for

U(N) we have that χAdj.(U) = trU trU† (while for SU(N) then χAdj.(U) = trU trU†−1).

For U(N) we then find that, using (2.2) with (2.3),

ZU(N)(t) =
1

(2π)NN !

∫ 2π

0

N∏

j=1

dθj

∏

1≤k<l≤N

|eiθk − eiθl |2 exp
( ∞∑

n=1

1

n
f(tn)

N∑

j,k=1

ein(θj−θk)
)

.

(2.4)

We may write (2.4) as an N -fold contour integral by first making the variable change

zj = eiθj so that the integrals in (2.4) are around unit circles in each zj complex plane and

then we obtain

ZU(N)(t) =
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1) exp

( ∞∑

n=1

1

n
f(tn)pn(z)pn(z−1)

)
, (2.5)

where ∆(z) =
∏

1≤i<j≤N (zi − zj) is the Vandermonde determinant and pn(z) =
∑N

i=1 zi
n

is a power symmetric polynomial - see appendix A for a brief discussion of symmetric

polynomials. This integral may then in principle be evaluated by deforming the contours

so as to extract the residues at poles within the discs |zj | < 1, 1 ≤ j ≤ N .

A crucial observation is that, for some N variable symmetric polynomials g(z), h(z),

then
〈
g, h
〉

N
=
〈
h, g
〉

N
=

1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)g(z)h(z−1) , (2.6)

acts as an inner product - this is easy to see in terms of Schur polynomials which provide

an orthonormal basis for symmetric polynomials. The reader may now wish to peruse

appendix A where notation regarding partitions and a short discussion of symmetric poly-

nomials is included.
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The General and Large N Cases for U(N)

For application of inner products to (2.5) we have that, in terms of power symmetric

polynomials pλ(z) for partitions λ,

exp
( ∞∑

n=1

1

n
f(tn)pn(z)pn(z−1)

)
=

∞∏

n=1

∞∑

an=0

1

nanan!
f(tn)anpn(z)anpn(z−1)an ,

=
∑

λ

1

zλ
fλ(t)pλ(z)pλ(z−1) ,

(2.7)

with the definitions of

zλ =

∞∏

n=1

nanan! , fλ(t) =

∞∏

n=1

f(tn)an , (2.8)

being in terms of the frequency representation of λ, (1a1 , 2a2 , . . .) with
∑

n≥1 n an = |λ|,
the weight of the partition λ (note that the frequency representation of λ is simply a

convenient re-ordering of the parts of λ).

In (2.7) the numbers zλ have a standard combinatorial interpretation - for a given

permutation σ ∈ Sm with a1 1-cycles, a2 2-cycles etc., so that
∑

n≥1 n an = m = |λ|, then

zλ =
∏

n≥1 nanan! is the size of the centraliser Zσ = {τ ; τ ∈ Sm, τστ−1 = σ} of σ ∈ Sm.

(This may be easily seen as under conjugation of σ by τ then τ can permute the cycles

of length n among themselves in an! ways and/or render a cyclic rotation on each of the

individual cycles in nan ways.) More details of the symmetric group are to be found in

appendix A.

We may immediately observe that (2.7) represents a sum over cycle polynomials of

the symmetric group Sm. This is given by, for letters u1, u2, . . . um,3

Cm(u) =
∑

a1,...,am≥0

δa1+2a2+...+mam,m

m∏

n=1

1

nanan!
un

an =
∑

λ⊢m

1

zλ
uλ , (2.9)

3 This formula is easy to see from the definition of the cycle polynomial for a subgroup G

of Sm. This is given by

1

|G|

∑

g∈G

u1
j1(g) · · ·um

jm(g) =
1

|G|

∑

Kg

|Kg|u1
j1(g) · · ·um

jm(g) ,

where ji(g) denotes the number of i cycles in the unique decomposition of g into disjoint cycles

and Kg denotes the conjugacy classes of G with class representatives g. The size of the conjugacy

class Kg is given by |Kg| = |G|/|Zg| where Zg is the centraliser of g ∈ G. For the present case

then, G = Sm, |Sm| = m!, and |Zσ| = zλ, where λ gives the cycle structure of σ ∈ Sm, and thus,

for the corresponding conjugacy class Kλ, |Kλ| = m!/zλ.
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where ‘λ ⊢ m’ means that λ is any partition of m - see appendix A for notation - and

uλ =
m∏

n=1

un
an , (2.10)

in terms of the frequency representation of λ above. Identifying un = f(tn)pn(z)pn(z−1)

then we may rewrite

ZU(N)(t) =
∞∑

m=0

1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)Cm(u) , (2.11)

the sum of the U(N) group averages of each of the cycle polynomials Cm(u). (Physically,

the interpretation is that the cycle index for the symmetric permutation group accounts

for particle statistics while integration over the gauge group imposes the gauge singlet

condition. For purposes of clarity, the U(N) case has been focused upon here, though

from the form of (2.2) it is easy to see how this generalises for other gauge groups whereby

the letters un = f(tn)χR(gn) for the fundamental fields transforming in identical gauge

group representations, R.)

Directly from (2.7), in terms of the inner product (2.6), then

ZU(N)(t) =
∑

λ

1

zλ
fλ(t)

〈
pλ, pλ

〉
N

=
∑

λ

1

zλ
fλ(t)

∑

µ⊢|λ|
ℓ(µ)≤N

(
χµ

λ

)2
, (2.12)

where on the right-hand side of (2.12) we have used an expression for the inner product

of two power symmetric polynomials expressed in terms of the characters of the symmet-

ric group, given in appendix A. (Here ‘ℓ(µ)’ means the number of non-zero parts of the

partition µ.)

Using a result of appendix A (essentially orthogonality relations for symmetric group

characters), (2.12) may be rewritten as

ZU(N)(t) =
∑

λ
|λ|≤N

fλ(t) +
∑

λ
|λ|>N

1

zλ
fλ(t)

∑

µ⊢|λ|
ℓ(µ)≤N

(
χµ

λ

)2
. (2.13)

In the large N limit, ZU(N)(t) simplifies considerably as only the first term in (2.13)

need be considered. Using the frequency representation of λ then

ZU(∞)(t) =
∑

λ

fλ(t) =
∞∏

n=1

∞∑

an=0

f(tn)an =
∞∏

n=1

1

1 − f(tn)
, (2.14)
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a result which has been obtained using Polya counting methods for single trace operators

and saddle point approximations [22,23].

Higher order corrections in |λ|, the weight of the partition λ, to (2.13) may be obtained

by successive evaluation of
∑

µ⊢|λ|
ℓ(µ)≤N

(
χµ

λ

)2
. One method is to employ the Murnaghan-

Nakayama Rule, used to compute χµ
λ using skew hooks and Young diagrams. (A readable

account of the Murnaghan-Nakayama Rule may be found in [38], though of course it is

explained in many standard textbooks that discuss the symmetric group.)

For the case of |λ| = N+1 then we may observe that,
∑

µ⊢N+1
ℓ(µ)≤N

(
χµ

λ

)2
=

∑

µ⊢N+1
ℓ(µ)≤N+1

(
χµ

λ

)2 − (χν
λ)2 = zλ − (χν

λ)2 , ν = (1N+1) , (2.15)

since the partition ν = (1N+1) is the only one excluded among those partitions µ of

N+1 with ℓ(µ) ≤ N . By applying the Murnaghan-Nakayama Rule we may determine, for

ν = (1L),

(χν
λ)

2
=
{

1 for |λ| = L
0 otherwise

, (2.16)

since χν
λ in this case is just a sign. (This may be easily seen as there is only one possible

way to remove successive skew hooks, which in this case are just column Young diagrams

of length λi, from the (1L) column Young diagram to leave one of normal shape, in this

case, another column Young diagram.) Thus, using (2.15) with (2.16) in (2.13), we obtain

ZU(N)(t) =
∑

λ
|λ|≤N+1

fλ(t) −
∑

λ
|λ|=N+1

1

zλ
fλ(t) +

∑

λ
|λ|>N+1

1

zλ
fλ(t)

∑

µ⊢|λ|
ℓ(µ)≤N

(
χµ

λ

)2
. (2.17)

By a similar line of argument we may do the same for the case of |λ| = N+2. We

have that, for ν1 = (1N+2) and ν2 = (2, 1N+1),
∑

µ⊢N+2
ℓ(µ)≤N

(
χµ

λ

)2
=

∑

µ⊢N+2
ℓ(µ)≤N+2

(
χµ

λ

)2 − (χν1

λ )2 − (χν2

λ )2 = zλ − (χν1

λ )2 − (χν2

λ )2 . (2.18)

We may determine, for ν = (2, 1L),

(χν
λ)

2
=

{
(a1 − 1)2 for |λ| =

∑
n≥1 n an = L+2

0 otherwise
. (2.19)

Using (2.16), (2.19) with (2.18) in (2.17) then we obtain

ZU(N)(t) =
∑

λ
|λ|≤N+2

fλ(t) −
∑

λ
N+1≤|λ|≤N+2

1

zλ
fλ(t) −

∑

λ
|λ|=N+2

1

z′λ
fλ(t)

+
∑

λ
|λ|>N+2

1

zλ
fλ(t)

∑

µ⊢|λ|
ℓ(µ)≤N

(
χµ

λ

)2
,

(2.20)
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where, in the frequency representation of λ,

1

z′λ
=

(a1−1)2

zλ
=
( 1

a1!
− 1

(a1 − 1)!
+

1

(a1 − 2)!

)/ ∞∏

n=2

nanan! . (2.21)

We may proceed in this manner to compute explicit higher order corrections though

this becomes cumbersome save for the first few cases as shown. (For |λ| > N + 2 the

corrections will always involve contributions from (2.16) and (2.19) as well as extra ones

coming from
∑

µ⊢|λ|
ℓ(µ)≤|λ|

(
χµ

λ

)2 −∑ µ⊢|λ|
ℓ(µ)≤N

(
χµ

λ

)2
.)

The One Boson Case for U(N)

For the case of one bosonic fundamental field (applicable to half BPS operators for

N = 4 super Yang Mills), we have f(t) = t in (2.5), so that we may write

ZU(N)(t) =
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)

N∏

j,k=1

1

1 − tzjzk
−1

. (2.22)

To evaluate this integral we may use the Cauchy-Littlewood formula,

L∏

i=1

M∏

j=1

1

1 − xiyj
=

∑

λ
ℓ(λ)≤min.{L,M}

sλ(x1, . . . , xL)sλ(y1, . . . , yM ) , (2.23)

where the sum on the right-hand side is over all partitions λ such that the corresponding

Young diagrams have no more than min.{L, M} rows, ℓ(λ) ≤ min.{L, M}. With xi = tzi,

yi = zi
−1, i = 1, . . . , N , in (2.23), so that sλ(tz1, . . . , tzN ) = t|λ|sλ(z), and employing also

(2.6) and the orthonormality of Schur polynomials, we may easily obtain,

ZU(N)(t) =
∑

λ
ℓ(λ)≤N

t|λ|
〈
sλ, sλ

〉
N

=
∑

λ
ℓ(λ)≤N

t|λ| . (2.24)

By changing summation variables so that λi − λi+1 = ai, i = 1, . . . , N−1, λN = aN then

we may write

ZU(N)(t) =
∞∑

a1,...,aN=0

ta1+2a2+...+NaN = PN (t) , (2.25)

where4

PN (t) =

N∏

i=1

1

1 − ti
. (2.26)

4 1/P∞(t) =
∏∞

n=1
(1−tn) is commonly called the Euler function, denoted by Φ(t). P∞(t) =∑∞

n=0
p(n)tn acts as a generating function for the number of unordered partitions of n, p(n). Note

that pN (n) = p(n) for n ≤ N , i.e. the number of partitions of n into no more than N parts is the

same as the total number of partitions of n so long as n ≤ N .
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Of course this is nothing other than the generating function for the number pN (n) of

partitions of n into no more than N parts since, by definition,
∑

λ
ℓ(λ)≤N

δ|λ|,n = pN (n) , (2.27)

so that by the above
∞∑

n=0

pN (n)tn = PN (t) . (2.28)

This makes explicit the connection between ZU(N)(t) and the partition numbers pN (n).

The SU(2) Gauge Group Case

Here we first consider f(t) =
∑k

j=1 tj in (2.1) so that the variables 0 ≤ ti < 1

represent k bosons in the single particle partition function. For such fields transforming in

the adjoint representation of SU(2) then (2.2) simplifies significantly. For any U ∈ SU(2)

we may write U = V ΘV †, where V is unitary and Θ = diag.(eiθ, e−iθ), for 0 ≤ θ < 2π, so

that for F (U) = F (θ), then in usual Weyl parametrisation,
∫

SU(2)

dµSU(2)(U)F (U) =
1

π

∫ 2π

0

dθ sin2 θ F (θ)

=
1

4π

∫ 4π

0

dθ
(
1 − cos θ

)
F ( θ

2 )

=
1

2π

∫ 2π

0

dθ
(
1 − cos θ

)
F ( θ

2 ) ,

(2.29)

where F (θ) = F (θ + π) is assumed in writing the last line. In the present case, F (U) =

F (θ) =
∑

n≥1 f(tn)χAdj.(U
n)/n, where χAdj.(U) = tr(U)tr(U†) − 1 = e2iθ + e−2iθ + 1 =

2 cos 2θ + 1, so that

ZSU(2)(t) =
1

2π

∫ 2π

0

dθ (1 − cos θ)
k∏

j=1

1

(1 − tj)(1 − tjeiθ)(1 − tje−iθ)
. (2.30)

Making the variable change z = eiθ, and using that F (θ) = F (−θ) is even, then

ZSU(2)(t) =
1

2πi

∮
dz

z
(1 − z)

k∏

j=1

1

(1 − tj)(1 − tjz)(1 − tjz−1)
, (2.31)

where the integral is around the unit circle |z| = 1. The residues in (2.31) may be easily

computed since all the relevant (simple) poles in the disc |z| < 1 occur at the points z = tj .

Thus

ZSU(2)(t) =
k∑

i=1

ti
k−1

1 − ti2

k∏

j=1
j 6=i

1

(ti − tj)(1 − titj)(1 − tj)
. (2.32)
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This partition function has an interesting interpretation from a group theory perspec-

tive. We may write,

1 + t

(1 − tz)(1 − tz−1)
=

∞∑

n=0

χn(z)tn , (2.33)

where

χj(z) =
zj+ 1

2 − z−j− 1
2

z
1
2 − z−

1
2

, j ∈ 1
2Z , (2.34)

is an SU(2) character, corresponding to the spin j irreducible representation, Rj . Now the

integral in (2.31) acts as an SU(2) inner product,

〈
χj , χk

〉
=

1

2πi

∮
dz

z
(1 − z)χj(z)χk(z−1) = δjk , (2.35)

for j, k ∈ N. Thus, from (2.31) with (2.33) and (2.35),

k∏

j=1

(1 − tj
2)ZSU(2)(t) =

∞∑

n1,...,nk=0

〈
χn1

· · ·χnk
, 1
〉
t1

n1 · · · tknk , (2.36)

acts as a generating function for the number of singlets in the decomposition of the SU(2)

representation Rn1
⊗· · ·⊗Rnk

.5 By using that χn(z) =
∑n

j=−n zj we may use the Cauchy

residue theorem to compute explicitly that

〈
χn1 · · ·χnk

, 1
〉

=

2n1∑

j1=0

· · ·
2nk∑

jk=0

(δj1+···+jk,n1+···+nk
− δj1+···+jk,n1+···+nk+1) . (2.37)

If we modify the one particle partition function to include k bosons and k̄ fermions

and hence consider (2.1) in the form f(t, t̄) =
∑k

j=1 tj −
∑k̄

̄=1 t̄̄ then we may similarly as

above evaluate

ZSU(2)(t, t̄) =
1

2πi

∮
dz

z
(1 − z)

∏

1≤j≤k

1≤̄≤k̄

(1 − t̄̄)(1 − t̄̄z)(1 − t̄̄z
−1)

(1 − tj)(1 − tjz)(1 − tjz−1)
, (2.38)

5 Generating functions for products of Lie algebra representations have been considered

elsewhere, in [39] for instance. A generating function for the number of singlets in n products of

the fundamental times n products of the anti-fundamental representations for SU(N) was found

by Gessel [40] in terms of Toeplitz determinants involving Bessel functions. See also [41] for a

nice physics oriented discussion of similar issues. The special case of R 1
2
⊗ · · · ⊗R 1

2
(2n products

of the fundamental) for SU(2), contains a Catalan number, 1
n+1

(
2n

n

)
, of singlet representations.
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where the contour is around the unit disc |z| = 1. So long as k > k̄ then (2.38) receives

contributions from only those simple poles at z = tj so that for this case we obtain

ZSU(2)(t, t̄)
∣∣∣
k>k̄

=

k∑

i=1

ti
k−k̄−1

1 − ti2

∏

1≤̄≤k̄
1≤j≤k,j 6=i

(ti − t̄̄)(1 − tit̄̄)(1 − t̄̄)

(ti − tj)(1 − titj)(1 − tj)
. (2.39)

For k ≤ k̄ then (2.38) also receives contributions from poles at z = 0. For instance

ZSU(2)(t, t̄)
∣∣∣
k=k̄

=
k∑

i=1

1

ti(1 − ti2)

∏

1≤j,̄≤k
j 6=i

(ti − t̄̄)(1 − tit̄̄)(1 − t̄̄)

(ti − tj)(1 − titj)(1 − tj)
+

∏

1≤j,̄≤k

t̄̄(1 − t̄̄)

tj(1 − tj)
,

(2.40)

where the last term on the right-hand side of (2.40) comes from the simple pole at z = 0.

These formulae should be useful for computing the multi-trace partition functions,

for fundamental fields transforming in an SU(2) gauge group, in other sectors of N = 4

super Yang Mills. For instance, after a suitable identification of the variables tj , t̄̄ with

variables in single particle partition functions for semi-short sectors of N = 4 super Yang

Mills, described in detail in [33], then (2.40) should allow for an explicit expression for

corresponding multi-trace partition functions. They may also be useful for computing the

N = 4 superconformal index of [1] for SU(2) gauge group, or at least for restrictions of it

such as described in [33] or [42].

3. Counting Operators in Free N = 4 Super Yang Mills

In this section, the counting of half and quarter BPS operators for free N = 4 super

Yang Mills, when the fundamental fields transform in the adjoint representation of U(N),

is discussed in some detail.

Counting Operators Directly

We may, of course, proceed to count multi-trace half and quarter BPS primary oper-

ators directly, in terms of the fundamental fields, Z, for half BPS operators and Z, Y , for

quarter BPS operators.

(Z, Y ) forms a U(2) doublet, where U(2) has generators given by a subset of the

SU(4)R generators, Hi, Ei±, 1 ≤ i ≤ 3, where Hi are the Cartan sub-algebra genera-

tors and Ei± are ladder operators satisfying (in the Chevalley-Serre basis) [Hi, Ej±] =

±KijEj±, with [Kij ] being the usual SU(4) Cartan matrix. The U(2) generators consist

12



of the SU(2) generators H2, E2±, where explicitly [(H1, H2, H3), E2±] = ∓(1,−2, 1)E2±,

along with the generator H1+H2+H3, whose eigenvalues give the conformal dimensions

in this case, [H1+H2+H3, (Z, Y )] = (Z, Y ) [33]. Explicitly, we have that [E2+, Z] = 0,

[E2−, Z] = Y , [(H1, H2, H3), Z] = (0, 1, 0)Z, [(H1, H2, H3), Y ] = (1,−1, 1)Y so that an

operator involving n Z’s and m Y ’s transforms in the [m, n−m, m] SU(4)R R-symmetry

representation.

For k-trace half BPS primary operators transforming in the [0, n, 0] SU(4)R R-

symmetry representation, with conformal dimension n, then in terms of the fundamental

field Z a basis is provided by,

tr(Zn1) · · · tr(Znk) ,

k∑

i=1

ni = n . (3.1)

We have that, due to trace identities for finite N , tr(Zn) for n > N is expressible in terms

of a sum over multi-trace operators of the form (3.1), for k > 1, and thus, a minimal basis

for multi-trace half BPS primary operators consists of (3.1) for all 1 ≤ k ≤ n and with

every ni ≤ N , ordered so that n1 ≥ n2 ≥ . . . ≥ nk ≥ 0, i.e. so that (n1, . . . , nk) is a

partition of n where each part ni ≤ N . With this restriction, the number of multi-trace

half BPS primary operators for a given n is

N(n) = pN (n) , (3.2)

since the number pN (n), in (2.27), of partitions of n into ≤ N parts is the same as the

number of partitions of n in which each part is ≤ N - see [43] for a simple proof employing

generating functions.

For quarter BPS operators belonging to the [m, n−m, m] SU(4)R R-symmetry repre-

sentation, a basis for k-trace operators is

tr
(∏

j

Zn1j Y m1j

)
· · · tr

(∏

j

Znkj Y mkj

)
,
∑

i,j

nij = n ,
∑

i,j

mij = m , (3.3)

where there is a choice of ordering in each trace. (Note that the m = 0 case corresponds to

the half BPS case already considered.) Using the basis provided by (3.3) for all allowable k,

then to avoid over-counting of multi-trace quarter BPS operators, the cyclicity of each trace

and also trace identities for finite N must be accounted for. Assuming that this is done,

let M(n,m) denote the number of elements in this minimal basis for multi-trace operators

of the form (3.3). Then, to obtain the number N(n,m) of multi-trace quarter BPS primary

operators in the SU(4)R representation [m, n−m, m], the number of U(2) descendants, in

the SU(4)R representation [m, n−m, m], of multi-trace quarter BPS primary operators, in
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SU(4)R representations [j, n+m−2j, j], 0 ≤ j ≤ m−1, must be subtracted from M(n,m).

(These descendants arise due to the relation [E2−, Z] = Y . Acting with (E2−)m−j on the

highest weight state in the SU(4)R representation [j, n+m−2j, j] we obtain a descendant in

the SU(4)R representation [m, n−m, m].) The number of such U(2) descendants coincides

with N(n+m−j,j), the number of corresponding primary operators. In this way, we obtain

that

M(n,m) = N(n,m) + N(n+1,m−1) + . . . + N(n+m−1,1) + N(n+m) , (3.4)

so that N(n,m) = M(n,m) −M(n+1,m−1) may be obtained recursively for each m.

We may illustrate by counting all multi-trace quarter BPS primary operators in the

[1, n−1, 1] R-symmetry representation. In this case a basis for k+1-trace operators is

provided by

tr(Zn1) · · · tr(Znk)tr(ZjY ) ,
k∑

i=1

ni = n − j . (3.5)

Cyclicity of traces implies that we may arrange Y as shown, to avoid over-counting. U(N)

trace identities imply, similarly as for the half BPS case, that a minimal basis for multi-

trace operators requires j < N and each ni ≤ N in (3.5) for every 1 ≤ k ≤ n−j, so

that (n1, . . . , nk) forms a partition of n−j, with every part ≤ N . Thus, by a similar

argument as for the half BPS case, M(n,1) =
∑N−1

j=0 pN (n−j). Finally, to ensure that only

primary operators are counted then we must subtract off contributions from descendants

of half BPS primary operators in the [0, n+1, 0] SU(4)R representation, of which there are

pN (n+1). Using (3.4) with (3.2) we then conclude that

N(n,1) =
N−1∑

j=0

pN (n − j) − pN (n+1) , (3.6)

gives the number of multi-trace quarter BPS primary operators in the [1, n−1, 1] R-

symmetry representation.

Counting in this fashion becomes more difficult for greater m and now a procedure is

described employing symmetric polynomials to find a generating function for the numbers

of multi-trace quarter BPS primary operators in the [m, n−m, m] SU(4)R representation,

for m = 0, 1, 2 at finite N and for any n, m at large N . This generating function is

subsequently used to provide asymptotic counting for fixed m, large n in the large N limit.

Counting Operators via Expansion of Partition Functions in Schur Polynomials

For k bosonic fundamental fields, we may take f(t) =
∑k

j=1 tj in (2.1) so that (2.5)

may be written as

ZU(N)(t) =
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)

k∏

j=1

N∏

r,s=1

1

1 − tjzrzs
−1

. (3.7)
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Often it is the case that such partition functions should be expanded in terms of sλ(t), the

k variable Schur polynomial labelled by partitions λ. An example is provided by (1.1) for

counting multi-trace quarter BPS operators. We may use the Cauchy-Littlewood formula

(2.23) to expand in this way, to obtain

ZU(N)(t) =
∑

λ
ℓ(λ)≤min.{k,N2}

Nλ sλ(t) , (3.8)

where

Nλ =
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1) sλ(zz−1) , (3.9)

where zz−1 has components zizj
−1, 1 ≤ i, j ≤ N .

From Macdonald [24] we have that

sλ(xy) =
∑

µ,ν⊢|λ|
γλ

µνsµ(x)sν(y) , (3.10)

in terms of Kronecker coefficients,

γλ
µν =

1

|λ|!
∑

σ∈S|λ|

χλ(σ)χµ(σ)χν(σ)

=
∑

ρ⊢|λ|

1

zρ
χλ

ρ χµ
ρ χν

ρ ,

(3.11)

being a sum over irreducible S|λ| characters evaluated at σ ∈ S|λ|, related to a sum over

irreducible S|λ| characters evaluated on the conjugacy classes labelled by the partitions ρ in

the second line. Using (2.6) along with the orthonormality property of Schur polynomials

we find that

Nλ =
∑

µ⊢|λ|
ℓ(µ)≤N

γλ
µµ . (3.12)

The situation becomes much more involved if we include also k̄ fermionic fields, so

that (2.1) may be written in the form f(t, t̄) =
∑k

j=1 tj −∑k̄
̄=1 t̄̄, and attempt to ex-

pand ZU(N)(t, t̄) in terms of products of Schur polynomials sλ(t)sµ(t̄). Such expansion

is required for counting, for instance, for the free field partition function in the eighth

BPS sector of N = 4 super Yang Mills. In this case the partition function is expanded,

analogous to (1.1), in terms of SU(2|3) characters, which may be expressed in terms of a

linear combination of products of two-variable and three-variable Schur polynomials. (See
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[33] for a discussion of counting for the eighth BPS sector along these lines.) Including

fermions, (3.7) becomes modified by

ZU(N)(t, t̄) =
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)

∏

1≤j≤k

1≤̄≤k̄

N∏

r,s=1

1 − t̄̄zrzs
−1

1 − tjzrzs
−1

. (3.13)

To achieve the expansion, we may use the Cauchy-Littlewood formula (2.23) along with

another formula of Littlewood,

L∏

i=1

M∏

j=1

(1 + xiyj) =
∑

λ
ℓ(λ)≤L,ℓ(λ̃)≤M

sλ(x1, . . . , xL) sλ̃(y1, . . . , yM ) , (3.14)

where λ̃ is the partition conjugate to λ (where the rows and columns of the Young diagram

corresponding to λ are interchanged) and where the sum is restricted to those λ whereby

the corresponding Young diagrams have at most L rows, ℓ(λ) ≤ L, and M columns,

ℓ(λ̃) ≤ M . We may thus write

ZU(N)(t, t̄) =
∑

λ
ℓ(λ)≤min.{k,N2}

∑

µ

ℓ(µ)≤k̄,ℓ(µ̃)≤N2

Nλ,µ sλ(t) sµ(t̄) , (3.15)

where

Nλ,µ =
(−1)|µ|

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1) sλ(zz−1)sµ̃(zz−1) . (3.16)

Obviously these numbers are considerably more involved than those in (3.9). We may of

course use (3.10) again to interpret (3.16) in terms of Kronecker coefficients.

Counting Quarter BPS Operators by Symmetric Polynomial Methods

The two bosonic fundamental field case is now focused upon.6 In particular, the

numbers N(n,m) in (1.1) are evaluated using results of the last sub-section.

6 The two boson case leads to an interesting generalisation of an identity in [44] involv-

ing Littlewood-Richardson coefficients cν
λµ, the coefficients that appear in the decomposition

sλ(x)sµ(x) =
∑

ν
cν

λµsν(x). With f(t) in (2.1) given by f(t) = t1 + t2, and expanding appro-

priately the corresponding integrand in (3.7) using (2.23); then using (2.6), the orthonormality of

Schur polynomials and the result (2.14), we obtain (note that cν
λµ = 0 if |ν| 6= |λ| + |µ|)

ZU(∞)(t1, t2) =
∑

λ,µ

t1
|λ|t2

|µ|〈sλsµ, sλsµ〉∞ =
∑

λ,µ,ν
ν⊢|λ|+|µ|

t1
|λ|t2

|µ|(cν
λµ)2 =

∏

n≥1

1

1 − t1n − t2n

which reduces to Theorem 4.1 of [44] if we take t1 = t2 = t.
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We may proceed to evaluate Nλ recursively. The simplest case is for Nλ = N(n),

whereby introducing a formal variable t then it is clear, by (2.23) with (2.22), (2.25) and

(2.26), that

∞∑

n=0

N(n)t
n =

1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)

N∏

j,k=1

1

1 − tzjzk
−1

= PN (t) , (3.17)

so that, by (2.28), N(n) is given by (3.2).

More generally to evaluate N(n,m) from (3.9) we may use, for y = zz−1,

s(m)(y)s(n)(y) = s(n,m)(y) + s(n+1,m−1)(y) + . . . + s(n+m−1,1)(y) + s(n+m)(y) ,

s(m)(zz
−1) =

∑

µ⊢m
ℓ(µ)≤N

sµ(z)sµ(z−1) , (3.18)

where the expression in the first line of (3.18) may be easily seen using Young tableaux

multiplication rules while (2.23) determines the expression in the second line. ¿From (3.9)

with (3.18), we may find a useful generating function, in terms of a formal variable t, for

the numbers in (3.4) as follows,

F (m)
N (t) =

∞∑

n=0

M(n,m)t
n

=
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1) s(m)(zz

−1)
∞∑

n=0

s(n)(zz
−1)tn

=
1

(2πi)NN !

∮ N∏

i=1

dzi

zi
∆(z)∆(z−1)

∑

µ⊢m
ℓ(µ)≤N

sµ(z)sµ(z−1)
N∏

j,k=1

1

1 − tzjzk
−1

=
∑

µ⊢m
ℓ(µ)≤N

∑

λ

t|λ|
〈
sλsµ, sλsµ

〉
N

,

(3.19)

so that we may write

N(n,m) =
1

2πi

∮
dt

t

( 1

tn
F (m)

N (t) − 1

tn+1
F (m−1)

N (t)
)

, (3.20)

which allows for recursive determination of N(n,m).

Applying this to the case of Nλ = N(n,1) we have, from (3.18)

s(1)(zz
−1) = s(1)(z)s(1)(z

−1) , (3.21)
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so that, from (3.19),

F (1)
N (t) =

∞∑

n=0

(
N(n,1) + N(n+1)

)
tn =

∑

λ
ℓ(λ)≤N

t|λ|
〈
s(1)sλ, s(1)sλ

〉
N

. (3.22)

Using (again, this may be easily seen from Young tableaux multiplication rules)

s(1)(z)sλ(z) =
N∑

r=1

sλ+er
(z) , (3.23)

for {er; 1 ≤ r ≤ N, er · es = δrs} being usual orthonormal vectors, we find that

F (1)
N (t) =

∞∑

n=0

(
N(n,1) + N(n+1)

)
tn =

∑

λ
ℓ(λ)≤N

t|λ|
N∑

r,s=1

〈
sλ+er

, sλ+es

〉
N

. (3.24)

Now for any partition λ,
〈
sλ+er

, sλ+es

〉
N

vanishes unless er = es for any r, s and λr−1−λr >

0 for r = 2, . . . , N , due to

s(λ1,...,λr−1,λr+1,...,λN )(z) = 0 for λr−1 = λr , r > 1 . (3.25)

Changing summation variables to those in (2.25) then we have, with the definition (2.26),

F (1)
N (t) =

∞∑

n=0

(
N(n,1) + N(n+1)

)
tn =

∑

a1,...,aN≥0

ta1+...+NaN +
N−1∑

r=1

∑

a1,...,aN ≥0

ar≥1

ta1+...+NaN

=

N−1∑

i=0

ti
∑

a1,...,aN≥0

ta1+...+NaN =
1

1 − t
PN−1(t) .

(3.26)

Thus, using (2.28), (3.2) with (3.26),7

N(n,1) =

n∑

j=0

pN−1(j) −N(n+1) =

n∑

j=0

pN−1(j) − pN (n + 1) . (3.27)

7 This formula agrees with (3.6) due to
∑N−1

j=0
pN (n − j) =

∑n

j=0
pN−1(j) which follows

because the corresponding generating functions match,

∞∑

n=0

N−1∑

j=0

pN (n − j)tn = (1 + t + . . . + tN−1)PN (t) =
1

1 − t
PN−1(t) =

∞∑

n=0

n∑

j=0

pN−1(j)t
n .
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For the case of Nλ = N(n,2) we have that, from (3.18),

s(2)(zz
−1) = s(2)(z)s(2)(z

−1) + s(1,1)(z)s(1,1)(z
−1) , (3.28)

so that, from (3.19), we have

F (2)
N (t) =

∑

λ
ℓ(λ)≤N

t|λ|
(〈

s(2)sλ, s(2)sλ

〉
N

+
〈
s(1,1)sλ, s(1,1)sλ

〉
N

)
. (3.29)

Using

s(2)(z)sλ(z) =

N∑

r=1

sλ+2er (z) +
∑

1≤r<s≤N

sλ+er+es(z) ,

s(1,1)(z)sλ(z) =
∑

1≤r<s≤N

sλ+er+es(z) ,

(3.30)

along with (3.25) and

s(λ1,...,λr−1,λr+2,...,λN )(z) = −s(λ1,...,λr+1,λr−1+1,...,λN )(z) , (3.31)

for the cases where λr−1 = λr, we may obtain, with the definition (2.26),

F (2)
N (t) =

1−tN+1

(1−t)(1−t2)
PN−1(t) +

1

(1−t)(1−t2)
PN−2(t) , (3.32)

where the first contribution comes from
∑

λ t|λ|
〈
s(2)sλ, s(2)sλ

〉
N

while the second comes

from
∑

λ t|λ|
〈
s(1,1)sλ, s(1,1)sλ

〉
N

. Since the partition number pk(−n) = 0 for n = 1, 2, . . .

we may write, using (2.28),8

1

(1 − t)(1 − t2)
Pk(t) =

∞∑

n,i,j=0

pk(n − i − 2j)tn . (3.33)

Thus, from (3.32) with (3.27),

N(n,2) = −
n+1∑

j=0

pN−1(j)

+

{∑∞
i,j=0 (pN−2(n−i−2j) + pN−1(n−i−2j)) if n ≤ N ,∑∞
i,j=0 (pN−2(n−i−2j) + pN−1(n−i−2j) − pN−1(N+1−n−i−2j)) if n ≥ N+1.

(3.34)

8 This is a special case of the following: for any f(n), n ∈ Z, that satisfies f(−n) = 0,

n = 1, 2, . . ., then we may (at least formally) write

Pk(t)

∞∑

n=0

f(n)tn =

∞∑

n,i1,...,ik=0

f(n − i1 − 2i2 − . . . − kik)tn .
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Tables of the numbers (3.2), (3.27) and (3.34) are given in appendix B for some few

cases of n, N . Notice from these tables that the numbers N(n,m) below the diagonal line

N ≥ n+m for a given n are the same for all N . This is a general feature that derives from

values of N(n,m) for N ≥ n + m, which numbers may be obtained from a corresponding

generating function that is now constructed.

Using these techniques, we may provide a consistency check of (3.17), (3.26), (3.32)

along with a general result for N(n,m) for high enough values of N , N ≥ m + n. This

employs the orthogonality property of power symmetric polynomials pλ(z) (in the large N

limit) along with

s(n)(z) =
∑

λ⊢n

1

zλ
pλ(z)

=
∞∑

i1,...,in=0

1

i1!i2! · · · in!
δi1+2i2+...+nin,n p1(z)

i1
(

1
2p2(z)

)i2 · · ·
(

1
npn(z)

)in
.

(3.35)

Using the trivial identity pλ(xy) = pλ(x)pλ(y) then from (2.6), (3.19) with (3.35) we have

F (m)
∞ (t) =

∞∑

n=0

∑

λ⊢n

∑

µ⊢m

1

zλzµ

〈
pλpµ, pλpµ

〉
∞ tn

=
∞∑

n=0

∑

λ⊢n

∑

µ⊢m

1

zλzµ

〈
pν , pν

〉
∞ tn

=
∞∑

n=0

∑

λ⊢n

∑

µ⊢m

zν

zλzµ
tn ,

(3.36)

where for (1a1 , 2a2 , . . .) being the frequency representation of λ and (1b1 , 2b2 , . . .) being

that of µ then ν has frequency representation (1a1+a2 , 2a2+b2 , . . .) so that |ν| = n + m.

This agrees with F (m)
N (t) in a series expansion up to O(tN−m) (since the last equation in

(3.36) is also valid for finite N so long as |ν| = n + m ≤ N , by a result of appendix A).

Now, since

zν

zλzµ
=

∞∏

j=1

(aj+bj)!

aj !bj !
, (3.37)

we obtain from (3.36) that,

F (m)
∞ (t) =

∞∑

n=0

∞∑

a1,...,an=0

∞∑

b1,...,bm=0

δa1+···+nan,nδb1+···+mbm,m

m∏

j=1

(aj + bj)!

aj !bj !
tn

=

∞∑

b1,...,bm=0

δb1+···+mbm,m

m∏

j=1

∞∑

aj=0

(aj + bj)!

aj !bj !
tjaj

∏

j>m

1

1 − tj

=
∞∑

b1,...,bm=0

δb1+···+mbm,m

m∏

j=1

1

(1 − tj)bj+1

∏

j>m

1

1 − tj
.

(3.38)
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For the first few cases we have that, with PN (t) as defined in (2.26),

F (m)
∞ (t) =






P∞(t) for m = 0
1

1−tP∞(t) for m = 1
2

(1−t)(1−t2)P∞(t) for m = 2
, (3.39)

whose series expansion agrees with (3.17), (3.26), (3.32) up to O(tN−m) for, respectively,

m = 0, 1, 2. We may use (3.20) with (3.36) to determine N(n,m) exactly for N ≥ n + m.

Asymptotic Counting of Quarter BPS Operators at Large N

Asymptotic counting for the one boson case in the large N limit, for which, with PN (t)

as defined in (2.26), with p(n) being the total number of (unordered) partitions of n,

ZU(∞)(t) = P∞(t) =
∞∑

n=1

p(n)tn , (3.40)

is the multi-trace partition function, entails finding an asymptotic value for the partition

number p(n) for ‘large’ n. This may be achieved by performing a saddle point approxima-

tion of p(n) = 1
2πi

∮
dtP∞(t)t−n−1. The function P∞(t) has a ‘large’ singularity at t = 1,

but in addition has singularities at all other roots of unity - see [45] on the validity of ignor-

ing these contributions asymptotically. This method was used by Hardy and Ramanujan

to find their celebrated formula, here given in a less detailed form as,

p(n) ∼ 1

4n
√

3
exp

(
π
√

2
3n
)

, (3.41)

which was improved by Rademacher to give p(n) exactly. Their method relied crucially on

the modular properties of P∞(t).

Focusing now on the two bosonic fundamental field case for which, in the large N

limit, (3.20) with (3.38) gives exact counting, at issue is first finding asymptotic values for

the numbers Q(n, m,b) = Q(n, m, b1, . . . , bm), with constraint equation
∑m

j=1 jbj = m,

defined by
m∏

j=1

1

(1 − tj)bj+1

∏

j>m

1

1 − tj
= 1 +

∞∑

n=1

Q(n, m,b)tn . (3.42)

Having found these we may then attempt to find the dominant contribution to (3.20) with

(3.38) for large N . In order to give asymptotic values for Q(n, m,b) we may follow [46] and

apply a formula due to Meinardus which gives a general result for the generating function

∞∏

n=1

(1 − tn)−an = 1 +
∞∑

n=1

r(n)tn . (3.43)
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A detailed version of Meinardus’ theorem may be found in [46] but for purposes of brevity

we may note that it implies that, as n → ∞,

r(n) ∼ C nκ exp
((

AΓ(α + 1)ζ(α + 1)nα
)1/(α+1)

(α + 1)/α
)

, (3.44)

where ζ(s) =
∑∞

j=1 j−s is the Riemann zeta function and the constants C, κ, α, A are

determined by the auxiliary Dirichlet series,

D(s) =
∞∑

j=1

aj

js
, (3.45)

which must converge for Re(s) > α, a positive real number, and possess an analytic

continuation in the region Re(s) ≥ c, −1 < c < 0, such that, in this region, D(s) is

analytic except at a simple pole at s = α where it has residue A. In terms of α,A then

C =
1√

2π(1+α)

(
AΓ(α + 1)ζ(α + 1)

)(1−2D(0))/2(α+1)
expD′(0) ,

κ = (D(0) − 1 − 1
2α)/(α + 1) .

(3.46)

Applying Meinardus’ theorem to the case of (3.42), clearly we have

D(s) =

m∑

j=1

bj

js
+ ζ(s) , (3.47)

so that, assuming m =
∑m

j=1 jbj is fixed, D(s) has a simple pole at s = α = 1 where it

has residue A = 1. Using

D(0) = − 1
2 +

m∑

j=1

bj , expD′(0) =
1√
2π

m∏

j=1

1

jbj
, (3.48)

then, from (3.44) with (3.46), we may easily determine that, as n → ∞,

Q(n, m,b) ∼ 1

4n
√

3

(√
6n

π

)∑m

j=1
bj m∏

j=1

1

jbj
exp

(
π
√

2
3n
)

. (3.49)

This reduces to (3.41) when bj = 0, 1 ≤ j ≤ m, whereby Q(n, 0, . . . , 0) = p(n). Using

(3.20) for (3.38) with (3.42) and (3.49) then, as n → ∞,

N(n,m) =
∑

b1,...,bm≥0∑m

j=1
jbj=m

Q(n, m,b) −
∑

b1,...,bm−1≥0∑m−1

j=1
jbj=m−1

Q(n+1, m−1,b)

∼ 1

4n
√

3

(√
6n

π

)m

exp
(
π
√

2
3n
)

,

(3.50)
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since Q(n, m,m, 0, . . . , 0), for b1 = m, bj = 0, j > 1, dominates over all other terms in

(3.50). This gives asymptotic values for the numbers in (1.1), for counting quarter BPS

operators, transforming in [m, n−m, m] SU(4)R representations, in the large N limit of

free N = 4 super Yang Mills, as previously described.

4. Counting Operators in the Chiral Ring of N = 4 Super Yang Mills

For the purposes of counting operators in the chiral ring of N = 4 super Yang Mills,

we denote corresponding multi-trace partition functions by CU(N)(t).

The generating function for CU(N)(t) for the case of one bosonic fundamental field has

been written in the form [1,3,9]

C(ν, t) =
∞∏

n=0

1

1 − νtn
=

∞∑

N=0

νNCU(N)(t) , (4.1)

so that ν acts as a chemical potential for the rank of the gauge group U(N). The equiv-

alence CU(N)(t) = ZU(N)(t) = PN (t), with ZU(N)(t) as in (2.25), is actually a special case

of the q-Binomial theorem. Writing - see [43] for notation -

(a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1) , (4.2)

then the q-Binomial theorem is, for |x|, |q| < 1,

∞∑

k=0

(a; q)k

(q; q)k
xk =

(ax; q)∞
(x; q)∞

. (4.3)

(Identifying ν = x and q = t and setting a = 0 in (4.3), so that 1/(ν; t)∞ = C(ν, t) above

and 1/(t; t)N = PN (t) in (2.26), then CU(N)(t) = ZU(N)(t) = PN (t) straightforwardly.

This special case of the q-Binomial theorem is due to Euler.)

For the two boson case, so that the single particle partition function is given by

f(t, u) = t + u for some t, u, then the generating function for the finite N chiral ring

partition function CU(N)(t, u) is given by [1,3,9]

C(ν, t, u) =
∞∏

n,m=0

1

1 − νtnum
=

∞∑

N=0

νNCU(N)(t, u) . (4.4)

This function is more difficult to analyse in terms of counting though has been investigated

by Stanley [47] in relation to partitions - there it has been dubbed the ‘double Eulerian’
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generating function. Through use of the Cauchy-Littlewood formula, then we may expand

CU(N)(t, u) in terms of partitions of N as,

CU(N)(t, u) =
∑

λ⊢N

hλ(t)hλ(u) , (4.5)

where

hλ(t) = sλ(1, t, t2, . . .) , (4.6)

so that using an identity for Schur polynomials to be found in [24,47] then

CU(N)(t, u) =
∑

λ⊢N

∏
1≤i<j≤N (1 − tλi−λj+j−i)(1 − uλi−λj+j−i)

∏N
i=1(t; t)λi+N−i(u;u)λi+N−i

(tu)
∑N

i=1
(i−1)λi . (4.7)

(4.5) with (4.6) has a natural interpretation in terms of plane partitions in that, for π

being all column-strict plane partitions of shape λ, |π| =
∑

i,j πij ,
9

hλ(t) = sλ(1, t, t2, . . .) =
∑

π

t|π| . (4.8)

Obviously, (4.5) with (4.8) generalise for other chiral ring sectors. (For a different connec-

tion between the ‘double Eulerian’ generating function and major indices of permutations

see [47], p. 385.) As an illustration of (4.5) with (4.8), we may consider the case N = 2

whereby λ = (2, 0), (1, 1) gives the two possible partitions of 2. For λ = (2, 0) (corre-

sponding to a Young diagram with a single row of two boxes) π11 ≥ π12 ≥ 0 gives all

column-strict plane partitions of shape (2, 0), while for λ = (1, 1) (corresponding to a

Young diagram with a single column of two boxes) then π11 > π21 ≥ 0 gives all column-

strict plane partitions of shape (1, 1). Thus,

h(2,0)(t) =
∑

π11,π12≥0

π11≥π12

tπ11+π12 =
1

(1 − t)(1 − t2)
,

h(1,1)(t) =
∑

π11,π21≥0
π11>π21

tπ11+π21 =
t

(1 − t)(1 − t2)
,

(4.9)

9 See [47] for a detailed description of plane partitions. Briefly, a column-strict plane parti-

tion of shape λ is an array π = (πij) of non-negative integers with finitely many non-zero entries,

that is arranged in a Young tableaux with shape λ - see appendix A - such that the numbers πij

are weakly decreasing along each row, πij ≥ πi j+1 ≥ 0, and strictly decreasing down each column,

πij > πi+1 j ≥ 0. The sum of the parts of π is given by |π| =
∑

i,j
πij . (Note that in contrast to

the definition in [47], here we are allowing πij = 0, for some i, j, to be a part of the plane partition

π with shape λ.)
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so that, from (4.5) for N = 2,

CU(2)(t, u) = h(2,0)(t)h(2,0)(u)+h(1,1)(t)h(1,1)(u) =
1 + ut

(1 − t)(1 − t2)(1 − u)(1 − u2)
, (4.10)

which is the correct result as may be verified by extracting the ν2 coefficient in an expansion

of (4.4) up to O(ν2).

In the large N limit,

CU(∞)(t, u) =
∏

n1,n2≥0
n1+n2>0

1

1 − tn1un2
, (4.11)

upon which attention is shortly focused.

For the numbers N(n,m) → N̂(n,m) counting quarter BPS primary operators for the

chiral ring of N = 4 super Yang Mills, belonging to [m, n − m, m] SU(4)R R-symmetry

representations, as in (1.1), we have 10

N̂(n,m) =
1

8π2

∮ ∮
dt du CU(N)(t, u) s(n,m)(t

−1, u−1) (t−1 − u−1)2 . (4.12)

These may be more conveniently evaluated in terms of the numbers in (3.4) M(n,m) →
M̂(n,m), counting all chiral ring quarter BPS operators in the [m, n−m, m] SU(4)R repre-

sentation, given by

M̂(n,m) =
1

(2πi)2

∮ ∮
dt du CU(N)(t, u) t−n−1u−m−1 , (4.13)

so that N̂(n,m) = M̂(n,m)−M̂(n+1,m−1). Defining Pλ(n) to be the number of column-strict

plane partitions π of shape λ so that |π| =
∑

i,j πij = n, then, from (4.5) with (4.8) and

(4.13), M̂(n,m) =
∑

λ⊢N Pλ(n)Pλ(m). Thus,

N̂(n,m) =
∑

λ⊢N

(Pλ(n)Pλ(m) − Pλ(n+1)Pλ(m−1)) , (4.14)

counts chiral ring quarter BPS primary operators in SU(4)R representations [m, n−m, m]

for any n, m at finite N .

Asymptotic Counting for Chiral Ring BPS Operators at Large N

For asymptotic counting of operators in the chiral ring of N = 4 super Yang Mills

at large N , a relatively crude method is employed here which nevertheless captures the

10 This formula employs the orthonormality relation of Schur polynomials described here

and has appeared in a similar context in [33], appendix B.
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exponential behaviour of counting numbers of interest. This method is based on saddle

point approximations of functions near a dominant singularity - see [45] for a useful sum-

mary. (Often for physical applications in thermodynamics, e.g. for entropy formulae, we

are interested only in the exponential behaviour of such numbers anyhow.)

To illustrate, we consider the one boson case in the large N limit again. We first find

a convenient ‘approximating function’ as follows,

P∞(t) =

∞∏

n=1

1

1 − tn
= exp

(
−

∞∑

n=1

ln(1 − tn)
)

∼ exp
(
−
∫ ∞

0

ds ln(1 − ts)
)

= exp
(
− π2

6 ln t

)
,

(4.15)

which has an ‘easier’ singularity structure. (The approximation in the second step may

be justified by the Euler-Maclaurin formula for approximating sums by integrals.) Using

(4.15) then for large enough n,

p(n) =
1

2πi

∮
dt P∞(t)t−n−1 ∼ 1

2πi

∮
dt eg(t) , g(t) = − π2

6 ln t
− n ln t . (4.16)

We may approximate the latter integral for large n by noting that the dominant contribu-

tion is at the saddle point t′ = e−π/
√

6n ∼ 1 for which

g(t′) = π
√

2
3n , g′(t′) = 0 , g′′(t′) =

2

π

√
6n3 eπ

√
2/3n = α , (4.17)

so that, for t′′ = t − t′,

p(n) ∼ eπ
√

2n/3 1

2πi

∮
dt′′ e

1
2 αt′′2 ∼ eπ

√
2n/3 1

2π

∫ ∞

−∞
ds e−

1
2 αs2

=
1√
2πα

eπ
√

2n/3 .

(4.18)

Thus,

ln p(n) ∼ π
√

2
3n , (4.19)

which captures the correct behaviour of ln p(n) for large n, according to (3.41).

We may proceed analogously for the quarter BPS chiral ring multi-trace partition

function at large N , (4.11), which we approximate by

CU(∞)(t, u) =
∏

n1,n2≥0
n1+n2>0

1

1 − tn1un2
= exp

(
−
∑

n1,n2≥0
n1+n2>0

ln(1 − tn1un2)
)

∼ exp
(
−
∫ ∞

0

∫ ∞

0

dv dw ln(1 − tvuw)
)

= exp
( ζ(3)

ln t lnu

)
.

(4.20)
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In this case we have, from (4.13),

M̂(n,m) ∼
1

(2πi)2

∮ ∮
dt du eg(t,u) , (4.21)

where

g(t, u) =
ζ(3)

ln t lnu
− n ln t − m lnu , (4.22)

for n, m large. The dominant contribution to the integral, for n, m both large and of the

same order, occurs about the point (t′, u′) ∼ (1, 1) where

t′ = e−(ζ(3)mn−2)1/3

, u′ = e−(ζ(3)nm−2)1/3

, (4.23)

for which

g(t′, u′) = 3 3
√

ζ(3)nm ,
∂

∂t
g(t, u)

∣∣∣
(t′,u′)

=
∂

∂u
g(t, u)

∣∣∣
(t′,u′)

= 0 ,

∂2

∂t2
g(t, u)

∣∣∣
(t′,u′)

= 2(ζ(3)−1n5m−1)
1
3 e2(ζ(3)mn−2)1/3

= α ,

∂2

∂u2
g(t, u)

∣∣∣
(t′,u′)

= 2(ζ(3)−1m5n−1)
1
3 e2(ζ(3)nm−2)1/3

= β ,

∂2

∂t∂u
g(t, u)

∣∣∣
(t′,u′)

= (ζ(3)−1n2m2)
1
3 e(ζ(3)mn−2)1/3+(ζ(3)nm−2)1/3

= γ .

(4.24)

So long as m, n are both large and of the same order, the saddle point approximation is

justified and we obtain

M̂(n,m) ∼ e3 3
√

ζ(3)nm 1

4π2

∫ ∞

−∞

∫ ∞

−∞
dv dw e−

1
2 (αv2+βw2+2γvw) = h(α, β, γ)e3 3

√
ζ(3)nm ,

(4.25)

where

h(α, β, γ) =
1

2π
√

αβ − γ2
=

1

2π
√

3
(ζ(3)m−2n−2)

1
3 e−(ζ(3)mn−2)1/3−(ζ(3)nm−2)1/3

. (4.26)

We thus have that for n, m both comparably large,

lnM̂(n,m) ∼ 3 3
√

ζ(3)nm , (4.27)

so that

ln N̂(n,m) = ln
(
M̂(n,m) − M̂(n+1,m−1)

)
∼ lnM̂(n,m) ∼ 3 3

√
ζ(3)nm . (4.28)
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It is difficult to check the consistency of this result given the dearth of literature on

these types of multi-variable generating functions and their asymptotic behaviour, however,

we may consider the simpler function, also considered in [9],

CU(∞)(t, t) =
∞∏

n=1

1

(1 − tn)n+1
=

∞∑

r=0

E(r) tr , (4.29)

where, in terms of the counting numbers N̂(n,m), from (1.1),

CU(∞)(t, t) =

∞∑

n=0

n∑

m=0

(n−m+1)N̂(n,m) tn+m ⇒ E(r) =

[ 12 r]∑

m=0

(r−2m+1)N̂(r−m,m) .

(4.30)

Hence, E(r) counts quarter BPS primary operators in the chiral ring of N = 4 super

Yang Mills, transforming in [m, n−m, m] SU(4)R representations, with the same conformal

dimensions r = n+m. Extracting the dominant contribution to ln E(r) from (4.30), which

occurs at the maximum value of m, mM = [12r], and using (4.28), we obtain

ln E(r) ∼ ln N̂(r−mM,mM) ∼ 3
2

3
√

2ζ(3)r2 . (4.31)

By considering (4.29) directly, we may employ Meinardus’ theorem (described in the

third section) to find the behaviour of ln E(r) as r → ∞. Note, however that Meinardus’

theorem may not be applied directly to (4.29) since the corresponding auxiliary Dirichlet

series (3.45), with aj = j+1, has two simple poles. To overcome this difficulty we split

(4.29) into a product of two functions, both separately amenable to application of Meinar-

dus’ theorem. One is the reciprocal of the Euler function, P∞(t) in (4.15). The other, the

MacMahon function, is given by

M(t) =
∞∏

n=1

1

(1 − tn)n
=

∞∑

r=0

q(r) tr , (4.32)

and has been considered in a similar context as here in [3].11 Writing

CU(∞)(t, t) = P∞(t)M(t) , (4.33)

11 The relation of M(t) in (4.32) to plane partitions is given a description in [46]. Briefly,

q(r) gives the number of ordinary plane partitions π, so that πij ≥ πi+1 j > 0, πij ≥ πi j+1 > 0,

with |π| =
∑

i,j
πij = r. p(r) < q(r) as ordinary partitions λ are a special case of plane partitions.

In fact, the formula for ln q(r) found here is a special case of a more exact asymptotic formula

first found by Wright [48] for the number of plane partitions q(r) of the number r.
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with P∞(t) as in (4.15), so that, using (4.29),

E(r) =
∑

r1,r2≥0
r1+r2=r

p(r1)q(r2) , (4.34)

we may find the asymptotic behaviour of ln E(r), as r → ∞, by extracting the dominant

contribution from (4.34) using the asymptotic behaviour of p(r), q(r). The auxiliary

Dirichlet series for M(t) in (4.32) is, from (3.45) with aj = j,

D(s) = ζ(s − 1) , (4.35)

which has a simple pole at s = α = 2, at which the residue is A = 1. Thus, from (3.44),

ln q(r) ∼ 3
2

3
√

2ζ(3)r2 . (4.36)

This is consistent with (4.31) as the dominant contribution to ln E(r) comes from the r1 = 0

term in (4.34) (since p(r) ≪ q(r) as r → ∞) so that ln E(r) ∼ ln q(r).

It has not escaped attention that the method used here, to capture the exponential

behaviour of asymptotic values for the numbers M̂(n,m), may be easily extended to chiral

ring sectors other than the quarter BPS one. Suppose, for simplicity, that Zj , 1 ≤ j ≤ k−1,

are commuting bosonic fundamental fields, in the U(N) Lie algebra, so that the single

particle partition function is given by f(t) =
∑k−1

j=1 tj , in terms of the corresponding letters

tj . Let M̂(m1,...,mk−1) denote the number of independent operators involving products of

m1 Z1’s, m2 Z2’s etc. in corresponding multi-trace operators. The multi-trace partition

function, in the large N limit, is given by,

CU(∞)(t) =
∏

n1,...,nk−1≥0

n1+...+nk−1>0

1

1 − t1n1 · · · tk−1
nk−1

, (4.37)

which may be crudely approximated by, similarly as before,12

CU(∞)(t) ∼ exp
(
−
∫ ∞

0

k−1∏

j=1

dvj ln(1−t1
v1 · · · tk−1

vk−1)
)

= exp

(
(−1)k+1ζ(k)

ln t1 · · · ln tk−1

)
. (4.38)

12 For Lin(x) =
∑

j≥1
xj/jn being the usual Polylogarithm, with Lin(1) = ζ(n), n > 1,

Lin(0) = 0, then with the convention Li1(x) = − ln(1 − x), the following integral

∫ 1

0

dx

x
Lin(zx) = Lin+1(z) ,

may be useful for showing this, after a suitable change of variables.
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Thus, without going into as much detail, for the analogue of (4.27) we have, (assuming mj

are all comparably large,)

lnM̂(m1,...,mk−1) ∼ g(t′1, . . . , t
′
k−1) = k k

√
ζ(k) m1 · · ·mk−1 , (4.39)

where g(t′1, . . . , t
′
k−1) is the value of

g(t1, . . . , tk−1) =
(−1)k+1ζ(k)

ln t1 · · · ln tk−1
− m1 ln t1 − . . . − mk−1 ln tk−1 , (4.40)

at the saddle point (t′1, . . . , t
′
k−1) ∼ (1, . . . , 1), where

(ln t′1, . . . , ln t′k−1) = − k
√

ζ(k) m1 · · ·mk−1 (1/m1, . . . , 1/mk−1) , (4.41)

so that
∂

∂tj
g(t1, . . . , tk−1)

∣∣∣
(t′1,...,t′

k−1
)
= 0 , j = 1, . . . , k−1 . (4.42)

(4.39) is consistent with a result implied by Meinardus’ theorem. The function,13

CU(∞)(t, . . . , t) ∼
∞∏

n=1

(1 − tn)−nk−2/(k−2)! =

∞∑

r=0

c(k, r)tr , (4.43)

has auxiliary Dirichlet series, from (3.45) with aj = jk−2/(k − 2)!,

D(s) =
1

(k − 2)!
ζ(s + 2 − k) , (4.44)

which has a simple pole at s = α = k−1 at which the residue is A = 1/(k − 2)!, so that,

from (3.44),

ln c(k, r) ∼ k

k−1
k

√
(k−1) ζ(k) rk−1 . (4.45)

(4.45) is precisely the result that may be obtained from (4.39) if we maximise the product

m1 · · ·mk−1, subject to the constraint
∑k−1

j=1 mj = r, for which the solution is mj = mM =

r/(k − 1) (relaxing the constraint that mj be non-negative integers, which is irrelevant

asymptotically), so that lnM̂(mM,...,mM) ∼ ln c(k, r).

13 This may be easily seen from (4.37), as the number of solutions to
∑k−1

j=1
mj = n, where

mj are non-negative integers, is the binomial number
(

n+k−2
k−2

)
which, to leading order in large n,

behaves like nk−2/(k−2)!. More properly, we should split the product CU(∞)(t, . . . , t) into pieces

separately amenable to Meinardus’ theorem, as for the prior case for k = 3, however, just as for

that case, the numbers c(k, r) dominate, and so other contributions are ignored here.
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This is applicable to counting multi-trace operators in the eighth BPS chiral ring sec-

tor for N = 4 super Yang Mills with fundamental fields Z, Y, X involving m1 Z’s, m2 Y ’s,

m3 X’s. Expanding the corresponding partition function (4.37), with k = 4, in terms of

Schur polynomials s(m1,m2,m3)(t), m1 ≥ m2 ≥ m3 ≥ 0, similar to (1.1), the expansion

coefficients N̂(m1,m2,m3) count spinless multi-trace primary operators transforming in the

[m2 +m3, m1 −m2, m2 −m3] SU(4)R R-symmetry representation, with conformal dimen-

sions m1+m2+m3 [33]. Just as in (4.28), asymptotically lnN(m1,m2,m3) ∼ lnM(m1,m2,m3).

This counting, however, ignores contributions of the fermionic fields λ, λ̄, which it may be

important to include in order to give correct counting of eighth BPS chiral ring operators.

5. Conclusions

There are some obvious questions not answered by this work. The first is whether

or not the approach in the second section using symmetric polynomials can give insight

into thermodynamics at finite N , such as for the Hagedorn transition, for example. While

it gives the large N expression (2.14) in an elementary way, its wider applicability or

usefulness to such questions is unclear. The approach is undoubtedly useful for finding

exact expressions for counting numbers (as in (3.2), (3.27) and (3.34) for quarter BPS

operators) and (3.9), (3.16) may be useful for analysing counting for more complicated

sectors of N = 4 super Yang Mills, with gauge group U(N).

The second question is how the arguments employing symmetric polynomial tech-

niques here may be extended to other gauge groups, the most pertinent being perhaps

SU(N). Arguments here employing (2.6) and the orthonormality property of Schur poly-

nomials should remain largely unaffected for SU(N). Exact values for counting numbers

obtained here should require some modification for SU(N), though asymptotic values may

be unchanged.

The third question concerns asymptotic values for counting numbers and how these

may be improved. The asymptotic counting formulae given in such papers as [3,9] for

chiral ring sectors are special cases of formulae such as those of Hardy and Ramanujan,

Meinardus, etc., all of which derive from single variable generating functions. It is hoped

that the expressions (3.50), (4.28), (4.39), given here for asymptotic counting of BPS

operators, that distinguishes between differing R-symmetry charges, represents a serious

attempt at going beyond consideration of single variable generating functions.14 Improving

upon these formulae will require more sophisticated techniques, perhaps along the lines

14 After submission of the first version of this paper to the electronic archive, I received

31



used to find those of Hardy and Ramanujan or Meinardus and employing any modular

properties of the multi-variable functions involved. This issue may also be important for

microscopic counting for Black Holes, as the BPS solutions found thus far, for N = 4

superconformal symmetry, depend on special values of R-symmetry charges [17,18,19,20]

- see [50] for a related detailed discussion.

Thus far, the elegant results for finite N partition functions for chiral ring sectors have

been interpreted from a largely geometric perspective - it may be interesting to investigate

more how such results are related to the theory of random matrices and/or symmetric

polynomials.
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Appendix A. Partitions, symmetric group characters, symmetric polynomials

and inner products

A generic partition λ is any finite or infinite sequence λ = (λ1, λ2, . . .) of non-negative

integers in decreasing order λ1 ≥ λ2 ≥ . . . ≥ 0 containing only finitely many non-zero

terms. Often it is convenient to omit zero entries. The non-zero entries are called the

parts of λ the number of which we denote by ℓ(λ). The sum of the parts of λ is called

the weight of λ which we denote by |λ| =
∑

i λi. If |λ| = L then λ is a partition of L

and we write λ ⊢ L. For convenience we sometimes write λ in its frequency representation

which is a reordering of the entries in λ, indicating the number of times each successive

non-negative integer occurs, (1a1 , 2a2 , . . .) so that exactly an of the parts of λ equal n and

|λ| =
∑

n≥1 n an.

In terms of standard Young diagrams, λ corresponds to a Young diagram of shape λ,

with λ1 boxes in the first row, λ2 boxes in the second row etc.; the number of parts ℓ(λ)

is simply the number of rows and the weight |λ| is the total number of boxes.

For the symmetric group, SN , the irreducible representations are labelled by par-

titions λ ⊢ N - see [38] for a useful summary - so that, for Xλ(σ), σ ∈ SN , being a

corresponding matrix representation, then the character of σ ∈ SN in the representation

Xλ is χλ(σ) = tr(Xλ(σ)). The characters are class functions so that they take a constant

value on conjugacy classes and, recalling that for SN the conjugacy classes Kµ are labelled

by partitions µ ⊢ N , corresponding to the cycle structure of a class representative, then

χλ(σ) = χλ
µ for all σ ∈ Kµ. With zλ as defined in (2.8), a crucial property of SN charac-

ters is the orthogonality of the matrix [zµ
−1/2χλ

µ]λµ. This gives rise to the orthogonality

relations, for λ, µ ⊢ N , (see also Ch. IV of [51] for a related discussion,)

1

N !

∑

σ∈SN

χλ(σ)χµ(σ) =
∑

ν⊢N

1

zν
χλ

ν χµ
ν = δλµ , (A.1)

and ∑

ν⊢N

χν
λ χν

µ = zλδλµ . (A.2)

A convenient basis for N variable symmetric polynomials are Schur polynomials

sλ(z) = sλ(z1, . . . , zN ) labelled by λ = (λ1, . . . , λN ). They may be expressed in a number

of ways [24,47]. For convenience we write them as

sλ(z) = aλ+ρ(z)/aρ(z) , (A.3)
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where ρ, the Weyl vector, is given by ρ = (N − 1, N − 2, . . . , 1, 0) and

aλ+ρ(z) =
∑

σ∈SN

sgn(σ) zσ(1)
λ1+N−1 · · · zσ(j)

λj+N−j · · · zσ(N)
λN = det[zi

λj+N−j ] , (A.4)

with

aρ(z) = det[zi
N−j ] =

∏

1≤i<j≤N

(zi − zj) = ∆(x) , (A.5)

being the Vandermonde determinant. Schur polynomials sλ(z) have a standard interpre-

tation as corresponding to the characters of irreducible U(N) (or, for
∏

i zi = 1, SU(N))

Lie algebra representations. Here, λ gives the shape of the Young tableaux for the corre-

sponding U(N) Lie algebra representation.

For λ = (λ1, . . . , λN ) and µ = (µ1, . . . , µN ) where λi, µi ∈ Z then, from the definition

of (2.6) along with (A.3),

〈
sλ, sµ

〉
N

=
∑

σ∈SN

sgn(σ)δλσµ =
∑

σ∈SN

sgn(σ)δλµσ , (A.6)

where, for any λ′ = (λ′
1, . . . , λ

′
N ), λ′σ = σ(λ′+ρ)−ρ is the shifted Weyl reflection of λ′ by σ,

with the action of SN on λ′ being given by σ(λ′
1, . . . , λ

′
N ) = (λ′

σ(1), . . . , λ
′
σ(N)). (Equation

(A.6) is a reflection of sλ(x) = sgn(σ)sλσ (x) for any partition λ and σ ∈ SN - note that this

property is useful for showing (3.25), (3.31). λσ has a standard interpretation in terms of

U(N) Lie algebra representations - for the Verma module with dominant integral highest

weight having orthonormal basis labels λ, λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, then λσ, for σ 6= idSN
,

are the orthonormal basis labels for the highest weights of all invariant sub-modules. This

fact may be exploited to derive the Weyl character formula (A.3) for the irreducible U(N)

Lie algebra representation with dominant integral highest weight having orthonormal basis

labels λ, or, alternatively, Young tableaux of shape λ.)

When λ, µ are partitions so that λ1 ≥ . . . ≥ λN ≥ 0 and µ1 ≥ . . . ≥ µN ≥ 0 then

(A.6) reduces to a well defined inner product,

〈
sλ, sµ

〉
N

= δλµ , (A.7)

so that in this case the Schur polynomials are orthonormal. Note that in order that sλ(x)

be non-zero for some arbitrary partition λ then ℓ(λ) ≤ N , so that (A.7) is zero for ℓ(λ) > N

or ℓ(µ) > N .

Another basis for symmetric polynomials are the power symmetric polynomials, pλ(z),

for λ = (λ1, . . . , λL) ⊢ L, which are defined by

pλ(z) = pλ1(z)pλ2(z) · · · pλL
(z) , pn(z) =

N∑

i=1

zi
n . (A.8)
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Note that there is no longer the restriction that ℓ(λ) ≤ N as for Schur polynomials.

Symmetric group characters may be used to relate the two bases for symmetric poly-

nomials [24,47] so that, with the definition of zλ in (2.8),

sλ(z) =
∑

µ⊢N

1

zµ
χλ

µ pµ(z) , (A.9)

(a theorem of Frobenius) and, for λ ⊢ L,

pλ(z) =
∑

µ⊢L
ℓ(µ)≤N

χµ
λ sµ(z) . (A.10)

((A.9) with χ
(N)
λ = 1 for all λ ⊢ N is useful for obtaining (3.35).)

Regarding the inner product (2.6), then using (A.10) along with (A.7), we then have

that, for λ ⊢ L, µ ⊢ M , 〈
pλ, pµ

〉
N

= δLM

∑

ν⊢L
ℓ(ν)≤N

χν
λχν

µ . (A.11)

Orthogonality of symmetric group characters implies, from (A.2), that for |λ|, |µ| ≤ N

then (A.11) simplifies to, with the definition of zλ in (2.8),

〈
pλ, pµ

〉
N

= zλδλµ . (A.12)
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Appendix B. Tables

N(n)

N n 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1

2 2 2 3 3 4 4 5 5 6 6

3 2 3 4 5 7 8 10 12 14 16

4 2 3 5 6 9 11 15 18 23 27

5 2 3 5 7 10 13 18 23 30 37

6 2 3 5 7 11 14 20 26 35 44

Numbers of multi-trace half BPS primary operators, with conformal dimension n

and belonging to [0, n, 0] R-symmetry representations, for free N = 4 SYM with
U(N) gauge group. (For every N there is one [0, 0, 0] and [0, 1, 0] representation -
these are omitted above.)

N(n,1)

N n 2 3 4 5 6 7 8 9 10 11

2 1 1 2 2 3 3 4 4 5 5

3 1 2 4 5 8 10 13 16 20 23

4 1 2 5 7 12 16 23 30 40 49

5 1 2 5 8 14 20 30 41 57 74

6 1 2 5 8 15 22 34 48 69 92

7 1 2 5 8 15 23 36 52 76 104

Numbers of multi-trace quarter BPS primary operators, with conformal dimension
n+1 and belonging to [1, n−1, 1] R-symmetry representations, for free N = 4 SYM
with U(N) gauge group. (n = 0, 1 cases are all zero.)

N(n,2)

N n 2 3 4 5 6 7 8 9 10 11

3 3 5 10 14 21 27 36 44 55 65

4 3 6 14 21 36 50 73 96 130 163

5 3 6 15 25 44 66 101 142 200 267

6 3 6 15 26 48 74 118 171 251 346

7 3 6 15 26 49 78 126 188 281 398

8 3 6 15 26 49 79 130 196 298 428

Numbers of multi-trace quarter BPS primary operators, with conformal dimension
n+2 and belonging to [2, n−2, 2] R-symmetry representations, for free N = 4 SYM
with U(N) gauge group. (n = 0, 1 cases are all zero.)
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