
Title Non-locality of non-Abelian anyons

Creators Brennen, G. K. and Iblisdir, S. and Pachos, J. K. and Slingerland, J. K.

Date 2008

Citation Brennen, G. K. and Iblisdir, S. and Pachos, J. K. and Slingerland, J. K. (2008)

Non-locality of non-Abelian anyons. New Journal of Physics, 11 (10). p. 103023. ISSN

1367-2630

URL https://dair.dias.ie/id/eprint/225/

DOI DIAS-STP-08-13



ar
X

iv
:0

8
1
0
.4

3
1
9
v
1
  
[q

u
an

t-
p
h
] 

 2
3
 O

ct
 2

0
0
8

Non-locality of non-Abelian anyons

G.K. Brennen1, S. Iblisdir2, J.K. Pachos3, and J.K. Slingerland4,5

1 Centre for Quantum Information Science and Security, Macquarie University, 2109, NSW Australia
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Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental

decoherence while performing quantum computation. These highly correlated systems can support non-Abelian

anyonic quasiparticles that can encode exotic entangled states. To reveal the non-local character of these en-

coded states we demonstrate the violation of suitable Bell inequalities. We provide an explicit recipe for the

preparation, manipulation and measurement of the desired correlations for a large class of topological models.

This proposal gives an operational measure of non-locality for anyonic states and it opens up the possibility to

violate the Bell inequalities in quantum Hall liquids or spin lattices.

Quantum mechanics is a non-local theory: it allows for cor-

relations between distant systems that cannot be explained

in terms of a local preparation. Many believed that non-

locality was due to incompleteness of quantum theory. Ein-

stein, Podolsky and Rosen (EPR) in their seminal work [1]

aimed to resolve this by introducing local hidden variables.

Their values would complement the information supplied by

quantum mechanics, thus restoring locality. Bell inequali-

ties aim at validating or rejecting this view from experimental

data [2]. To date, unlike local hidden variable (LHV) theories,

the predictions of quantum mechanics have been consistent

with all Bell tests.

Particle exchange gives a striking example of non-locality

in quantum mechanics. For bosons and fermions, one can deal

with the exchange interactions by imposing non-local con-

straints on the form of the wave function. More generally,

the wave function can transform in a nontrivial representation

of the fundamental group of configuration space when parti-

cles are adiabatically exchanged [3]. For planar systems, this

group is the braid group and particles transforming in nontriv-

ial braid group representations have been dubbed anyons [4].

Anyonic exchange interactions are topological in nature and

do not change on variation of the distance between the parti-

cles, or the metric of the spacetime manifold. One mechanism

for such interactions is the Aharonov Bohm effect [5].

It is natural to ask if the non-local correlations of anyons

can in principle be explained using local hidden variables.

In this paper we answer this question for a number of anyon

models, by constructing a Bell test for anyonic degrees of free-

dom and showing violation of the associated Bell inequalities.

Anyons can be split into two main categories, they can be

Abelian or non-Abelian. Given labels {a j} for the different

types of anyons we assign fusion rules that determine the out-

come of bringing two anyons together, ai × a j = ∑k Nak
aia j ak.

Here Nc
ab ∈ N counts the number of ways of combining a and

b to obtain c. Non-Abelian anyons have ∑c Nc
ab ≥ 2 for some

pair a,b, while in the Abelian case, the labels of the fused

anyons determine a unique outcome which can be determined

in a unique way.

In a physical system with anyons, the low energy part

of the Hilbert space can be thought of as a tensor product

H = H local ⊗H non−local, where the first factor describes lo-

cal degrees of freedom, which we will ignore, and the sec-

ond describes topological degrees of freedom associated with

the anyons. These topological degrees of freedom may arise

as a result of nontrivial topology of the space supporting the

anyons. For Abelian anyons, this is in fact the only possibility;

in the Abelian toric code models [6] for instance, the non-local

degrees of freedom are described by elements of the first ho-

mology groups of the surface with finite group coefficients. In

principle, one probe non-local correlations in these topologi-

cal degrees of freedom, but the observables involved would

need to be non-local themselves [7].

For non-Abelian anyons, even on a contractible surface,

there are non-local degrees of freedom associated with the

different fusion outcomes. A number of proposals have been

made on how the associated quantum numbers, or topolog-

ical charges, might be measured by interferometry, see [8],

[9] for further references and [10] for an overview of the

measurement theory. We will not go into the details of in-

terferometric measurements here, but rather just assume that

we can do projective measurements onto the various fusion

channels. The non-local Hilbert state space of n anyons

(a1,a2, . . .an) with total charge c has dim(H non−local) =

∑b1,b2,...,bn−2
Nb1

a1a2
Nb2

b1a3
Nb3

b2a4
· · ·Nc

bn−2an
. This Hilbert space

usually does not admit a tensor product structure, e.g. the

dimension could be prime, and thus does not obviously fit

the usual paradigm for tests of non-locality. Nevertheless,

we show that topological interactions can indeed be used to

demonstrate non-locality in the EPR sense. In order to do

this, we consider two classes of anyonic theories: the SU(2)k

models, including the Fibonacci model [9], and a model based

on discrete gauge theory [11, 12]. These models are impor-

tant both for their potential to process quantum information

fault tolerantly and for their viability for experimental real-

ization. For these cases the fusion spaces are at most one

dimensional, i.e. Nc
ab < 2 for all (a,b,c). Non-commuting

measurements project onto different ways of combining par-

ticles a,b,c to yield d. Measurement bases are labelled by

the intermediate products x and x′ obtained by fusing a,b,c

http://arXiv.org/abs/0810.4319v1
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and are related by the recoupling formula: |(ab)c → d;x〉 =

∑x′(F
d
abc)

x′
x |(a(bc) → d;x′〉.

To date, most Bell tests have been performed on entan-

gled light beams, but there is certainly an interest in showing

that material media can be used to demonstrate non-locality.

Experiments involving a photon and an atom, two atoms, or

even kaons have been proposed or even carried out [13]. The

schemes we are proposing contribute to this effort of using

ever new media for Bell tests. As we shall see, some of them

could be implemented in a fractional quantum Hall liquid [9],

while others can be associated with arrays of Josephson junc-

tions [14] or atoms in optical lattices [15].

In order to build intuition for the anyonic case we describe

the general framework by employing distinguishable spin-

1/2 particles with non-trivial fusion properties. The fusion

rules are interpreted as the angular momentum decomposi-

tion of tensor products of vector spaces. Consider a system

divided into two spatially non-overlapping subsystems A and

B, conveniently labeled as Alice and Bob, each one possess-

ing three spin-1/2 particles, as seen in Fig. 1. First, we per-

form a joint measurement on the total spin ~Stot = ∑ j~s j and

post-select the Stot = 0 outcome that has state space dimen-

sion five. Second, we define a set of measurement operators

{ϒA
1,2,ϒ

A
2,3,ϒ

B
4,5,ϒ

B
5,6}, where ϒi, j = (~si +~s j)

2 −1. The eigen-

values of ϒi, j are +1 in the triplet space and −1 for the singlet

and the operators ϒA(B) act on the subsystems A(B). The op-

erator pair within A or B is non-commuting but [ϒA
i, j,ϒB

j,k] = 0.

Consider the expectation value of the operator

W = ϒA
1,2ϒB

4,5 +ϒA
1,2ϒB

5,6 −ϒA
2,3ϒB

5,6 +ϒA
2,3ϒB

4,5. (1)

For a classical theory, even in the presence of local hidden

variables (LHV) [16], the Bell inequality for W is |〈W 〉LHV| ≤
2. This can be derived straightforwardly as follows [17].

Assume independence of the two subsystems (locality) so

that the joint probabilities for pairs of outcomes is just the

product of the individual probabilities which could depend

on a hidden variable λ, drawn from a fixed distribution

p(λ). For the above quorum of observables with outcomes

{mA
1,2,m

A
2,3,m

B
4,5,m

B
5,6} ∈ ±1 we have

(mA
2,3 + mA

1,2)m
B
4,5 − (mA

2,3 −mA
1,2)m

B
5,6 = ±2.

Hence, in the LHV model, the outcomes must satisfy

|WLHV| = |R dλp(λ)〈(ϒA
1,2(λ)ϒB

4,5(λ)

+ϒA
1,2(λ)ϒB

5,6(λ)−ϒA
2,3(λ)ϒB

5,6(λ)

+ϒA
2,3(λ)ϒB

4,5(λ))〉|
= |R dλp(λ)(mA

2,3(λ)+ mA
1,2(λ))mB

4,5(λ)

−(mA
2,3(λ)−mA

1,2(λ))mB
5,6(λ)|

≤ 2

Quantum mechanically, the maximum value of |〈W 〉| is ob-

tained for eigenstates of W with maximum eigenvalue, i.e.

|〈W 〉| ≤
√

7. For arbitrary operators in Eq. (1) that have the

same commutation structure and square to 1, quantum me-

chanics satisfies Tsirelson’s inequality [18], |〈W 〉| ≤
√

8. Our

! "
# $

%& '(

FIG. 1: A Bell type measurement on six particles. First a joint mea-

surement (large oval) on all six particles is made and the result kept

if the total charge (or spin) is zero. Alice performs measurements of

total charge on pairs 1,2 and 2,3 and Bob performs measurements

on pairs 4,5 and 5,6. For some quantum states the correlator 〈W 〉
exceeds the bound set by local hidden variable theories.

aim is to find a violation of the classical upper bound in the

subspace of states with Stot = 0. Note that our protocol allows

for measuring correlations without the need of a shared refer-

ence frame between Alice and Bob [19] thus giving a simple

and unambiguous test of Bell inequalities. In the anyonic case

treated below the operators ϒi, j also have eigenvalue −1 when

the fusion outcome is the vacuum and +1 otherwise.

There are two natural orthonormal bases for a three particle

system based on the two different orders of fusing the three

particles. These are graphically represented by fusion trees in

Fig. 2b. The unitary transformation that describes the change

from one of these bases to the other is given by the so called

F matrices. The basis change for three particles with charges

(a,b,c) fusing to d is given by a matrix denoted Fd
a,b,c. For the

case of SU(2) these matrices just describe angular momen-

tum recoupling and their matrix elements are the Wigner 6- j
symbols. For six particles with total spin 0, we get four nat-

ural product bases from the two pairs of bases for each triple.

The contributing particle labels are the spin values {0, 1
2
,1, 3

2
}

and the only relevant F-matrix for changing between bases is

F
1
2

1
2

1
2

1
2

, which, for the SU(2) case is given by

F ≡ F
1
2

1
2

1
2

1
2

=
1

2

(

1
√

3√
3 −1

)

in the basis given by fusion trees with intermediate spins 0 and

1. We find the following set of orthonormal states for the six

particle system, in the local fusion basis as defined in Fig. 2,

|φ0〉 = |0′〉A|0〉B, |φ1〉 = |1′〉A|0〉B, |φ2〉 = |0′〉A|1〉B,

|φ3〉 = |1′〉A|1〉B, |φ4〉 = |1( 1
2
, 3

2
)〉A|1( 1

2
, 3

2
)〉B,

(2)

where |x〉 ≡ |x( 1
2
, 1

2
)〉 and |x′〉= ∑x Fx

x′ |x〉. In spin components

we have |φ0〉 = |Ψ−〉1,2 ⊗ |Ψ−〉3,4 ⊗ |Ψ−〉5,6, where |Ψ−〉 =

(| ↑↓〉− | ↓↑〉)/
√

2, so the state |φ0〉 has three adjacent singlet

pairs. Notice that in order to have trivial total charge the local

bases occur in pairs that share the same label β as defined in

Fig. 2.

In the basis {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}⊔ |φ4〉, we have

W = (F†σzF ⊗F†σzF + F†σzF ⊗σz +σz ⊗F†σzF −σz ⊗σz)

⊕2|φ4〉〈φ4| (3)
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α α α α α α

β β

x y|ψ〉 =
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x,y,β
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FIG. 2: The state space of anyons in our protocol represented as

fusion trees. (a) An arbitrary state of six α type anyons with trivial

total charge expanded in terms of fusion outcomes local to A and

B. In the models considered here, β is its own antiparticle, but it is

straightforward to generalize. (b) A “local” fusion basis satisfying

ϒA
2,3|x(α,β)〉A = ±|x(α,β)〉A and ϒA

1,2|x′(α,β)〉A = ±|x′(α,β)〉A for

x a vacuum state or a particle and similarly for B. For each subsystem

the bases are related by an F move: |x′(α,β)〉= ∑x(F
β
ααα )x

x′ |x(α,β)〉.

The Hilbert space splits into different sectors labeled by β,

which are conserved by the action of W . There is a four di-

mensional sector with β = 1/2 and a one dimensional sector

with β = 3/2, containing |φ4〉. No Bell violation can occur

in the β = 3/2 sector, since the measurement operators com-

mute in that sector. Maximally Bell violating states are thus

orthogonal to |φ4〉. For the one parameter family of states

|r(a)〉 =
a√
2
(|φ0〉+ |φ3〉)+

√
1−a2

√
2

(|φ1〉− |φ2〉), (4)

with (−1 ≤ a ≤ 1) we plot the expectation value 〈W 〉 seen

in Fig. 3. The maximal violation (〈W 〉max,min = ±
√

7 ≈
±2.6458) is obtained for a± = ∓

√

(7±2
√

7)/14.

Consider now a two dimensional system with quasiparticle

excitations described by SU(2)k Chern-Simons-Witten theo-

ries. The corresponding fusion rules satisfy the addition of

angular momentum with the constraints j1 × j2 → j only if

j1, j2, j ≤ k/2 and j1 + j2 + j ≤ k. It is quickly verified that for

k ≥ 3, the total charge zero sector of six particles labeled by

spin 1/2 again has five states, labeled by the same fusion trees

as in the SU(2) case. The F matrices will differ, but for our

purposes, the only relevant recoupling is still F̃
1
2

1
2

1
2

1
2

. Comput-

ing the quantum 6- j symbols, we find (see for instance [20])

F ≡ F̃
1
2

1
2

1
2

1
2

=
1

[2]q

(

1
√

[3]q
√

[3]q −1

)

where the quantum integers are defined as [m]q = qm/2−q−m/2

q1/2−q−1/2

for m integer. For the SU(2)k theories, q = e
2πi
k+2 . In the limit

k → ∞, then [m]q → m. As before, we can label the states in

the local fusion basis, as in Eq. 2, but with the appropriate F

matrix. The state |φ0〉 is obtained by creating spin-1/2 parti-

cle anti-particle pairs at positions (1,2),(3,4),(5,6) out of the

vacuum. For the one parameter family of states |r(a)〉 we find

maximal violation at

a+ = − 1
√

8cos( 2π
k+2

)+cos( 4π
k+2

)+5

[

cos2( 2π
k+2

)+ 4cos( 2π
k+2

)

+
√

2cos4( π
k+2

)(8cos( 2π
k+2

)+ cos( 4π
k+2

)+ 5)+ 2

] 1
2

(5)

and at a− =
√

1−a2
+, where

〈W 〉 = ±sec2
( π

k + 2

)

√

4cos
( 2π

k + 2

)

+
1

2
cos

( 4π
k + 2

)

+
5

2
.

It is possible to verify that k → ∞ corresponds to SU(2). A

qualitative difference between anyonic systems and the spin

systems discussed before is that, while the z-components of

the spins of all particles are in principle measurable, there

are not necessarily any observables associated with the z-

components of the ‘q-spins’ of the anyons. Only SU(2)q

invariant quantities, such as the total q-spins of groups of

anyons, can be observables, or at any rate topologically pro-

tected observables. This can be traced back to the superse-

lection rule that says that the total q-spin of all anyons to-

gether must be trivial. If it were possible to measure the z-

components of every anyons’ q-spin, then the state obtained

would no longer be invariant under SU(2)q. In fact, a similar

rule would hold for confined particles in gauge theory and so

for a better analogy, one may think of the SU(2)q invariance

as begin closer to an SU(2) gauge symmetry rather than spin.

It was shown by Freedman et al. [21] that the anyonic the-

ories with k ≥ 3, k 6= 4 are universal for quantum computa-

tion. Hence, for those theories, the Bell violating states can be

obtained by topological braiding operations alone acting, for

example, on the fiducial state |φ0〉. We now check to see if it

is possible to generate a state which violates the inequality for

the k = 2 case. The SU(2)2 anyons are believed to exist in the

ν = 5/2 plateau of the fractional quantum Hall effect [? ] up

to charge factors that affect the Abelian part of braiding. They

come in three varieties, the vacuum, 1, the fermion, ψ, and

the non-Abelian anyon, σ, that satisfy the non-trivial fusion

rules, σ×σ = 1 +ψ, σ×ψ = σ and ψ×ψ = 1. The counter-

clockwise exchange of two σ particles, which fuse to either 1

or ψ, results in the matrix evolution R = 1⊕ i expressed in the

basis labeled by the fusion channels {1,ψ}. The state evolu-

tion produced by the exchange of particles with no immediate

fusion channel is found by employing the recoupling matrix

F . Expressed in the basis {|x(σ,σ)〉A|y(σ,σ)〉B;x,y∈{1,ψ}},

we have the following representation of the generators of the

braid group B 6

B1 = e−i π
4 σx ⊗12,B2 = e−i π

4 σz ⊗12,B3 = e−i π
4 σx⊗σz

,

B4 = 12 ⊗ e−i π
4 σx

,B5 = 12 ⊗ e−i π
4 σz (6)
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where B j results from the exchange of j and j +1 particles in

a counterclockwise manner. As a simple initial state we can

consider |φ0〉 that is produced from (1,2), (3,4) and (5,6)
pairs created from the vacuum.

a

〈W 〉

!!"# !#"$ #"$ !"#

!%

!!

!

%

FIG. 3: The expectation value of the Bell witness W as a function

of the amplitude of mixing for the total charge zero states |r(a)〉 in

Eqs. (4). The yellow, blue, and red lines correspond to an SU(2),
SO(3)3, SU(2)2 theory with six spin-1/2, σ, τ particles, respectively.

The shaded region corresponds to states which violate the inequality

derived for local hidden variable models.

The braid group generators, B j, are in the Clifford group,

so we cannot generate a dense set in SU(4) by braiding

alone[31]. But can we still obtain Bell violating states? In

Refs. [24, 25] a LHV model was introduced for a pair of

qubits that exactly reproduces the set of allowed operations

in the present model. There are two distinct configurations of

shared vacuum pairs (up to relabeling of particles by Alice or

Bob) both of which can be obtained from |φ0〉 by braiding.

Hence it is not possible to build Bell violating states starting

out from three shared vacuum pairs using topologically pro-

tected operations alone.

Despite the impossibility of producing a Bell violating state

from |φ0〉 by topological gates, one can in fact straightfor-

wardly obtain a maximally Bell violating state using non-

topological gates[32]. Let us employ the non-Clifford gate

D = e−i π
8 σz ⊗ 1. This can be implemented by bringing the

2 and 3 σ anyons nearby, thus shifting the energy of the

fermionic fusion channel [27] such that a relative phase

eiπ/4 is accumulated on that channel. From these opera-

tions one can build the controlled phase gate in the follow-

ing way CP = eiπ/4B2B1B2B−1
3 B−1

2 B−1
1 B5. A simple search-

ing algorithm provides us with the sequence that produces

|r(a−)〉 = −CPB3B4DB2B3|φ0〉, with 〈W 〉 = −2
√

2, thus sat-

urating the Tsirleson bound.

In fact, it is indeed possible to realize a maximally violat-

ing state without braiding at all. Consider a state |φ′0〉 given

by a distribution of singlet pairs on (1,6), (2,5) and (3,4).
This state |φ′0〉 is related to the fiducial distribution of pairs by

the following braid word |φ′0〉 = 1√
2
(|0′〉A|0〉B + |1′〉A|1〉B) =

B−1
2 B−1

3 B5B4B3B2|φ0〉. This state would be maximally vio-

lating if we could measure in arbitrary local bases. For our

fixed measurement quorum |φ′0〉 is related to the maximally vi-

olating state by e−i π
8 σy ⊗1|φ′0〉 = |r(a+)〉 and hence it suffices

to implement the local unitary e−i π
8 σy

= e−i π
4 σz

e−i π
8 σx

ei π
4 σz

on

Alice’s side to obtain a Bell violation. The z rotation is sim-

ply achieved by bringing anyons 2 and 3 near each other as

above, and similarly the x rotation is performed by pushing 1

and 2 together. Note that the maximal Bell violation in these

two constructions actually saturates the Tsirelson inequality,

making the SU(2)2 case at the same time ‘maximally quan-

tum mechanical’ and ‘topologically classical’.

Let us turn now to Fibonacci anyons from the SO(3)3 the-

ory. This is the theory obtained from SU(2)3 but using only

integer spin particles: the vacuum 1 and the non-Abelian

anyon τ, with non-trivial fusion rule τ × τ = 1 + τ. All par-

ticles are their own anti-particles and the quantum dimensions

are d1 = 1 and dτ = φ≡ (1+
√

5)/2. The relevant recoupling

matrix is

F = Fτ
τττ =

(

φ−1 φ−1/2

φ−1/2 −φ−1

)

expressed in the basis of 1 and τ. The dimension of the

topological Hilbert space of m + 1 type τ anyons with total

charge zero is fm, the mth Fibonacci number, hence there are

five states in the fusion space. These states can be decom-

posed into superpositions of products of local basis states as

in Eq. 2 where |0〉 = |1(τ,τ)〉 and |1〉 = |τ(τ,τ)〉 and |φ4〉 =
|τ(τ,1)〉A|τ(τ,1)〉B. The state |φ0〉 is the state obtained by cre-

ating type τ particle anti-particle pairs on (1,2),(3,4),(5,6)
out of the vacuum. For the one parameter family of states

|r(a)〉 we find the same maximal violation as in Eq. 5 for

SU(2)3: 〈W 〉 = ±2
√

−7 + 4
√

5 ≈ ±2.7887. This is not very

surprising, considering that the SU(2)3 theory is equivalent

to the product of the Fibonacci theory and an Abelian theory

with Z2 fusion rules (see for instance [28]). The action un-

der braiding is represented by the matrix Rττ = ei4π/5 ⊕ ei7π/5

expressed in the basis {1,τ}. We obtain the following repre-

sentation of the generators of the braid group B 6 expressed in

the basis {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}⊔ |φ4〉:

B1 = [FRττF−1 ⊗12]⊕ (ei7π/5)

B2 = [Rττ ⊗12]⊕ (ei7π/5)

B3 = O†[ei4π/5 ⊕ ei7π/5⊕ ei7π/5 ⊕
(

M1
1 M1

0

M0
1 M0

0

)

]O

B4 = [12 ⊗FRττF−1]⊕ (ei7π/5)

B5 = [12 ⊗Rττ ]⊕ (ei7π/5)

(7)

where O maps the product basis to the basis {|φj〉}4
j=0, and

M = (Fτ
τττ )

−1RττFτ
τττ . A length 25 braid word produces a Bell

violation: |Ψ〉 = [B3B−1
4 B−1

1 B−1
3 B−1

2 ]5|φ0〉 with 〈Ψ|W |Ψ〉 =
2.5310.

In the models above, measurements by Alice and Bob had

two outcomes for the two fusion products of the anyons. To

accommodate more outcomes we can use higher dimensional

Bell witnesses [29]. We demonstrate how this works in an-

other anyonic model with excitations in one to one corre-

spondence with irreducible representations of a Hopf algebra,

D(G), the quantum double of a finite group G [11, 12]. The
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particles can carry electric and magnetic charge and are la-

beled by Π[α]
R(N[α])

where [α] denotes a conjugacy class of G

which labels the magnetic charge, and R(N[α]) denotes a uni-

tary irreducible representation R of the centralizer of an el-

ement in the conjugacy class [α], which labels the electric

charge. The dimension of the carrier space for each irre-

ducible representation, which equals the quantum dimension

of the particle Π[α]
R(N[α])

is d[α]
R(N[α])

= |[α]||R(N[α])|. The quan-

tum dimensions satisfy the sum rule ∑(d[α]
R(N[α]

)2 = |G|2. We

focus on the simplest non-Abelian finite group, S3, the group

of permutations on three objects. Elements of S3 are orga-

nized into three conjugacy classes: [e] = {e} the identity el-

ement, [t] = {t0,t1,t2} the transpositions, and [c] = {c+,c−}
the cyclic permutations. The 8 irreducible representations for

D(S3) are

Π[e]
R+

1

d = 1 (vacuum)

Π[c]
β0

,Π[t]
γ0

d = 2,3 (pure magnetic charges)

Π[e]
R−

1

,Π[e]
R2

d = 1,2 (pure electric charges)

Π[c]
β1

,Π[c]
β2

,Π[t]
γ1

d = 2,2,3 (dyonic combinations)

(8)

A complete derivation of the fusion rules for this model is

given in [30]. In the toric code realization of these anyon mod-

els, the quantum dimensions d[α]
R(N[α])

= |[α]||R(N[α])| actually

count local degrees of freedom associated with the anyon. In

the discrete gauge theory context, these degrees of freedom

are also present in the description of the system, but some of

them are gauge. A single particle’s electric charge and mag-

netic charge can always be measured locally (or at least within

a region of size characteristic of the particles), by braiding

with other locally prepared charge pairs and measuring the

outcome of fusion of the pairs. Truly non-local properties are

contained in the fusion space. To explore this we pick a fu-

sion subalgebra of D(S3): {Π[e]
R+

1

,Π[e]
R−

1

,Π[c]
β0
} which we label

for convenience {1,Λ,Φ}. The non trivial fusion rules are

Λ×Λ = 1, Λ×Φ = Φ, Φ×Φ = 1 +Λ +Φ.

These fusion rules are the same as the fusion rules for the

representations of S3 itself and also the same as the fusion

rules of the integer spin sectors of SU(2)4. The particles are

their own anti-particles. The magnetic charge Φ with quan-

tum dimension 2 carries non-Abelian statistics and the fusion

of n such particles gives: Φ×n = 1
3
(2n−1 +(−1)n)(1 + Λ)+

1
3
(2n + (−1)n−1)Φ. As before, we will work in the superse-

lection sector with total trivial charge. The smallest number

of particles in this sector that could hope to violate a Bell in-

equality should have fusion space dimension ≥ 4. If we are

to pick measurement operators for Alice and Bob that mea-

sure total charge on pairs of Φ particles and we want two non

commuting operators on each side then we require at least six

particles in total. Exactly six particles suffices, giving Hilbert

space dimension eleven for the vacuum sector.

Either by using the representation theory of D(S3), or by

solving the pentagon and hexagon equations directly, we find

the following recoupling and braid matrices, expressed in the

basis {1,Λ,Φ},

F ≡FΦ
ΦΦΦ=







1
2

1
2

− 1√
2

1
2

1
2

1√
2

− 1√
2

1√
2

0






; R≡RΦΦ =





1 0 0

0 −1 0

0 0 1



 .

We notice immediately that R has eigenvalues ±1, so that we

will end up with a representation of the permutation group

when ‘braiding’ the anyons. Nevertheless, these anyons are

not bosons or fermions, since this representation is non-

Abelian. The fact that we have a permutation group repre-

sentation does signal the fact that braiding in this theory is not

universal for quantum computation. This is in fact a general

property of braiding in discrete gauge theories.

A basis of the eleven dimensional vacuum sector of the six

anyon Hilbert space can be given in terms of superpositions

of products of local basis states, as defined in figure 2,

{∑y Fy
1 |y(Φ,Φ)〉A|1(Φ,Φ)〉B,∑y Fy

Λ|y(Φ,Φ)〉A|1(Φ,Φ)〉B

∑y Fy
Φ|y(Φ,Φ)〉A|1(Φ,Φ)〉B,∑y Fy

1 |y(Φ,Φ)〉A|Λ(Φ,Φ)〉B

∑y Fy
Λ|y(Φ,Φ)〉A|Λ(Φ,Φ)〉B,∑y Fy

Φ|y(Φ,Φ)〉A|Λ(Φ,Φ)〉B

∑y Fy
1 |y(Φ,Φ)〉A|Φ(Φ,Φ)〉B,∑y Fy

Λ|y(Φ,Φ)〉A|Φ(Φ,Φ)〉B

∑y Fy
Φ|y(Φ,Φ)〉A|Φ(Φ,Φ)〉B, |Φ(Φ,Λ)〉A|Φ(Φ,Λ)〉B

|Φ(Φ,1)〉A|Φ(Φ,1)〉B} = {|φj〉}10
j=0.

The state |φ0〉 is obtained by creating type Φ particle anti-

particle pairs on (1,2),(3,4),(5,6) out of the vacuum. Each

such vacuum magnetic charge pair is written: |Φ,Φ;(i, j)〉 =
1√
2
(|c+,c−;(i, j)〉+ |c−,c+;(i, j)〉).
Now in analogy to the cases studied for SU(2)k, we could

look for a Bell like inequality but using measurement oper-

ators with three outcomes. Let Alice have one operator ϒA
1,2

which measures the outcome of total charge for particles 1

and 2 with outcomes {1,Λ,Φ} and another, non commut-

ing operator, ϒA
2,3 that measures total charge for particles 2

and 3 with outcomes {1,Λ,Φ}. In other words, ϒA
1,2 is a

measurement in the basis {(Fβ
ααα )†|y(α,β)〉A} with outcome

mA
1,2 = y ∈ {1,Λ,Φ} and ϒA

2,3 is a measurement in the basis

{|y(α,β)〉A} with outcome mA
2,3 = y. Similarly, let Bob have

two measurement operators, ϒB
4,5 that measures in the basis

{(Fβ
ααα )†|y(α,β)〉B} with outcome mB

4,5 = y, and ϒB
5,6 which

measures onto the basis {|y(α,β)〉B} with outcome mB
5,6 = y.

Now (F1
ΦΦΦ)y

x = δx,Φδy,Φ = (FΛ
ΦΦΦ)y

x, so in the subspace of

{|φ9〉, |φ10〉}, the measurement operators all commute. These

states cannot yield a Bell violation and we can focus on the

states in the 9 dimensional orthogonal subspace which is iso-

morphic to the Hilbert space of two three dimensional parti-

cles (qutrits).

In Ref. [29] it was shown how to construct Bell inequalities

for bipartite systems of equal but arbitrary finite dimension.

In particular for two qutrits the authors introduce the witness

I3 which for all LHV theories satisfies |〈I3〉| ≤ 2, whereas for
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quantum mechanical systems |〈I3〉| ≤ 4. To simplify notation

let us introduce the projectors πy ≡ |y(Φ,Φ)〉〈y(Φ,Φ)| and

π̃y ≡ F†|y(Φ,Φ)〉〈y(Φ,Φ)|F . For the quorum of observables

above, the Bell witness I3 is:

I3 = π̃1 ⊗ π̃1 + π̃Λ ⊗ π̃Λ + π̃Φ⊗ π̃Φ +πΦ⊗ π̃1 +π1 ⊗ π̃Λ
+πΛ ⊗ π̃Φ +π1 ⊗π1 +πΛ ⊗πΛ +πΦ⊗πΦ + π̃1 ⊗π1

+π̃Λ ⊗πΛ + π̃Φ⊗πΦ− π̃1 ⊗ π̃Λ + π̃Λ ⊗ π̃Φ + π̃Φ⊗ π̃1

−π1 ⊗ π̃1 +πΛ ⊗ π̃Λ +πΦ⊗ π̃Φ−π1 ⊗πΛ +πΛ ⊗πΦ
+πΦ⊗π1 − π̃Λ ⊗π1 + π̃Φ⊗πΛ + π̃1 ⊗πΦ
+2|Φ(Φ,Λ)〉〈Φ(Φ,Λ)|⊗ |Φ(Φ,Λ)〉〈Φ(Φ,Λ)|
+2|Φ(Φ,1)〉〈Φ(Φ,1)|⊗ |Φ(Φ,1)〉〈Φ(Φ,1)|

(9)

The state with the largest violation has 〈I3〉 = −2.5216.

We obtain the following representation of the generators

for B 6 expressed in the basis {|x(Φ,Φ)〉A|y(Φ,Φ)〉B;x,y ∈
{1,Λ,Φ}}⊔|Φ(Φ,Λ)〉A|Φ(Φ,Λ)〉B ⊔|Φ(Φ,1)〉A|Φ(Φ,1)〉B}:

B1 = [FRF−1 ⊗13]⊕RΦ
ΦΦ⊕RΦ

ΦΦ,B2 = [R⊗13]⊕RΦ
ΦΦ⊕RΦ

ΦΦ

B3 = O†

[

R1
ΦΦ⊕RΛ

ΦΦ⊕RΦ
ΦΦ⊕RΛ

ΦΦ⊕R1
ΦΦ⊕RΦ

ΦΦ⊕

RΦ
ΦΦ⊕RΦ

ΦΦ⊕





MΦ
Φ MΦ

Λ MΦ
1

MΛ
Φ MΛ

Λ MΛ
1

M1
Φ M1

Λ M1
1





]

O

B4 = [13 ⊗FRF−1]⊕RΦ
ΦΦ⊕RΦ

ΦΦ,B5 = [13 ⊗R]⊕RΦ
ΦΦ⊕RΦ

ΦΦ
(10)

where O maps the product basis to the basis {|φj〉}10
j=0, and

M = F−1RF . Here B2
j = 111∀ j, so we have the permutation

group S6, as mentioned before. We compute the action on

states consisting of vacuum magnetic charge pairs. The state

|φ0〉 = |Φ,Φ;(1,2)〉|Φ,Φ;(3,4)〉|Φ,Φ;(5,6)〉 is the fiducial

state, and the other distinct configuration of vacuum magnetic

charge pairs is |Φ,Φ;(1,4)〉|Φ,Φ;(2,5)〉|Φ,Φ;(3,6)〉 =
B3B4B2B1|φ0〉, hence it suffices to consider the orbit of |φ0〉.
An exhaustive search through 6! = 720 braid words corre-

sponding to all distinct permutations in S6 finds that, while

〈I3〉 is not constant under braiding, we do find that in all cases

|〈I3〉| ≤ 2. Hence we require some operation beyond braiding

to produce a violation of LHV under our protocol. Even if

we restrict to non-topologically protected operations that just

involve interacting pairs of particles, we can indeed produce

a Bell violating state. Consider the family of states |φ′〉 =
D3,4(α1,α2)D1,2(α3,α4)D2,3(α5,α6)B1B5B3B2B3B4|φ0〉
where Di, j(α,β) is the non-topologically protected gate

obtained by bringing anyons i and j of type Φ nearby

each other and allowing them to interact for a time such

that the fusion channel Φ× Φ → Λ accumulates a phase

eiα and the fusion channel Φ × Φ → Φ accumulates a

phase eiβ. Optimizing |〈I3〉| over the interaction phases,

we find a violation 〈φ′|I3|φ′〉 = 2.0512 for the angles:

α1 = 0.7943,α2 = 0.3989,α3 = 3.5531,α4 = 0.9257,α5 =
−0.8525,α6 = 0.1036. No systematic attempt was made to

optimize the violation over other braid words and it likely

stronger violations could be found.

We have described a protocol to reveal non-locality in sev-

eral classes of non-Abelian anyonic theories. The need for

at least six anyons shared between two parties arises because

each party needs three anyons in order to have two non-

commuting topologically protected observables. It is possible

this could be reduced using a shared resource which fixes a

common gauge, akin to using a shared reference frames to re-

veal non-locality in mode entanglement with bosons [19]. The

size of the maximum violation depends on the recoupling ma-

trices F and the ability to generate Bell violating states begin-

ning from 3 vacuum charge pairs depends on the power of the

braiding operations. It is intriguing to ask whether one could

find intermediate anyonic theories which have the power to

generate Bell violating states by topologically protected gates,

but are not universal for topological quantum computation.

Finally, it would be very interesting to have an experimen-

tal demonstration of (some of) the schemes presented here.

We believe that the required effort would not be significantly

higher than that necessary to perform non-abelian interferom-

etry.
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