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A Description of Kitaev’s Honeycomb model with Toric-Code Stabilizers

G. Kells1, J. K. Slingerland1,2 and J. Vala1,2

1 Department of Mathematical Physics, National University of Ireland, Maynooth, Ireland,
2 Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland.
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We present a description of the Kitaev honeycomb lattice model as a BCS type system. A 2-dimensional

fermionization procedure is outlined and the derived eigenstates of the system are shown to be Cooper-paired

products of toric-code states. We extend our analysis to a torus, giving particular attention to the ground state of

the fully periodic vortex-free sector.

PACS numbers: 05.30.Pr, 75.10.Jm, 03.65.Vf

In the seminal work on his honeycomb lattice model, Ki-

taev outlined a connection between the non-Abelian phase

of the system and chiral p-wave superconductors [1]. This

has been made more explicit recently where a number of

authors (see for example [2, 3]) have connected the ground

state sector of the system with the spinless p-wave Hamilto-

nian used in [4] to relate the BCS wavefunction [5] and the

Moore-Read Pfaffian [6]. One of the drawbacks of the var-

ious fermionization techniques is that they tend to obscure

the re-interpretation of these states in terms of the the origi-

nal spin quantum numbers. This has hindered the comparison

of the BCS state with the extensive perturbative predictions

on the model [1, 7, 8, 9, 10, 11] and in turn clouded the un-

derstanding of the topological transition between non-Abelian

and Abelian phases of the system, the latter of which, in the

leading non-trivial order, is equivalent to the Z2 × Z2 toric-

code [12].

Here we will outline an exact fermionization procedure that

is closely related to the perturbative analysis of [7, 8, 9].

The technique can be used to include terms that break time-

reversal symmetry and it is thus possible, as in [3], to reduce

the system exactly to the form used by Read and Green [4].

Importantly the procedure also allows the eigenstates of the

system to be interpreted as BCS products of toric-code states,

thereby illuminating the relationship between the Abelian and

the non-Abelian topological phases. This interpretation can

also be applied without conflict to other studies of the system

based on alternative fermionization methods, see for example

[1, 2, 3, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. We

finish by outlining how to extend the method to a torus and

discuss the role that the homologically non-trivial loop sym-

metries must play in any interpretation of the system as a su-

perconducting fluid. We give particular attention to the fully

periodic vortex free sector and show how derive the correct

low-energy states from the BCS product.

The system consists of spins on the sites of a hexagonal

lattice. The Hamiltonian can be written as

H = −
∑

α∈{x,y,z}

∑

i,j

JαK
α
i,j (1)

where Kα
ij = σα

i σ
α
j denotes a directional spin exchange in-

teraction occurring between the sites i, j connected by a α-

link see FIG. 1. We define a the basic unit cell of the lat-

FIG. 1: The plaquette operator W and the fermionic string S

tice with the two unit vectors nx and ny as shown in FIG.

1. By contracting each z-link to a single point we define

the position vector labeling the z-dimers on a square lattice

as q = qxnx + qyny .

Consider now loops of K operators,

Kα(1)

ij Kα(2)

jk , ......,Kα(n)

li , where α(m) ∈ x, y, z. Any

loop constructed in this way commutes with the Hamiltonian

and with all other loops. The shortest loop symmetries are the

plaquette operators

W q = σz
1σ

x
2σ

y
3σ

z
4σ

x
5σ

y
6 , (2)

where the numbers 1 through 6 label lattice sites on single

hexagonal plaquette, see FIG. 1. We will use the conven-

tion that q denotes the z-dimer at the bottom of the plaque-

tte. The commutation relations imply that we may choose en-

ergy eigenvectors |n〉 such that Wq = 〈n |W q|n〉 = ±1. If

Wq = −1 then we say that the state |n〉 carries a vortex at q.

On a torus, the plaquette operators are not independent, as

they obey
∏

Wq = I . There are also two independent homo-

logically non-trivial loop symmetries. We are free to choose

any two closed loop operators that traverse the torus as long

as they cannot be deformed into each other (by plaquette mul-

tiplication). The other homologically non-trivial loop symme-

tries can be constructed from the products of these two oper-

ators and the N/2 − 1 independent plaquette operators, see

[10]. Note that when the periodicity of the toroidal configu-

ration is specified by lattice vectors which are integer multi-

ples of the unit vectors i.e. X = Nxnx and Y = Nyny ,

it is natural to use the overlapping products of alternating z-

and x-links (Lx =
∏

Kz
ijK

x
jk) and alternating z- and y-links

http://arXiv.org/abs/0903.5211v1
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(Ly =
∏

Kz
ijK

y
jk) as the two independent homologically

non-trivial symmetries.

The Hamiltonian (1) is often extended to include perturb-

ing terms that (i) are sums of K operator products (ii) open

a gap in the B-phase (iii) break time-reversal symmetry (T-

symmetry), see [1, 3, 18] and the general analysis of the link

or bond algebras in [23]. The breaking of T-symmetry is es-

sential for relating the model to chiral p-wave superconduc-

tors. A generalisation of the type given in [3] is needed to get

the precise (kx + iky) pairing symmetry related to the Ising

CFT model and the ν = 5/2 quantum Hall state through the

Moore-Read Pfaffian [4]. As the procedure we will outline

here gives the same physical results as the quoted references

for generalised T-symmetry breaking we will keep the discus-

sion as simple as possible here and restrict the explicit calcu-

lations to the original T-symmetric terms.

We begin our derivation by first noting that in [7], the

Hamiltonian (1) was written in terms hard-core bosons and

effective spins of the z-dimers using the mapping:

| ↑
�
↑

�
〉 = | ⇑, 0〉, | ↓

�
↓

�
〉 = | ⇓, 0〉, (3)

| ↑
�
↓

�
〉 = | ⇑, 1〉, | ↓

�
↑

�
〉 = | ⇓, 1〉.

The labels on the L.H.S. indicate the states of the z-dimer in

the computational basis. The first quantum number of the kets

on the R.H.S. represents the effective spin of the square lattice

and the second is the bosonic occupation number. The pres-

ence of a boson indicates an anti-ferromagnetic configuration

of the spins connected by a z-link.

The operations of the original spin Hamiltonian then be-

come (see [7, 8, 9])

σx
q,�

= τx
q (b†q + bq) , σx

q,�
= b†q + bq,

σy
q,�

= τy
q (b†q + bq) , σy

q,�
= i τz

q (b†q − bq),

σz
q,�

= τz
q , σz

q,�
= τz

q (I − 2b†qbq),
(4)

where τa
q is the Pauli operator acting on the effective spin at

position q and b†(b ) are the canonical creation(annihilation)

operators for the hard-core bosons. In this notation the Hamil-

tonian itself becomes

H = −Jx

∑

q

(b†q + bq)τx
q+nx

(b†q+nx
+ bq+nx

)

− Jy

∑

q

iτz
q (b†q − bq)τy

q+ny
(b†q+ny

+ bq+ny
)

− Jz

∑

q

(I − 2b†qbq). (5)

In this representation the plaquette operators of the original

Hamiltonian are

W q = (I − 2Nq)(I − 2Nq+ny
)Qq (6)

where Nq = b†qbq and Qq = τz
q τy

q+nx
τy
q+ny

τz
q+n. We can

generalise the expression (6) to include products of plaquette

operators. Of particular importance later, because of the con-

ventions used, will be the products arranged vertically on the

effective lattice. We have in this case

F qx,qy
≡

qy
∏

q′

y
=0

W qx,q′

y

= (I − 2Nqx,0)(I − 2Nqx,qy
)

qy
∏

q′

y
=0

Qqx,q′

y

(7)

and we see that only the bosons at the upper and lower left

corners of the plaquette product need to be taken into account.

The relation (6) allows one to write down an orthonormal

basis for the full honeycomb(brick-wall) system [9]. Explic-

itly we can write | {Qq}, {q}〉 where the quantum numbers

are the eigenvalues Qq of the operator Qq and the bosonic

position vectors q. Any state with a given {q} is determined,

up to a phase, by the stabilizers Qq|ψ〉 = ±|ψ〉, that reflect

the underlying vorticity and bosonic position vectors, through

the mapping (4). The state | {Qq}, {∅}〉 ∀Qq = 1 is unitarily

equivalent to the toric-code ground state in the square lattice

effective spin representation [1, 12] and from the perturbation

theory this state is known to be the leading contribution to the

actual ground state of the full hexagonal system [8, 10]. To

fully specify a state on a torus one must also specify two ad-

ditional quantum numbers associated with the homologically

non-trivial loop symmetries. In our case we choose these to be

the eigenvalues lx and ly of the operatorsLx andLy described

above.

We now define a particular string operator using overlap-

ping products of the Kα
ij terms of the original Hamiltonian.

The primary function of the string will be to break/fix z-

dimers at a particular location q of the lattice. Our convention

will be to first apply a single σx term to a black site which we

set to be the origin. The rest of the string is made by applying

first alternating Kz
ij and Kx

jk until we reach a required length

and then apply alternatingKz
lm andKy

mn terms ending on the

black site at q, see FIG. 1. Explicitly we write

Sq ≡ σy
(qx,qy),�

σy
(qx,qy−1),�

σz
(qx,qy−1)�

(8)

...σy
(qx,1),�

σy
(qx,0),�

σz
(qx,0),�

σz
(qx,0)�

σx
(qx,0)�

...σx
(1,0)�

σx
(0,0)�

σz
(0,0),�

σz
(0,0),�

σx
(0,0),�

Using the representation of [7, 8, 9] we can decompose (8)

into the effective spin and bosonic subspaces, i.e. S =
Se ⊗ Sb. In this decomposition there are four different types

of structures to observe on the effective lattice: (1) the line

including the starting point A up to, but not including, the

turning point B, (2) the turning point B = (qx, 0), (3) the ex-

clusive interval BC, and (4) the end point C = (qx, qy), see

FIG 2 and TABLE I.

The operator Sq squares to unity while different operators

Sq, Sq′ anti-commute with each other. This lead us to identify

the string Sq with the following sum of fermionic creation and

annihilation operators: Sq = c†q +cq = (b†q +bq)S
′

q where S
′

q

can be determined from TABLE I. Individually our fermionic

canonical creation and annihilation operators are

c†q = b†qS
′

q, cq = bqS
′

q (9)



3

FIG. 2: Bosonic and effective spin decomposition of the operator

string S.

S Se ⊗ Sb

[A,B) σx

�
σz

�
σz

�
σx

�
−τx ⊗ I − 2b†b

B σy

�
σz

�
σz

�
σx

�
−τy ⊗ I

(B,C) σy

�
σz

�
σz

�
σy

�
τx ⊗ I

C σy

�
τy ⊗ b† + b

TABLE I: The string S as four unique segments. While bosons are

only created/destroyed at the endpoint C of the string, the sites in the

[A, B) interval also have non-trivial bosonic dependence.

where the strings now insure that the operators c† and c obey

the canonical fermionic anti-commutator relations. It is im-

portant to note that, because of the identification of the sum

c†q + cq with the string Sq , that operators c†q and cq must both

create/annihilate vortices at q = (−1, 0) and q = (−1,−1) .

However, quadratic terms of fermionic operators will always

preserve the underlying vorticity. This has interesting conse-

quences later when we examine the system on a torus.

Similar to [1, 14], we now introduce the generic quadratic

Hamiltonian

H =
[

c†q cq

]

[

ξqq′ ∆qq′

∆†
qq′ −ξT

qq′

] [

cq′

c†q′

]

+ C (10)

If we invert (9) and substitute the relevant expressions into the

Hamiltonian (5) we get the form (10) with

ξqq′ = 2Jzδq,q′ + JxF q−ny
(δq,q′+nx

+ δq+nx,q′)

+ Jy(δq,q′+ny
+ δq+ny,q′)

∆qq′ = JxF q−ny
(δq,q′+nx

− δq+nx,q′)

+ Jy(δq,q′+ny
− δq+ny,q′) (11)

and C = −MJz where M the number of effective spins and

F q is defined in (7). We restrict the Hilbert space to the

relavent vortex-configuration by replacing F q by the eigen-

values Fq of that configuration. In the simplest case of the

vortex free sector we have Fq = 1 ∀q. This sector, be-

cause of the theorem by Lieb [25], is known to contain the

system ground state and can be solved exactly in the ther-

modynamic limit by moving to the momentum representation

with the Fourier transform cq = M−1/2
∑

cke
ik·q. After

substitution into (11) and anti-symmetrization we have

H =
∑

k

[

ξkc
†
kck +

1

2
(∆c†kc

†
−k + ∆∗c−kck)

]

+ C (12)

where ξk = εk − µ with εk = 2Jx cos(kx) + 2Jy cos(ky)
and µ = −2Jz. The gap function is ∆k = αk + iβk with

αk = 0 and βk = 2Jx sin(kx) + 2Jy sin(ky). If the Hamil-

tonian is extended, as in Kitaev’s original analysis, to include

the single products of adjacent K-operators ( formula (46) of

[1]) one gets αk = 4κ(sin(kx) − sin(ky) − sin(kx − ky))
and the form Ek is in exact agreement with the dispersion re-

lation derived there. The procedure also gives agreement with

the other fermionization techniques to analyse the extended

model [2, 13, 14, 16, 18]. We note in particular that the tech-

nique can be used to replicate the dispersion relations of [3]

where the p-wave pairing can be tuned to have kx + iky chiral

symmetry thus allowing a direct link with the work of Read

and Green [4] and subsequent analysis [26, 27, 28, 29], relat-

ing the Pfaffian Quantum Hall states, p-wave superconductors

and Ising topological model.

The Hamiltonian (12) is diagonalized by Bogoliubov trans-

formation γk = ukck − vkc
†
−k, where uk and vk satisfy

|uk|2 + |vk|2 = 1. We have H =
∑

Ek(γ†kγk − 1/2),

with Ek =
√

ξ2k + |∆k|2, uk =
√

1/2(1 + ξk/Ek), and

vk = i
√

1/2(1 − ξk/Ek)Θk with Θk = sgn(−Im(∆k)/ξk)
The ground state, annihilated by all γk, and of energy

Egs = − 1
2

∫

Ekdk, can by inspection be seen to be the BCS

type state

| gs〉 =
∏

k

(uk + vkc
†
kc

†
−k)| vac〉. (13)

This expression is similar to the one obtained in Ref. [2],

but we note that our fermionization procedure has been de-

signed such that the vacuum state is the toric-code ground

state | {Qq}, {∅}〉 defined on the effective lattice, while the

operators c†l are, by definition, the Fourier superpositions of

the states | {Qq}, {q}〉. Note that in the corner of the A phase

(Jz = 1, Jx, Jy → 0) we have uk → 1 and vk → 0 and thus

the ground state of the full system | gs〉 → | {Qq}, {∅}〉 as ex-

pected. The expression (13) is, to the best of our knowledge,

the first closed form expression for this state that does not re-

quire additional spectral projection. It is also noteworthy be-

cause it combines two powerful wavefunction descriptors i.e.

Cooper pairing and the Stabilizer formalism.

The Hamiltonian (10) may be diagonalised for arbitrary

vortex configurations on a torus using the multimode Bogoli-

ubov transformation γi =
∑

l(uilcl − vilc
†
l ). The quasi-

particle excitation energyEl and the vectors uil and vil are ob-

tained by solving the Bogoliubov-de-Gennes eigenvalue prob-

lem
[

ξ ∆

∆† −ξT

] [

u

v

]

= E

[

u

v

]

, (14)
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where the ξ and ∆ given in (11) are modified to include the

terms that connect both sides of the torus, i.e. the terms that

connect the sites (0, qy) to (Nx, qy) and (qx, 0) to (qx, Ny).
The values of these terms are determined from the arrange-

ment of vortices and the quantum numbers of the two inde-

pendent homologically non-trivial loop symmetries lx and ly .

To construct the actual eigenstates using the multimode γi

it is easiest to use the Hartree-Fock-Bogoliubov (HFB) pro-

jection | gs〉 =
∏

i γi| vac〉, where the vacuum state is the ap-

propriate toric-code state on the full hexagonal lattice. This

state can be brought into BCS form (13) by making use of

the Bloch-Messiah theorem [30]. For the vortex free sec-

tor, with the important exception of the fully periodic state

with (lx, ly) = (−1,−1) in the B-phase, one observes that

the eigenstate energy can be simply calculated as a discrete

sum over the energy function Ek calculated above i.e. Egs =
− 1

2

∑

kx,ky
Ek, where the kα run over θα + 2π nα

Nα

with the

integer nα running from 0 toNα−1, and the boundary condi-

tions (lx, ly) are encoded as θα = lα+1
2

π
Nα

. As the fermions

do not preseve vorticity, valid excitation energies above the

ground state are given by adding pairs of energies Ek to Egs.

For the fully periodic vortex free sector there is no need

for the Bloch-Messiah reduction although, similarly to [4]

(see also note [31]), the BCS state (13) is not valid in the

B phase. However, with the fermions we defined above, the

problematic point in k-space occurs at k = (π, π) rather than

k = (0, 0). At this point the BCS state (13) vanishes because,

uk = 0, vk = −i and c†kc
†
−k = 0. However, unlike Read

and Green, we cannot propose the singles γ†π,π| gs〉 as an al-

ternative because the Bogoliubov fermions do not preserve the

plaquette gauge symmetries. Furthermore we observe numeri-

cally that the double excitations have too great an energy. This

puzzle can be understood if one examines the state

|ψπ,π〉 =
∏

k 6=(π,π)

(uk + vkc
†
kc

†
−k)| {Qq, lx, ly}, {∅}〉 (15)

with (lx, ly) = (−1,−1) and Qq = 1 ∀q. The state

(15) is clearly from the vortex-free sector, has even fermion

parity, and is an eigenstate of the Hamiltonian with energy

Egs + Eπ,π. By inspection, it is not difficult to see that the

states |ψk〉 = γπ,πγ
†
k|ψπ,π〉 are also vortex-free eigenstates

of the system but with energy Egs + Ek. It is therefore nat-

ural to assume that the ground state of this sector is actually

the state |ψk〉 such that the discretized Ek is a minimum. As

an aside, we should point out that there is no reason why the

construction here can not be applied in ‘real’ p-wave super-

conductors, where fermionic electrons and vortices are not

dependent in the same way. While this result indicates that

the odd fermion single introduced by Read and Green must

be degenerate with the even fermion BCS product introduced

above, it does not conflict with the general assertion that, for

a gapped system, the lowest energy odd fermion state is not

part of the groundstate manifold.
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