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STUDIES 1IN THE NON-SYMMBETRIC GENERALIZATION OF THE

- THEORY OF GRAVITATION TI.

By E. SCHRUDINGER .

Summary: The field equations are solved for weak fields. Given a weak
Maxwellian field, the gravitational field can be found by quadra-
fures. It is entirely different from what older theories would
let one expect. Morcover to Maxwell's equations a condition for
the four-current is added, viz. that it has to be the gradient of
an inveriant which satisfies D'Alembert's wave equation. Several
possible analogues of the matter tensor are discussed and computed
for weak Maxwellian fields including charges. The approximation
reached here is insufficient and will have to be extended in order

to reveal the reaction of the fields on their sources.

Introduction.

According to Einstein's famous theory of 1916 the gravitational
field in empty space 1s mathematically described as follows. A symmetr%gii
fundamental tensor 8ix shall have vanishing covariant derivative with re-

, which by this demand is uniquely

spect to a symmetrical affinity rlkl

determined as the Christoffel-bracket affinity {kilx , formed of the 841
and their first derivatives. The contracted curvatﬁre tensor Rik of this
affinity shall vanish. (A loter version of the theory replaces Rik =0

by Rik = )‘gik ; but the constant A of the dimension [ooordina%e] -

is so small on any "human'" scale that for most purposes the 'cosmical

term" can be dropped.)

The non-symmetric generalization of this theory, first pointed out
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1) 2)

by Einstein ’ and Einstein and Straus ', consists essentially in dropping
the two resgtrictions "symmetrical', underlined above. At first an unde-
sirable freedom turns up as to how to generalize the notion of '"covariant
derivative" with respect to a non-symmetric affinity; but this question

should again be

is unequivocally decided by the demand.that the ’"lyl

uniquely determined as functions of the and their first derivatives

ik
and go over into the Christoffel-brackets, when 8ix becomes symmetric.
The two versions as regards ),(: 0 or % 0) remain. But another dilemma

is more momentous. The theory, as described in the preceding sentences

of this paragraph reads

- _ -5 rs -
8ix;1 T Bixk,1 7 Ba M-8 e = ° (1)
5] S
R - _ ar ik + 9 is + rS 1 _ '-—S -1 - 2\ (2)
ik~ Coit! ek T gl ik T 7 84k
axs dxk

Now the equations (1), by determining the [ lkl’ determine a basic vector

field with components [ . [“lki (the hook v is short for '"skew part
v

of"). This vector field vanishes, of course, in the symmetric case. It

would seem not at all unnatural that it should not do so in the general

case, where the demand
' i
F, = 0 . (3)
v
is indeed a severe further restriction. We shall, however, here follow that
more restrictive form of the theory (suggested by Einstein) which adjoins

(3) on equal footing to the field equations (1) and (2). This entails that

1) A. Binstein, Journal of Mathematics, 46, p.578, 1945.

2) A. FBinstein and E.G. Straus, ibid., 47, p.731, 1946.
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the indispensable (first) set of Maxwell's equations
ik ‘
7. / N = 0 (4)

’l

v

é
A7

follows directiy from (1) without any further complication.z)

The equations (1), (2), (3) with the immediate coﬁsequence (4)
represcnt so much the simplest generalization of Einstein's theory of pure
gravitation that it is imperative to study its possibilities as closely as.
one can. Such investigation will carry in differcnt direction according to
what accomplishment one expects from the theory. One may hope that exact
solutions, involving strong fields, will reveal the nature of the ultimatg'
particleé. I do not believe fhis, mainly because I do not bvelieve the
ultimate particles to be identifiable individuals that could be described
in this fashion. Moreover in the symmetric theory (i.e. in Einstein's
theory of 1916) %he exact solutions, involving strong fields, have disclosed
the ingenuity of the mathematicians who discovered them, but nothing more.
Not @nly would their application to the ultimate particles teach us nothing
about the latter; -but none of the great successes of the theory depended on
those ingenious solutions. All the results; Confirﬁed by observation, could
be worked out) though with less elegance and much merc trouble, by a mathe-

matician who could handle only routine methods of approximation.

i

3) L?lk is‘defined as ,glﬁiwffé , where g 1is the determinant of the gik’
U . . . ‘
and the g}k are defined by glkg. = gklg . = 6k . For a -omprehens-
il 1i 1

ive survey see my paper Proc.R.Irish Acad. 51 (A), p.163, 1947.  The
complicatidn alluded to above is the neccssity of distinguishing between

. 3
rlklb and [ the latter intervening in (2), the former in (1)

i
A k1’
and (3).
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In the present theory an assiduous application of such methqu to
weak fields is bound to tell us something on the interlacing of three things,
gravitational field, electromagnetic field, and electric charges. all three
of which here spring from one basic conception (so much so tﬁat for strong
ficlds the sharp distinction between them would probably disappear). One
may hope that this will prdvide a better foundation to the quantum mechanic-
al treatment of the fields, which at present is based on a number of class-
ical or pseudoclassical field theories of independent origin, cemented to-
gether by 'interaction terms'". Macroscopic experience{ ~mbodied in class-
ical theories such as Maxwell's, guides our choice as regards both the basic
field equations and the interaction terms, but still leaves much arbitrari-
ness. The most powerful general restriction is, of course, Lorentz-invari-
ance. Is it too much to expect safer guidance from a unified theory based
from the outset on the principle of general invariance?

This hope is not abated, but strengthened by the fact that the present
theory, as we shall see, is not even in first approximation a simple replica
of what one gets by intrcducing '"matter'" in the form of a Maxwellian field
into the Riemannian manifold that represehts pure gravitation in the symmet-
ric theory. A momentous discrepancy is revealgd by a brief con3idérétion of
equationé (1) and (é). | From (1) the [ 's are linear functions of the first
derivatives gik.l’ just as they are in the symmetric case. It is there-
fore easy to see that in the first member of (2), i.e. in the Einstein ten-
sor, all terms contain two derivations, being either linear in the second de-

rivatives of the g7 OT quadratic in the firgt. If the skew field, Bix?

. . " v
vanishes you get just the Einstein tensor of the {kll.}' If the symmetric
1S

field, gik’ is Galilean, only terms containing two derivations on the gik
- v

{being either linear in their second or quadratic in their first derivatives)
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can survive. They become an additive supplement to the Binstcin-tensor in
the case that both the 8y and the deviations of the gik from (—1,—1,—1,1)
arc small. Hence the saia gik—terms, according to the 10 symmetric com-
ponents of equatiocns (2), consggtute the 'matter fensof” by which the elec~

tromagnetic field "generates" a gravitational field. One would expect

in these places the components of Maxwell's stress-energ -momentum tensor
D 8 9

the familiar quadratic forms of the non-differentiated 8k But this is
v

obvicusly ultra vires of a theory 1ike ours, which from its fundamental

structure must yield here an entity that might locsely be termed an '"Bin-

stein tensor, formed of the gik” with regard to its dependcnce on the

\"4

second and first derivatives of the latter.
This has an interesting consequence for the universal constants
A
that are involved, when the cquations are expressed in C.G.S-units. In the

symmetric theory, wherc the matter-tensor Tik (say, in energy—units) is

introduced explicitly, it is multiplied by

8n k 48 11 2 ~
K = —7 = 2.073% x 10 g 'em” 'sec” , (5)
) c
which gives it the required dimensions cm_‘2 of the Linstein tensor. In

the present thecry one must clearly regard the "geometrical 8;y 28 the

v
electromagnetic field, measured in some (probably very big) universal unit,

. ; -2 :
say b in C.G.S. Thus instead of X  the constant b turns up in the
quadratic terms (which are the leading ones). Since b ix am energy

. 2D -
density (g cm 1sec ) the factor b 2 has the dimension
[b_z‘i = g—1 o mee- , (6)

which differs from (5) by the square of a length.  If one puts
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48 42 (7)

b = X1° = 2.073x 10"~ 17,

one is inclined %o think that 1 must be a universal length of some impors-
ance. What may it mean? Well, the fact that the gravitatibnal effect of
an electromagnetic field depends on derivatives of the field-strength, means,
broadly spezking, that the éffect is ecnhanced fcr short wavelength or high
frequency and reduced for leng waves. Qur 1 dindicates - again very broad-
1y,speaking -~ the order of magnitude of the wave length for which the gravit-
ational effect is of the same order as judged heretofcre.

" These considerations may suffice to indicate the strangeness and
novelty of the present thcory. They raise 3‘host of questions which one
cannot hope to decide without going into many more details about its con-

crete consequences.

1. Radiation Field withcut Chargcs.

The 64 equations (1), ordinary linear equa%ions with respect to
the 64 [ 's, determine the latter uniquely as raticnal functions of the
g's ‘and their first derivatives. But the routine scluticn, which expresses
each [ as the guotient of two detefminantsvcf raﬁk 64 is practically be-
yond contrel, it is just impossiblz to handle. For many purposes the fol-
lowing procedure is useful. One splits (1) into the symmetric and skew-

symmetric parts, writing them thus

-5 S B s -8
81 " Bacl 11 " 8sl e T Bal a1t €50 1 (1,1)
- \'4 v v v .
g -~ (% -a [ = e, T° +e [T (1,2)
8ix,1 " Zax! i1 7 fis’ 1k ! i1 T fis! 1k
\4 1% Y \'4 v
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Envisage the first equation. Following a well-known foutine, multiply it

by

ny i_L

and add to it, member by mcmber, the two cquations obtained by cyclic .

respectively.

permutations (ikl), after multiplying them by '% and -

Then on the right only one term survives. Yow introduce the symmetric ten-

*)

sor hlk by

= %)
gll - 81 (175/

(which implies that we assumc the determinant of the gik' 1o be % 0).
This enables us to obtain the expressions (1,4) for the r'1k1 . Exactly

the , same procedure, applied to (1,2), gives (1,5):

i 40 im -8 )
[ a " {x 1) ~ W e [ e * Bk [ 1 | (1,4)
v v v v
i V2 TN im s 5
r kl = N k l/ + h (\glsr _}f_[p_ gksr ,:_‘,'_(_Il) ' (1,5)
v Y v
While the curly bracket is precisely the Christoffel-symbol of the gik’
r 4 } 1 .im
) . TR 8 + -
i k 1Jl - 2 (g‘m_}.’k g_l‘_(wrﬁ,l {D}S_]_:]m) b 1?6)

the pointed bracket stands for n somewhat anclogous expression formed from:

i . 1 im \ -
w12 = 28 B 1t Bni t e (1,7)
A4 A\ v

N\
s

Notice that the thifd term just fails to continuc the cyclic permutation.

A sometimes uscful remark is that the second member of (1,5) could also be

written
1 4m,
7 0 1 * Eagi t Bgn) 0 (1,8)
v A\ \¥4 ‘
*) ik

We must not call it g, because this is something else.
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the semicolon meaning the invariant derivative with respect to the symmetric
i

affinity [ Kl

The expressions (1,4) and (1,5) are exact, but at first sight not

much seems tc be gained by them, since the first only expresses the affinity

lkl’ and the second the other way round. They are
\'%4
useful inter alia for investigating solutions in the néighbourhood of = sym-

d -
[ Kl by the tensor |

metric gik—field. For from (1,5), if the are small, the components

&k
\
of the tensor are small of the same order. Hence, from (1,4) the symmetric

affinity differs from the Christoffel-brackets only by quantities of the
second order.  Thus, using in (1,5) the Christoffel-brackets for [ Skm

etc., one gets the teunsor, with an error of the third order; and if this is

used in (1,4), one gets r‘lkl with an error of the fourth order. Thus, by

alternating substitutions, both parts, and hence the whole"r'lkl, is developed
in a series of ascending powers of the 8y the rule that produces the next
v

term from the preceding one could easily be established. The explicit approx-
imations for the [ ikl have then to be subjectcd to the equationé (2).

We shall use this first to derive o solution which corresponds to a
weak, but othcrwise arbitrary field of radiation. without charge.and current.

On account of (3) the set of'cquafions whose approximate tréatment we
have just explained has the consequence (4), which is obviocusly Maxwell's first
set, in other words it statecs the vanishing of the magnetic four-currcnt. It
will thus be seen that in the present theory, =t variance with common usage,
the magnetic field is repreéented by the components that have an index 4 , the
electric field by those that have nonec. The vanishing of the eleciric four-
-current is not a field-cquation, but o condition we now impose to specify our

solutions. We choose a2 "small" gix-vectoer ?ik for which cxactly
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Q
Pt 1, Y, 70 (1,9)
and put
Bix = ik (1,10)
v
Wie anticipate that the Eix deviate from their Galilean values only by quan-

Prweminy

tities of the second crder, or rather that solutions can be found for which

this is the casc; but we shall have to prove it. For the moment we assume

gj_k - f'j_ éik + (Pik + ’xlk. y : - (1’11) -
where
- £ = £ = o - 1
61 == C.2... "3’" "1 b 54"17 ?lk— :frki (‘,12)

and the K"s are of the second order.*> It is then easily seen that
G 7T £y Tt O ' (1,13)
so that the field equations (4) demand
€. 9. . = 0, : | (1,14)

third order quantitics being neglected. If (1,9) is multiplied by Ei and

differentiated with resnect to X one gets, with regard to (1,14),

£ { = 4
% P11, 05 ' (1,15)

which is the D'Alcmbers cquation for every component.

*
) The symbol Ei stands outside the summation convention. Its index

always agrees with another one in the same term, as in (1,11) and (1,13),

but thie in itsclf is not to indiceie a summation. Only when the other

Te
index itself is a dumny, as in (1,14) and (1,15), summation applies as

usual.
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So far the 9-ficld is Just an arbitrary charge-free radiation
field, governed by Maxwell's equaticns in empty space, (1,9) and (1,14).
We shall see that no further restrictions nced be imposed on. it. It only
remains to determine the z"s accordingly.

In (1,4) the curly brackets are of the order of the K 's, thus
by assﬁmption of second order, and so are the other terms. ) Hence from
(1,5)

i i
r kl = (\ k 1 > ?
A

neglecting third order terms. But then from (1,7) and (179)

i , .
E Kkl ("i kpkl,i ’ ‘ (1,16)
v

so that (3) is satisfied, in virtue of (1,%4). From (1,4) we get

i ' i o ,
I k1 = {ik 1} - Ei zs (@ls ﬂki,s * @ks @li,s) (1’17)
with

i 1¢ (o o , .
{kl} = S et Y  Vi,e) (1,18)

With *hese expressions we have to set up equations (2), where we
drop, of course, the cosmical term, so just Rkl = 0. If here we split the
[ 's into their symmetric and skew parts, équations (3) entail a consider-

able simplification and we get

(-1 —~ 1 of -
R A R r kp M o
v o ;

0, , (1,19)

N

: . . . . . i
where the first term menns the Einstein tensor formed of the [ K1’ and
the semicolon rigorously refers to them, but may in cur approximation be

replaced by a comma, i.c. by plain differcntiction. Here the third term
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is symmetric in k and 1, the second term, which is skew, vanishes by

(1,16) =2nd (1,15), ond the skew part of the first term

i i
rl{l’l"r.&’k = 0,

as a oguite general and exact consequence of (1). Tndeed if (1) is multi-

plied by glk and contracted, [ 1]i turns out to be the derivative with

respect to x, of the soguare root of the determinant of the 8.k (nof of

1

that would be (.t

the - i} ).  So the skew part of (1,19) is sutis-
( R

5153

fied and we are left with the 50 symmetric equations

o  :
Rl ) = M T = 00 (1,20)
\V v

as the only conditions for the 10 3’ik’ given the Maxwellian radidtion
field @ik' We write them exnlicitly, drcponing a fourth-order contribution
in the first term of (1,20),

) ) o A . .
= rl}n{—];,i 4 "‘lﬁ’l - r l{f'l’ 1 = 0 . A (1,21)
(v \'d

In all that follows the relations (1,9), (1,14), (1,15) must always be re-
membered. We shall not quote them every fime we usc then. The evaluation
of (1,21) according to (1,16) - (1,18) is straightforward, except for the
followingfguite cbvious passage. By contractiﬁg (1,17) and (1,18) with
respect t¢ 1 and 1 one finds

i 1¢ v .
= - - ; F D
M 28 D0 %555 s Ty

(1,22)

Now, in order thot the second term in (1,21) be gymmetric in k and 1, as
it must) the last term in (1,22) must also be a derivative with respect to

X which it deoes not prima facie appear to be. But from (1,9)
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£ ¢ o = - £, £ 9 9 - &8 9 9

A . . .
i s 'is ki,s i"s 'is is,k i s 'is “sk,i

If in the last term you first exchange the notation of the dummies 1 and
s, and then commute the two pairs of "skew subscripts" simultanecusly,

it proves equal to the term on the left. Hence

L (v, 7). : (1,23)

. . 1 .
. T, Py ” c s
i7s 'is ki,s 4 ~17s ' is 'is’,k

We shall have to use this relation frequently.

The result of the whole evaluation of (1,21) is

—1 F -, - -
2 P (s s * Vasen ™ Yaais Zki,l,i)

£.06 (v, 9.) = 0. (1,24)

"
4 Tits Vsi "si’k,1

+ £, & 9

¢, T +
its ks,i '1i,s

The g'—terms‘aro, of course, simply the Binstein tensor of a nearly-
Galilean metric, well known from the theory of weak gravitational fields e.g.
of gravitational waves of infinitesimal amplitude. The P-terms occupy the
place where in thc old theory the matter tensor would be stuck in. It is
their structure that interesté us most, because it is entirely novel.
(The solution for T is perférmea by well known routine methods, we shall
give it in due course.)

One propefty is obligatory in the Y-terms, because the XFierms
have it: when readjusted by "subtracting the half-spur on the diagonal
they must have venishing divergence. This is a welcome check on possible

mistakes in sign or numerical coefficients.  Let us put for cobbreviation

.. ; 1 o ¢ _ 4
€€ Nays Ma,s 7 fits Uy %) k1 T @kl - (1,25)

Then we must find




A 1, ¢ ¢ 4
Fk((—*'kl_26kl 1'm+mm),k = 0,
or
3 _ 1« - 6
(I)kl x "2 “a q)mm,l O (1,26)
Now we have
£y ?kl,k ; s Mko,i P1i,86c 7T Tk"1 s (P ?si),k,k,l

1t

7 Ek ei CSs, ((Psi ? (1,27)

si),k,k',l ’

the first term on the risht vanishing by symmetry. On the other hand

e poof £E 9 g+l € €6 (90
m mm m i s ms,i mi,s 4 m i s gi ei’,m,m
In the first term on the right
. ‘ 1 <
] \ =% @ = — ((
¢ igs (’ms,i ?mi,s 6i gs ('ms,i (pmi),s 4 “1i%s (q)mi ) 4S8 !
where we have used (1,23).  So
- - Ll € £ p r 28
“n ¢mm T2 "mios ((i)si JPSi),m,m ' (1,28)

This and (1,27) proves (1,26).
The last rclation is in itself of interest. Tor according to it
the spur of A
@kl —32— 61{1 £ 1€mg.>mm !
which heret plays the role of the stress-energy-momentum tensor, turns out

to be

1 T R § :
¢ ((‘pkk 2 kkEk;m(iBmm) a fm@mm -7 2£m Ei és <(Ps c?01),m
‘ (1,29)
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This is the D'Alembertian of the invariant (the 1~ - H of elementary
theory) and does not vanish in general, as the spur of Maxwell's energy
tensor does. This leads to the astonishing conclusion that in the present

theory a pure, charge~frec lMaxwellian field of radiation is capable of

producing a gravitational field which according to the old theory could

only be produced by matter other than an c¢lectromegnetic field. This
raises the hope that in this theory we may be able to picture ordinary
matter without sticking it in explicitly.

Now let us attend to the solution of (1,24), which using the

notation (1,25) we write

4 : v i _

2 Ej.(’Jkl,i,i * z’ii,k,l - Zli,k,i - Z,ki,l,i) * q)kl = 0 (1,%0)
For later use we note its contraction, which from (1,28) is

1 < (e

£ - = & €& 0. = .

FEIRY P z;ki,k,i) ry 8 e e )y =0 (1,31)
We contemplate an infinitesimal change of frame

X, = Xq ¢+ al(xm) ; | (1,32)

the functions al are fo be of the same order as the a"s. This does

not change the ¢k1, nor gﬁyl. perceptibly, but it does change the 3"8,

which in any frame must mean the deviations of the 8.k from ﬁi 6ik .

passeuing

One easily finds

Cix= Tae* €x T R T I8 T B (1,33)

and from it the following two relations
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< - f ) o= — ¢ g € & ", L . .

3 (4 ik,i i1,k £( Zik,i 311,1{) TSk 1,1 T B,k
and (1y349~)
’ 1y -y 1 4. - ,

‘ -t - - £ £ .
5 ?(ik,i 2 -’Iii,k) A P i ii,k) RN " ]

(1,34D)

We use them for specinlizing our transformation a in two different ways.
P 1

The first will be used much later - we insert it here only as a digression

to save our repeating the scome kind of argument then. We can not choose '
the a so that the first member of (1,34&) vanishes, because it has a non-

1

vanishing divergence, from (1,31), which holds with the same Qis in 21l

our frames. But we can try to demand

- “ _ ” - _l IC C ' 2
£5 Wanys = Jaapd) 2 £ 85 (9 %50) x (1,35)
which leads to the condition for A
A V) N - Y - " -
7 1 E(ug ‘is),k v £y fii,x aik,i) = &8 i1 7 ti,i,k
(1,36)

This turns into an inhomogeneous D'Alembert equation, if we make the access-

ory demand
ai,i = 0, (]’3‘7)

anclogous to lexwell's auxiliary condition (div A + A = 0) in the theory

of the electromagnetic potential. From this familiar theory it is known

that (1,37) will be satisfied, if we choose for ay the retarded potentials
of the first member of (1,36); it will be satisfied because this first
member has according o (1,31) vanishing divergence. The conclusicn is

thot - if we have a solution of (1,30) - o frame can always be found, in

which (1,35) holds. This we shall use much later. I apolegisc for the

digression, which is hercby cnded.
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To establish a scluticn of (1,30) we need 2 different special-

ization of a suggested by (1,34b). This is much simpler. We can

k’

obviously obtain
. ) ;

£ ¥ 1y = . 3
£, 0 ik,i T2 ¢ ii,k) = 0 (1,38)

by choosing for ak any solution of

" . 1 A U
= } - — B < C» * .
0 FRY NS ?fii,k) Yk Py, (1,39) '
In the primed frame (1,30) is greatly simplified, it reads
oty =0 | (1,40)
. 2 "4 0x1,i,i 0 Ikl ? . ’
rT\ ' & .
where ;J;kl needs no dash, becausec it has not changed. Any solution of

(1,30) can be transformed into a solution of (1,40) that satisfies (1,38).
So we lose nothing in generality by adopting the simplifiea form (1,40)
right away and restricting attention to those soluticns that satisfy (1,38) -
others are of no interest whatever.

We have %o shecw that such solutions in general exist. Take for
B-;l in (1,40) the retarded notential, and readjust the equation by sub-

tracting its half-spur on the diagonal:

““ ,L. A B .

1y (v .1 x 1s ¢ & .
2 'i(dtkl 2 "k].f £ 5 ) .o tY i T2 5kl\'l 'm‘i”mm = 0.
: 1 m¢mn’,i,i =~ =
We have shewn zbove, (1,26), that the (p -terms have vanishing divergence. . '

Though it is now a quecstion of a tcnsor-divergence, the same reasoning ap-
plies that we used just before in conncction with (1,37), borrowihg from
the elementary theory of retarded potenﬁials; we must only, as it were,
apply the argument four times over. It follows that the expression in the

round bracket, being the retarded potential of something that has vanishing



1T~
divergence, has itself vanishing divergence. The four cquations which
gtate this fact arce preciscly (1,38). This reazlly finishes our problen:

together with an arbitrary Maxwellian field, the retarded potential solu-

+tions of (1,40) are an (apnroximate) solution of the field-equations.

The solution is, of course, not unique.  DBut two different sol-
utions obviously differ only‘by a system of gravitational waves of small
amplitude, familiar fron the symmetric theory. They too are most conven-
iently investigated in o framc such as we have used; they then take the -
form of 10 arbitrary wave-functions, interrelated by the four relations
(1,38).

It would be intercsting to know whether, by superposing on to
our solﬁtion ~ guitnble system of gravitational waves, one could obtain in
general one %hat givee the gfkl as functions of the local wkl and their
derivatives. - I have ncither been able to find it, nor to prove definitely
that it is impossible. But I suspect the latter.

An alteruative method of solving (1,40) is to give oneself @,
as a Tourier integral, that is to resolve the electfomagnetic field into
plané waves. Then ore obtains the Fourier representation of ijqkl from
(1,25) and that of the Y's from (1,40). The condition (1,38) mst be
checked. An essential feature of this method, which I intend to follow
up in a later section, is that Tor o single plane wave g;kl :'O. The
field-producing "matter" is constituted, as far as our present analysis

goes, by the contributions of pairs of plane waves.
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2. Charges.

If the four-current does not vanish, (1,9) has to be superseded

by the definition of the four-current

P07 F + @ = 8 . (2,1)

ik,1 T k1,1 7 T34,k ikl

This is the only primary modification, but it entails many others. While

(1,14) stays

(1,15)'becomes at first

5.9 'y | (2,3)

i kl,1i,i i %ik1,i

(but it will be restored).. TInstead of (1,16) we get now

A 1
M = <1 = & % m 5 8 oy (2,4)
\¥4
and instead of (1,17)
1 (i : , 1
- ¢ ; ¢ - £ X
M 1x 1} £5 6,00 neis * ks o) Y35 £ oig + %g 144

(2'y5)
while (1,18), of courcc, stays.

From (2,4) and (2,2) the condition (3) is satisfied. In (1,19)

nothing is changed; as before, the second term is the only skew constituent,

however it no longer veanishes automatically, but imposes tho condition

£ 0, . (2,6)

< Sg1i,4

from (2,4) and (2,3). (This, by the way, restores (2,3) <o its original

)s
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form (1,15).) The convenient rule (1,23) becomes now

r )

£E 9, 9. = =T (9

<, ¢, )
i7s is 'is’,k

£ % o9

1
T2 % Ts Tis Skis (2,7)

This causcs no additional terms in [ lki’ which from (2,5) and (2,7)

is the same as from (1,22) and (1,23), via.

-

i "" 'l - -J- F { { ~
Mo = 26T 7680 Bdp - (38)

The evaluation of (1,21) is now easy. Many terms cancel. The net re-

sult, superseding (1,24) is:

A

1 . ‘ % A o
2 6,1 7 Xii,k,l 0i1,k,i .'fki,l,i) 88 N s P,
1ls 1 “ -
+ 7 elgs((?si ('Psi)’k’l + 1 3 ES Skis ollS = 0 . (2’9)

The on.y modificétion is the addition of the last term.

The interesting novel feature is (2,6) which restricts the dis-
tribution of the four-currcnt in on unexpected way. The four-current,
owing to the unwonted allotmént of indices to the field components, pre-
sents itself in the prescent theory primarily'as an antisymmetric tensor
of +third rank SHER To grasp the neaning of (2,6), let us just for the
moment return to the customary notation with the help of the antisymmetric

density f.lklm (which must not be confused with the Galilean metric Ej).

We get from (2,6)

. ~Tskl
byl 94,5 © 0 . (2,10)

Here X% and 1 (¥ k) ore 'meither r nor s ™, so that there are -

disregarding the trivial repetition that results from exchanging k



and 1 - only two terms, viz. i =1r and i = s. If we suspend the sum-

nation rule for a moment, the equation reads

(¢ 1‘51‘81{l Sklr),r + (€ s-E' Tt Skls.),s = 0. |
This we multipiy by - £r Es and permute the super;scripts in a certain
way:

(E's‘c:Sklr :1r),r— (F‘r‘grklS Skls),s = 0. (2,11)

Here the summation rule is still suspended and sklr are a definite per-
mutation of 1234. But now we may restore the summation rule inside

both the brackets, for this only amounts to multiplying our equation by

3! = 6. Moreover we put quite generally (of course with summation rule)

1 ¢ ,mnpq ' A
= = - N 2
) 6'(‘mc Snpq (_2,1 )

Then (2,11) becomes

Ps,r " Prys T o : - (2,13)
Moreover from the definition of Sy by (2,1) it is easy to shew that
1 (mnpq ‘
¢ = - f = o -
L i pm9m .67 “npq, 0 ; (2’14),7

which is the equation of continuity of the charge and current. According
to (2,13) the four-dimensional curl of Py vanishes. We know that this

means it is a gradiens, say

0

P = «‘1{) . V (2,15)
b
From (2,‘;4) !’P must satisfy

€0 Qoum = O (2,16)
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So the restriction imposed on the flow of clectricity boils down to this:

the four-current is the gradient of an invaricnt wave»functiop (i.e. of
a solution of D'ilembert's cquation). |

Thé solution of (2,9) follows exactly the pattern of (1,24): or
(1,30), the latter form comprising (2,9) provided we now supplement the

definition of ;R , formerly given by (1,25), thus:
. ta 25), thus

@ - b E < g .5 (9,9 £, €

1
471 s Siis "1is °

(2,17)

1
K1 i % Pei Ma,s T AT e Tt oi) k1

I emphasized before the remarkable fact that its spur does not vanish even
in the charge-frce case. T wish to supply the general value of this spur,
and also the proof that (1,26) continucs to hold, as of coursc it must.

We have now
+le e 6 s (2,18)

The first term on the right we transform, paying attention to (2,2),

(2,7), (2,6) ond (2,1):

1l
0
N")
Y%
-y

£ty €o(Pg s Yug)

5432 mi',y s m~-i~s

2 oe e |

1Eg & & (g 1 £ ¢
= y - C S .
4 m i JPM1Qm%sp 6tm 1“5 %sim “sim
This gives
e ¢ - te €€ (o s £ € g
m ¥’ mm 2“m 1 s sl "si’ym,m 12 m i s “mis “mis ’
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which supplemcnts (1,28).

To prove (1,26) in the present case we form fron (2,17)

+

n

e =& ¢ le € (9, 9
k Tkl,k Ek i J%mﬂ.%Lsxk+4 k ieé*a(%ﬁﬂgml

I
1

. (2,20)

S, . Sy
s kis Tlis,k ’

$

and from (2,19)

B %em@mm,l = %Em{igs(@si (Psi),m,m,l * 312-8111 Eri gs Smis Smis,l )

‘ (2,21)
We have to shew that the second members of the last two equations are equal.
The first term on the right of (2,20) vanishes (one part by (2,2), the other
by symmetry ). The second term is the same as the first in (2,21). It re-

mains to be shewn that the last terms, respectively, are equal, that is

£ & s . (2,22)

- £ ~ l
Eaci¢ 3%m "1 s “mis “mis,l

S . S,.
'm 1 s mis "lis,m
The first member can be transformed by using (2,1) and the equation of con-

tinuity that follows from (2,1): we get for this first member

E £, & (9. +9, +9 ) s, =
m i~s mi,s is,m sm,i’ “lis,m
- p ( . :rEE’ .
¢ m"iE S Pmi,s(slis,m * Slmi,s * Slsm,i) “mTis Qmi,s smis,l
In the second member of (2,22) one may obviously replace s . by 3 9@ .
mis mi,s

on account of the antisymmetry of the other factor and the prescribed sum-
mations.' This proves (2,22), and thereby the vanishing of the divergence
of our present q3kl (when readjusted by subtracting its half-spur on the

disgonal).
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Tet us survey the procedure by which a complete meaningful sol-~
ution could be built up, ss far as our present analysis goes. One first
gives oneself an arbitrary solution {E) of D'Alembhert's equation. This
determines the.four—current 11 by (2,15) and (2,12). Then one has %o
determine from Maxwell's cquations (2,2) and (2,1) an electromagnetic field

that may reasonably be regarded as "sroduced" by that s, and f£inally,

. , ikl’
from (2,9), a gravitatioﬁal field 5/k1 that may roaspnably be regarded;gs
"nroduced" by the Maxwellian field;

This procedure can be accomplished by quadratures, butvit leaves
at every step wide liberty. One con see exactly to what stage of classic-
al thecories it corresponds: to determine the ¢lectromagnetic field, given
the motion of the charges, and the gravitational field, given the digtrib-
ution of matter. What is missing is the 'back-coupling", the influence
of bothffields on the motion of the charges and that of the gravitational
field on the glectromagnetic field. Obviously our quadratic approximation
is only a first step. To oxtend it to the next order will be a very lab-
orious task. But it will have to be grappled with, if one wants to know

what this theory rcally says about the intcflacing of the fields.

3. The Inergy Tensor.

The Ci}kl (readjusted by etc.; I shall sometimes suppress this
phrase), being. for weak ficlds the sources of the gravitational field, have
a certain claim to be colled the matter tensor for weck fields; but they

have two competitors to this dignity, viz. arrays that present thenselves

in the generzl theory as natural analogues of the pseudotensor of the old
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. 4
theory, usually denoted there by Q'lm . These arrays are most conven-

iently described in terms of the following abbreviations

A ~ . o ["/j’ r o f? )
A ix ! i6 ! >k ! AX r ik ( 3y 13)
_ L ik A | _
/\ B Jé', ' \ik (3y1b)
o oo l « /3 .
N ik [ i T Oy r ig” (3,1c)

We make a note that

ik SRANE TPV AV (3,2)

o ik

il

In terms of these /\'s the two arrays read, if the cosmical-term is dropped

and the field equations (1), (2), (3) are fulfilled,

[+'¢ X
i Y ik x .
! 1 =z (A ikUd’ 17 87N, (3,3)
and .
& _ _ 1,4k A
4 1 = 5 (;y} /\ ik,1 . . (374)
A’ {

Fa9
- The first rcduces in the symmetric case to the familiar pseudotensor of

Pinstein, of which it is a generalization that I derived two years ago.4)

The second is a different generalization, a little suspect because it
differs from the first even in the symmetric case, but somewhat suggested

)

by the purely affine aspect5 (that ic why we have distinguished it here

by an "A" wunder the 4—). In a later section I shall give a compre-

4) Proc. Roy. Irish Acad., 52 (A), p.1, 1948; eqn. (4,6).

5) ibid. under press.
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hensive survey of the derivations of these two pseudotensors, both of
which have, of course, vanishing divergence. If this is known for the

first', it is easily proved for the second. Indeed their difference

e 4% 1, ik g A 1o

AE T A R 2(1;} 2 ik>,1+26l/\
has the divergence

1, ik A & 1A

2(..;} A RIS RAN

which is zero; for

Y

ik X, ik ”‘ ik o
. . = v = / — 2 = —
(‘;}/ A lk),“ ‘({1 /\ 1k,')( + 'j ' A 11{ /\ /\ /\,
since
ik X _
ét A ik, 4
and
ik A X
(‘} i N i =~ 2 AN A (N\)

The first follows from the field equation Rik =0, by (3,2) and (3,1p),
the second from the facts that /\ is homogeneous of 2nd degree (indeed a

quadratic form) in the o A and that
q 7«

A v ik o} ik
8 A = - N — .
> 4% '/\ik O{j /\ ik 8(% yo() !

if /\ is regarded as a function of the 80 argum‘ents 4,.}11{ and o}lk & y
’
4 /i

(%
to be varied independently (except for the four linear relations (4) between
the latter, which must be nreserved in the variation; +to derive the last
relation, the [ 's must be expressed by the field equation (1))~ This

completes the proof, which I have inserted herc merely as a digression.
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_To computé our two pseudﬁtensors for weak fields, including

charges, we first evaluate the N's, (3,1), up to and including the
second order. The last term in (3,1a) is, in virtue of (3),'of third

order, so we have

re e

Aik = ik o~k
v v
= -5 ¢ (9, e (o ~Ls ), (3,5)
Yo Y Al T2 Tipet’ Ty 2 Tk« /s !
and
N o= -&. 6t (9 L e _ls )
17 At iAo 2 TABeT e,y 2 Tl
e e 1, 1
1T - (9. . -— S,
1 /3L4(Qld@ld)qﬁ,ﬁ 12 1qﬁ i3 ’

(3,6)

by (2,7) emd (2,1). The evaluation of (3,1c) gives by (2,4), (2,5) and

(2)8):
o 1 r o )
= - - £ < 0 [é ¢
Ay Ex (P, 0 ™72 TIRVDIL S S C $6%s P10 ,s * Yis ket s) *
1 s CTE Lo ov.]
o St (g et Pig Skee) ~ O L2080 }fyﬁ;,_ra,i TR Es(’/as “)/35),1‘ :

(3,7)
Mbreoﬁer; including quantities of the first order only, we have from (1,11)
and (1,13)

o = E s o+ £.E 0, . (3,8)

i ik ik ik

(SN

We turn to (3,3). In the first term on the right both factors are small
and need therefore be considered in the first corder only. It is conven-
ient to pull the contravariant index down. From the last three equations

we get
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p. 1 ~ 41 A ;\
- — ~J -G [ S 4 \ e
j-'xl 2 VMV ik,e 2 ik.'x"“il k ])ik,l
1 -
- £ 8 _£.& £ _1 1 ]
= Ly P U N o 1 .
© lEe ﬁb(k’)is 'is),,_,;; e D “is /4 Sis/—' (3,9)

No obvious simplification is possible, but we may notice that the second
term on the right represcnts the half-spur of_the first "subtracted on
the diagonal''. This must be so according to the rclation marked { N ).
above.

The evaluation of (3,4) is a 1little more laborious, bscause the

first factor is finite, so that the whole exoression (3%,7) must be taken
’ e gl

into account. Ve obtain first, using elso (1,18),
i - _1 o 1 A v
<:{\'b{l 2(1(1 LPlk(rik,c( 2 1ko£),1 2£1( Ve 1,1 4711,0( y 1 *
v EE (9, 9 B N C U I A C S :
i s''is 'det,s’y1 2 1 7s ls 187,41 8 “/s'"Aas As,o,1
(3,10)
We write the first term as follows
16 1 (o . 1. 1 . ~ 7 .
- =t & o9, - 9. s + o=l e (Pl , - .
2 i k' 'ik ik, o Z\Plk ik :{),1 2C1'k\P1k,l (911(,(,'( '15 ik,1 “dik o
Moreover, according to (2,7)
1 . 1 /- "
o ,C ! _--—,f_ (| S —- — < i .
“i's(pis (Piuf,s 2‘i£spis iofs 4€i£s\Pisc')is),o(
We shall explain presently that we can introduce a frame in wnich
E Yoy = ) EER 9 ) o EE Py = O
it dii, . Gl 2 i s is is'y, o 471"k ik ik«
(3711)

In this frame we get
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1
@i %3 w1 =3 Pin,1 Sikw

+

NN N

/( - 1 ¢ ’ -
Yx1 T 2 'iglc ‘%k,l yik,d

! ik

i
g (9 Siktx),l] . (3.12)

The first and the third terms coincide with the first part of (3,9), but
the other terms in (3,12) are not diagonal as there. The structure of
(2,17) is entirely different.

The demand (3,11) is the generalization, for non-vanishing cur-
rent, of the demand (1,35). The proof that it can be fulfilled runs ex-
actly analogously to fhe one we anticipated theré'in the gimpler case, in
order to refer to it now. Thekproof is based on the fact that the con-
tracted field equations (2,9), afler an casy reduction, enounce precisely
the vanishing of the divergence of the first member of (3,11). This
makes it possible to introduce a frame in which these 4 quantities them-
selves vanish. Thnis framec is in general not the same as would simplify
the 2’—term in (2,9) (viz. reduce it to its first term) for the purpose
of integration.

It is noteworthy that for a single plane wave all three anal-
ogues of the matter tensor, viz. (1,25) "readjusted", (3,9) and (3,12),

vanish.
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