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Abstract

The φ4 real scalar field theory on a fuzzy sphere is studied numerically. We refine the phase

diagram for this model where three distinct phases are known to exist: a uniformly ordered phase, a

disordered phase, and a non-uniform ordered phase where the spatial SO(3) symmetry of the round

sphere is spontaneously broken and which has no classical equivalent. The three coexistence lines

between these phases, which meet at a triple point, are carefully located with particular attention paid

to the one between the two ordered phases and the triple point itself. In the neighbourhood of the triple

point all phase boundaries are well approximated by straight lines which, surprisingly, have the same

scaling. We argue that unless an additional term is added to enhance the effect of the kinetic term the

infinite matrix limit of this model will not correspond to a real scalar field on the commutative sphere

or plane.
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1 Introduction

The fuzzy approximation scheme [1] consists in approximating the algebra of functions on a manifold

with a finite dimensional matrix algebra and in principle provides a regularization of field theory on

this space which can be used as an alternative to discretising the underlying space as is done in lattice

field theory. Both the two–dimensional commutative [2] and Moyal planes can be viewed as the limits

of a fuzzy sphere of infinite radius.

Here, we study a real scalar field, φ, with φ4 interaction, in the fuzzy approach using Monte Carlo

simulations. This becomes a Hermitian matrix model on the fuzzy sphere. The study reveals that

the model has three distinct phases: (i) A disordered phase; (ii) a uniformly ordered phase and (iii)

a non-uniformly ordered phase assimilated to a striped phase [3, 4, 5]. We find the collapsed phase

diagram and in particular we calculate the uniform ordered/non-uniform ordered line that was absent

in [6] and locate the triple point where the three phases meet. As the mass parameter varies, the non-

uniformly ordered phase is absent for sufficiently small coupling, but as the coupling is increased this

new phase opens up between the disordered and uniformly ordered phases. The three phases meet at

a triple point.

The transition from the disordered to the non-uniformly ordered phase can also be identified with

the one-cut to two-cut transition in matrix model theory [7, 8, 9]. This transition line merges with

the predicted curve obtained from the quartic potential of the single trace pure matrix transition for

sufficiently large couplings, i.e. sufficiently above the triple point. The qualitative features of the

phase diagram are governed by this triple point. The presence of the non-uniformly ordered phase is

the principal feature that distinguishes the phase diagram of the fuzzy model from its commutative

counterpart.

A preliminary version of these results were presented in Lattice 05 and appeared in [10]. The

principal aspects of these results have been confirmed in subsequent studies by Panero [11, 12] and

Das et al. [13].

The current study could be relatively easily repeated for a Hermitian scalar field on other fuzzy

spaces. The simplest extension would be to fuzzy S
2 ×S

2 or to fuzzy CP
N

[14]. Fuzzy versions of

S
3 and S

4 are also accessible [15] and will hopefully be studied in the near future. In all cases, the

structure of the phase diagram should be similar, although there is no guarantee that all coexistence

lines will collapse with a consistent scaling as happens for the two dimensional sphere. One prediction

for the general case is that the disordered non-uniformly ordered line will always be present for

sufficiently large coupling and will again merge with the pure one-cut two-cut transition for the pure

matrix model.
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In section 2 we review the construction of the fuzzy sphere and in section 3 we present the model,

section 4 describes the Metropolis algorithm, section 5 studies limiting models such as the lowest ma-

trix size (two by two) and the pure matrix model, section 6 describes the observables and simulations,

particularly the specific heat which we use to locate transitions. Section 7 gives our main results and

describes the collapsed phase diagram and locates the triple point. Section 8 gives our conclusions.

The paper ends with some technical appendix for the optimization of the simulations.

2 The fuzzy sphere

Before introducing the fuzzy sphere, let us look at some basic properties of the ordinary continuum

2−sphere. A 2-sphere centered on the origin, with radius R, embedded in R
3, denoted simply S

2, can

be defined as the set of points (x
1
,x

2
,x

3
) in R

3 such that x2
1
+ x2

2
+ x2

3
= R2. It can also be expressed

by the angles (ϑ ,ϕ ) of spherical coordinates.

Taking two elements of the algebra, f (ϑ ,ϕ ) and g(ϑ ,ϕ ), we define their inner product as

〈 f |g〉 =

∫

S2
dΩ f ∗ (ϑ ,ϕ )g(ϑ ,ϕ ) , (1)

and their norm as

‖ f‖2 = 〈 f | f 〉 =
∫

S2
dΩ | f (ϑ ,ϕ ) |2. (2)

where

∫

S2
dΩ =

∫ 2π

0
dϕ

∫ π

0
dϑ sin (ϑ ). The norm must be finite for any element of the algebra (square

integrable functions). Both equations, (1) and (2), define the Hilbert space H which allows us to

quantize the theory.

In general, the Laplace operator contains information on the geometry of the space, i.e. it de-

pends on the metric as ∇ 2· = 1√
|g|

∂i

√

|g|∂ i·, where g is the determinant of the metric tensor gµν on

Riemannian and pseudo-Riemannian manifolds [16]. In particular, the Laplacian on the sphere is

∇ 2 = 1

(Rsinϑ )2
∂ 2

∂ϕ 2 + 1
R2 sinϑ

∂
∂ϑ

(

sinϑ ∂
∂ϑ

)

. The eigenfunctions of this operator are the spherical har-

monics Y
ℓm

(ϑ ,ϕ ) with ℓ = 0,1,2, . . . and m = −ℓ,−(ℓ−1) , . . . ,(ℓ−1) , ℓ which come as solutions

of the Helmoltz equation ∆ f + l(l + 1) f = 0 on the unit sphere.

A convenient basis to describe any function on the sphere is given by these spherical harmonics

Y
ℓm

(ϑ ,ϕ ) since they form a complete set of orthonormal functions and thus, any square-integrable

function can be expanded as a linear combination of these.

f (ϑ ,ϕ ) =
∞

∑
ℓ=0

+ℓ

∑
m=−ℓ

c
ℓm

Y
ℓm

(ϑ ,ϕ ) , (3)
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N R Θ Limit

N0 R0
2R2√
N2−1

Fuzzy sphere (S2
F )

+∞ R0 0 Commutative sphere (S2)

+∞ +∞ 0 Commutative plane (R2)

+∞ +∞ Θ0 Moyal plane

Table 1: Some spaces as limits of the fuzzy sphere.

where the orthonormalization condition

∫

S2
dΩY ∗

ℓm
(ϑ ,ϕ )Y

ℓ′m′ (ϑ ,ϕ ) = δℓℓ′δmm′ , (4)

allows us to compute the c
ℓm

coefficients as

c
ℓm

=

∫

S2
dΩY ∗

ℓm
(ϑ ,ϕ ) f (ϑ ,ϕ ) . (5)

We are now ready to define the fuzzy sphere S
2
F of radius R [17, 18, 19]. It is a non-commutative

space defined in terms of the N ×N matrix operators (x̂1, x̂2, x̂3) subject to the relations

x̂2
1 + x̂2

2 + x̂2
3 = R21̂, and [x̂i, x̂ j] = iεi jk

2R√
N2 −1

x̂k = iεi jkΘ
x̂k

R
, (6)

with Θ = 2R2/
√

N2 −1 and εi jk the totally antisymmetric unit tensor. The operators x̂i can be related

to the angular momentum operators L̂i in their irreducible representation of SU (2) of size (2ℓ+ 1)

with the formula

x̂i =
2R√

N2 −1
L̂i =

Θ
R

L̂i, (7)

where the relation between the matrix size N and the representation of the angular momentum ℓ is

given by N = 2ℓ+ 1. Replacing the equation (7) in (6) we recover the angular momentum algebra.

In the table 1 we show some limits of the fuzzy sphere in terms of the matrix size N and the radius

of the sphere R. In that way, the fuzzy sphere contains some other spaces as limits of the matrix size

and its radius.

From the algebra of matrices of size N, denoted Mat
N
, generated by the position operators x̂i in

(6), one can define a Hilbert space, by introducing an inner product. To do that, consider two elements

of the algebra Mat
N

denoted φ and ψ, their scalar product and associated norm are defined by

〈φ|ψ〉 =
4π
N

Tr
[

φ†ψ
]

, ‖φ‖2 = 〈φ|φ〉 =
4π
N

Tr
[

φ†φ
]

, (8)
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where the normalization was chosen so that the unit matrix 1̂ and the constant function 1 on the sphere

have the same norm.

The geometry of the spaces is given through derivation operators. In the case of S
2
F , the derivations

Li correspond to the adjoint action [L̂i, ·] of the angular momentum operators L̂i of SU (2). The

Laplacian is then deduced as

L
2φ = LiLiφ = [L̂i, [L̂i,φ]]. (9)

Similar to the expansion (3) of a function f (ϑ ,ϕ ) on S
2, a convenient basis to expand any N ×N

matrix φ on S
2
F is the polarization tensor basis. The polarization tensors are denoted by Ŷ

ℓm
with

0 ≤ ℓ ≤ (N −1) and −ℓ ≤ m ≤ +ℓ, and are defined as the simultaneous eigenvectors of the laplacian

L 2 and axial angular momentum L3:

L
2Ŷlm = l(l + 1)Ŷlm, L3Ŷlm = mŶlm, (10)

and we see that L 2 is a cut–off version of −∇ 2. They are normalised to form an orthonormal basis

of Mat
N

4π
N

Tr
[

Ŷ †
ℓm

Ŷ
ℓ′m′

]

= δ
ℓℓ′δmm′ , (11)

and transform simply under complex conjugation

Ŷ †
ℓm

= (−1)m
Ŷ

ℓ −m
. (12)

The expansion of φ in Ŷ
ℓm

is given by

φ =
N−1

∑
ℓ=0

+ℓ

∑
m=−ℓ

c
ℓm

Ŷ
ℓm

, (13)

where the coefficients can be computed by means of the orthonormality condition

clm =
4π
N

Tr
[

Ŷ †
ℓm

φ
]

. (14)

3 Real scalar field on a fuzzy sphere

Before introducing the real scalar field theory on the fuzzy sphere, let us look at this theory on an

ordinary continuum 2−sphere.

Let φ be a real scalar field on a sphere S
2 with radius R and φ4 potential, the functional action is

given as

S [φ] =

∫

S2
dΩ

[

1

2
(∇ φ)2 +

1

2
rR2φ2 +

1

4!
λ R2φ4

]

, (15)
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where ∇ i (i = 1,2,3) are the usual generators of rotations, r is the mass parameter and λ is the

coupling constant which may depend on the radius of the sphere.

Second order phase transitions can not appear in finite volume systems, such as the sphere. How-

ever, it becomes possible in the planar limit, R → ∞. The φ4 model on a bidimensional plane, which

corresponds to the planar limit of the sphere, is defined by the action

S [φ] =

∫

R2
d2x

[

1

2
(∇ φ)2 +

1

2
rφ2 +

1

4!
λφ4

]

.

This model has been widely studied, see for example [20, 21].

Similarly, the model to study on the fuzzy sphere is a Hermitian matrix model which corresponds

to a real scalar field and is given by the action [6, 22]

S [φ;N,a,b,c] = Tr
[

a
[

L̂i,φ
]† [

L̂i,φ
]

+ bφ2 + cφ4
]

= Tr
[

aφ†(L 2φ)+ bφ2 + cφ4
]

, (16)

where N is the size of the matrix, b is the real mass parameter, and c is the real, positive, coupling

constant. Similarly to a commutative sphere,
[

L̂i, ·
]

are the usual rotation generators where L̂i is the

angular momentum operator in its irreducible representation of SU (2) with size N = (2ℓ+ 1) defined

by the commutation relations [L̂i, L̂ j] = εi jkL̂k. The constant a is a positive number employed to fix

the units1. The a term, called kinetic term, contains the information on the geometry of the space by

means of the Laplacian, while the rest of the action is called potential term and denoted V (φ).

The action (16) approximates the continuum action (15) when

a =
2π
N

, b =
2πrR2

N
, c =

πλR2

6N
. (17)

These parameters are chosen so that the fuzzy action was normalised so that S[1̂] for the unit func-

tion/matrix be the same on the continuum and fuzzy sphere.

The absolute minima of this action can be obtained by searching for configurations minimizing

both the kinetic and potential term separately. The kinetic term is obviously positive and is there-

fore minimum when L 2φ = 0, that is when φ = α 1̂ is proportional to the identity. Replacing this

constraint in the potential term, we get

V
(

α 1̂
)

= N(bα 2 + cα 4). (18)

The necessary conditions to have a minimum are: S′ (α ) = 0 and S′′ (α ) > 0. If b < 0 then we find

two absolute minima at

1It is possible to scale φ, b and c to absorb a i.e. fit a to one. The scaling for the field is given by: φ = ψ/
√

a, leading to a

scaling for the other parameters of b̃ = b/a, and c̃ = c/a2. These changes affect the expectation values by a constant overall

scaling which has no consequence on such things as phases and phase boundary lines.
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α = ±α
0
= ±

√

−b

2c
, (19)

which have energy S(α ) = −Nb2/4c, whereas when b > 0 there is only one minimum at α = 0.

Finally, when b = 0, there is a critical point at α = 0 which is clearly a minimum since S(α ) = Ncα 4

and c > 0.

There are however other local minima to this action which will play an important role in one

of the phases of this model. They can be located approximately by looking at the minima of the

potential [6] which are given by U†DU where U is a unitary matrix and D a diagonal matrix with

diagonal elements ±α0. The absolute minima found above correspond to the particular case when all

the diagonal entries of D are identical.

4 The Metropolis simulation

We started the simulations by using a standard Metropolis Monte Carlo algorithm [24, 25] with the

jackknife estimator for the error [26] to account for the autocorrelation of the samples..

The initial conditions, i.e. the choice of the first configuration in the Markov chain can be of two

types: Cold initial conditions, which correspond to configurations which are classical minima of the

action, or Hot initial conditions, which are configurations chosen randomly in the phase space. We

made sure in our numerical simulations that none of our results depended on the initial conditions,

whether they were cold or hot.

In general, when we start the simulation the sequence of samples obtained by Metropolis algo-

rithm goes through a transient regime where it does not obey the desired statistics yet. This is the

thermalization process. This is true even in the case of “cold” initial conditions because the classical

minima may be probabilistically irrelevant when the fluctuations are important. This actually happens

in one of the phases of our model (the non-uniform ordered phase).

Tunneling is an essential process in our model as there are multiple classical minima which con-

tribute significantly to the probability distribution of the field. Typically, tunneling is exponentially

suppressed by the energy barrier separating the classical minima. It can therefore be difficult to

account for in the Monte-Carlo algorithm. To improve the probability of tunneling, we have tried

various sampling methods.

The two simplest ways of sampling the phase space are to either make a big change on the matrix

as a whole or to perturb its entries one by one. The first method allows for big changes and helps

tunneling but usually yields unfavored, high energy, test configurations which are rejected and in-

7



crease the autocorrelation between configurations. On the other hand, the latter is good at exploring

the phase space locally, but has a low chance of tunneling. Even alternating the two methods to enjoy

both their advantages is not sufficient to produce the tunneling necessary in the model studied.

As we already discussed at the end of section 3, the classical minima of the action are located at

±
√

−b/2c. Thus, the interval where we must vary the real and imaginary part of every entry of the

matrix during the sampling should be about I = [−2
√

−b/2c;2
√

−b/2c]. In practice, we have found

empirically that we need an interval of variation of the field between 2.3 and 2.6 times bigger.

When we use an interval less than 2.3 I, the trace effective probability density distributions of

the matrix will not reproduce the results obtained via direct integration for N = 2. In general, this

effect also appears for any matrix size N. The upper bound does not affect the results so much as the

auto-correlation of samples (more configurations are rejected by the metropolis algorithm) and thus

the speed of convergence of the code. We have found that 2.6I is the optimum upper bound to balance

speed and precision.

A more sophisticated method we have successfully implemented is the annealing method [25].

The idea is to produce favored decorrelated test configurations by introducing a temperature-like pa-

rameter β in the probability distribution exp(−βS). The Metropolis sampling is done normally with

β = 1. During that sampling, the field is typically trapped around one of the classical minima. Peri-

odically, the Metropolis sampling is interrupted, and this parameter is lowered (i.e. the temperature

is increased) which smoothes out the action and allows the field to move more freely between the

classical minima. Then β is raised back to one (i.e. the temperature is lowered back) trapping the

field around a classical minimum which is hopefully decorrelated from the previous one.

The annealing method thus increases the probability of tunneling between minima of the action

and decreases the autocorrelation between configurations. It also increases the computation time, but

the gain in efficiency is largely dominant, making this method very useful and reliable for simulations

with larger matrices.

The computation time can still be too large, making the simulation impossible to run in practice.

We have developed a method where the real time of computation decreases dramatically which we

present in the appendix.

5 Limiting models

In this section we present the lowest dimensional model which can be integrated directly and the pure

potential model which can be solved analytically. They will both be useful to test the validity of our

Monte-Carlo simulation in some particular limits.
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5.1 Lowest dimensional model

It is quite useful to investigate the lowest dimensional model (N = 2) as it has only two independent

parameters and can therefore be well understood, and integrated directly. This provides a good in-

dependent computation to test our Monte-Carlo code against. Furthermore, it happens that even this

low dimensional case shows all the features of the large N limit!

In the simplest case N = 2, the action (16) can be simplified by expanding the field in terms of an

orthonormal basis {1,σk}, where 1 is the 2× 2 identity matrix and σk are the three Pauli matrices.

The expansion is

φ = α 1+−→ρ ·−→σ (20)

where the coefficients α and ρk are in R. Then, writing down the action (16) in terms of this new set

of variables, we get

S = 4aρ2 + 2b
(

α 2 +ρ2
)

+ 2c
(

α 4 + 6α 2ρ2 +ρ4
)

(21)

where ρ is the norm of
−→ρ .

The action (21) depends only on the modulus of the vector
−→ρ . This property allows us to inte-

grate out the degrees of freedom associated with the rotational symmetry of the vector
−→ρ , which is

the expression of the general SU(2) symmetry of the action in two dimensions. The corresponding

effective probability density distribution is given by

Peff [α ,ρ] =
1

Z
ρ2e−S[α ,ρ] =

1

Z
e−Seff[α ,ρ], Z =

∫

dα dρρ2e−S =

∫

dα dρe−Seff, (22)

where Seff = S− lnρ2 is the associated effective action.

This simple example depends on two variables only, which makes it possible to integrate numer-

ically without a lot of effort for any set of parameters {a,b,c} via the trapezoidal rule or any other

algorithm [27], to get the expectation values. In this sense, we can solve directly the model for any

set of parameters making it possible to test our Monte Carlo code. Any graph in this section will not

include error bars because, with direct integration, they are negligible.

Because of the SU(2) symmetry of the theory, the expectation values of 〈|α |〉 and 〈ρ〉 give us the

whole information about the average configuration 〈φ〉. We can see their behavior in the figure 1,

computed from a direct integration with N = 2, a = 1, and for a typical value of c = 50, as a function

of the remaining parameter b of the model (scaled to bc−1/2). We can see three distinct phases:

1. Disordered phase: the expectation values of |α | and ρ are close to zero, roughly in the interval

(0,+∞).

2. Uniform ordered phase: the most important contribution to the configuration is given by the

expectation value of α , roughly in the interval (−∞,−24)

9
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Figure 1: Expectation value of |α | and ρ obtained from direct numerical integration.

3. Non-uniform ordered phase: the system is ordered but the main contribution to the configuration

is given by the expectation value of ρ, in between the previous two phases.

The disordered phase has averages of |α | and ρ, in the expansion (20), at approximately 0 and

the typical configuration is thus distributed around zero. This phase is analogous to the paramagnetic

phase in ferromagnetic materials. Following the analogy, if we take the parameter b as a “temperature

parameter”, the thermal fluctuations do not allow any kind of ordering in the material when the

temperature is bigger than some critical value. The thermal fluctuations are getting stronger and

stronger when the temperature is increased.

The uniform ordered phase is characterized by the fact that the most important contribution to

the configurations is given by the coefficient α , in the expansion (20). The expectation value of

ρ is negligible with respect to the expectation value of |α |. This means that the configuration is

approximately proportional to the identity matrix. This phase is analog to the magnetic phase, in

ferromagnetic materials.

In the third and last phase (the non-uniform ordered phase), both |α | and ρ contribute to the

configuration but in this region of the parameter space, ρ is more important than |α |. This phase

has ordering i.e. the field has non-zero expectation value but this ordering is not an analog of any

ferromagnetic ordering. It was argued in [11, 12] that in this phase, the eigenvalues of the matrix

has two cuts located at the two minima of the action ±α0 given in (19), whereas [6] speculated that
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Figure 2: Comparison of the unnormalised probability density distributions of some observables for

N = 2. In most cases, the two curves cannot be distinguished.

the eigenvalues of φ would be split equally between positive and negative eigenvalues. For N = 2, it

means trivially that φ = α0σ3 up to a free SU (2) rotation, and thus one would expect < |α | >≪ α0

and < ρ >≃ α0 =
√

−b/c0.5/(4c)0.25. This is indeed true in figure 1, as for −20 < b/
√

c < −5,

< ρ > does curve like
√

−b/c0.5/2000.25 ≃
√

−b/c0.5/4 and is much bigger than < |α | >.

As stated earlier, we can also use the results from this alternate method to validate the Monte-

Carlo code for N = 2. The figure 2 shows the unnormalised effective probability density distributions

of the quantities α and ρ. In that case, we can compare directly both effective probability density

distributions. The excellent agreement shows that the statistical error bars are negligible, but the most

important thing is that the program has sampled the phase space properly. We have already checked

many points in the parameter space and we have always obtained identical results up to error bars.
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At the moment, we have shown the convergence of our simulation in the lowest dimensional

model, but our goal is of course focused on simulating the model using bigger matrix sizes to extrapo-

late to the continuum limit (N → +∞). Still we will see that the N = 2 results are already remarkably

good approximations of the large N limit.

5.2 Pure potential model

The pure potential model interests us for two reasons: it can be solved analytically and gives a good

approximation for the transition curve between the disordered and non-uniform ordered phases dis-

cussed previously [6]. It comes from setting a = 0 in the action (16), only keeping what we called

the potential term. This approximation is increasingly accurate as the transition is tracked to larger

couplings far from the triple point.

This model (a = 0,N → ∞) has been solved by many authors [28, 29]. In term of their solution

we can get an expression of the specific heat and other thermodynamics quantities which are a good

reference to compare to the numerical results and the convergence of the algorithm when we increase

N.

The specific heat in this approximation has the form

CV =

{

1
4

r < −1

1
4
+ 2r4

27
− r

27

(

2r2 −3
)

√

r2 + 3 r > −1
(23)

where r = b/|bc| with bc = −2
√

Nc is the critical mass. From equation (23) the phase transition is

a third order transition because the first derivative of the specific heat has a finite discontinuity in

b = −1.

Another way to detect the phase transition is to look at the probability distribution of the field

eigenvalues. In the disordered phase, they are confined into a single connected region centered around

zero, whereas in the non-uniform ordered phase, they are split into two disconnected regions centered

respectively around ±
√

−b/2c corresponding to the minima of the polynomial potential. Due to this

characteristic behaviour, we also refer to this as a “one cut–two cut” transition. We will also use this

terminology for the disorder/non-uniform transition since the work of Panero [11, 12] shows that the

transition in the fuzzy sphere model, where a 6= 0, also have this characteristic behaviour.

The phase boundary for this model is given by

b = −2
√

Nc (24)

and is included in the phase diagram shown in figure 6 at the end of this article.
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6 Observables and Simulations

For the model under study, the number of degrees of freedom is N2, which corresponds to the number

of independent real entries in a Hermitian matrix. Thus, the thermodynamic limit we are interested

in corresponds to matrices of infinite size. The standard procedure, to take the thermodynamic limit,

is to define a scaling of the parameters of the model such that the relevant observables collapse in a

phase diagram independent of the matrix size. If the phase diagram collapses in a reasonable way,

then we can straightforwardly extrapolate it to the thermodynamic limit.

The specific heat is a measure of the dispersion of the energy. It is sensitive to the phase transitions

which register as peaks in it. We therefore use it as the order parameter. Typically, it will present one

or, more often, two peaks as we show in figure 3 for {a = 1, c = 40} and various matrix sizes. The

very obvious peak is located around bN−3/2 =−6±0.4, the other one, almost imperceptible is around

bN−3/2 = −3. For the biggest matrix size investigated N = 10, simulations for a curve as the one in

figure 3 took about a day. The error bars provided by the jackknife algorithm were omitted as they

are quite small and would only crowd the figure more.

Other observables, such as < Tr
[

φ2
]

> and < |Tr [φ] | > which were used as order parameters in

[6], their susceptibilities, and the internal energy < S > have also been collected but are not shown

here. They will be used in section 7 to identify the phases though.
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It is an important remark that the transition, from the non-uniform ordered phase to the uniform

ordered phase, presents a very high and wide peak in the susceptibilities which can subsume and hide

the smaller one when near the triple point, making it impossible to determine its exact position. As a

result, the data points of this transition curve in the phase diagram could not be found near the triple

point. However, Panero [11], by looking at the eigenvalue distribution of φ for c/aN2 = 1/2 provides

an additional point on this curve very near the triple point.

In the figure 3, the scaling for b, given by bN−3/2, which aligns the peaks (and thus the location

of the phase boundary) for different matrix sizes has already been included. It is remarkable that with

this scaling, the N = 2 curve has the same qualitative behavior as the N = 10 curve, as announced

previously, but the peak in figure 3, is already a reasonable approximation of the large N limit peak

found for N = 10.

This analysis was repeated for a wide range of the parameter c and for matrix sizes N ≤ 10. The

collected results, the interpretation of the phases and the collapsed phase diagram will be presented

in section 7.

7 Results

In this section,we will present the collapsed phase diagram as well as an analysis of the three phases

observed.

In the plots 4 and 5, we can see different profiles of the probability density distributions as a

function of the mass parameter b for Tr [φ] and ρ =
√

|c
1 −1

|2 + |c
10
|2 + |c

11
|2 which gives the power

in the l = 1 angular momentum mode in (13), with {a = 1, c = 40, N = 4}. There, we can appreciate

the three different phases of the model.

In the uniform order phase, for b negative enough, the trace is distributed around two symmetric

values centered on ±α0 respectively, 2, and ρ is distributed close to zero, i.e. it gives no contribution

to the typical configuration. In this phase, φ is approximately proportional to the unit matrix and the

rotational symmetry is thus preserved.

The non-uniform ordered phase, for intermediate values of b, has the peculiarity that the most

exterior peaks of the probability of the trace, which correspond to the absolute minimum of the action

±α0 and thus to the field in the uniform order phase, are smaller than the new peaks which arise

between them. Furthermore, the most probable value of ρ is not close to zero. In this phase, the

power of the configuration is thus in higher angular momentum modes (as defined in the expansion

2α
0

was defined in (19) as the location of the absolute minimum of the action.

14



-100
-90

-80
-70

-60
-50

-40
-30

-20
-10 -5

-4
-3

-2
-1

 0
 1

 2
 3

 4
 5

 0

 0.5

 1

 1.5

 2

 2.5

Probability Distribution

N=4 ,    a= 1,  c= 40

b

Tr[ φ  ]

Probability Distribution

Figure 4: Probability distribution of the trace of φ as a function of b

-100
-90

-80
-70

-60
-50

-40
-30

-20
-10  0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0

 1

 2

 3

 4

 5

 6

Probability Distribution

N=4 ,    a= 1,  c= 40

b

ρ

Probability Distribution

Figure 5: Probability distribution of ρ as a function of b.

15



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14

c/
N

2

-b/N
3/2

Disorder phase Non-Uniform Order phase

Uniform Order phase

Triple point   (2.3 ± 0.2,0.52 ± 0.02)

N=2
N=3
N=4
N=6
N=8

N=10
cN

-2
=(bN

-3/2
)
2
/4

Figure 6: Full collapsed phase diagram.

(13) in polarization tensors) and the rotational symmetry has been spontaneously broken.

The last curve is representative of the disordered phase. In this phase the configurations (both the

trace and ρ) are spread over a long interval but very close to zero restoring the rotational symmetry.

A phase diagram is a map that contains the thermodynamics or physical properties of a given

system. This implies that, to construct a phase diagram, we need quantities in the thermodynamic

limit. As explained in section 6, this is done by finding a scaling in the bare parameters of the model,

b and c here, to make it independent of the number of degrees of freedom N.

We had already found in section 6 that the scaling necessary to make the diagram independent of

N was N− 3
2 for the mass parameter b. Repeating the simulations for various values of c and plotting

the phase boundaries found for all values of N simulated, we found a scaling in N−2 for the coupling

constant c. This scaling is the same for all the coexistence curves which guarantees a consistent

N → ∞ limit. We can then define scale–free parameters

b =
b

aN3/2
, c =

c

a2N2
. (25)

Remember that for all the simulations and results in this paper, we have set a = 1.

These results are presented in the figure 6 which shows the phase diagram for the φ4 model on

a fuzzy sphere. The three phases we identified above are delimited by the coexistence curves which

meet at a triple point. These coexistence curves can be fitted to get an algebraic expression for each

one of them using the scale-free parameters introduced above in (25)
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As mentioned in section 6 we could not access the Disorder/non-uniform order phase boundary

near the triple point. However since the curve is consistent with a straight line, we can extrapolate it

to the triple point without any difficulty. We find:

Disorder/non-uniform order: c = 2.29(−b)−4.74. (26)

As expected, for large c, this curve is well approximated by the one obtained for the pure potential

model derived in 5.2, given in scale–free parameters by

c = (−b)2/4, (27)

and drawn with a dashed line in the phase diagram, figure 6.

We did not focus on the disorder/uniform order boundary line in this paper since it has already

been studied in detail in [6]. It was found there to be a straight line going through the origin. Con-

verting its equation to our scale–free parameters through (25), we get

Disorder/uniform order: c = 0.23(−b). (28)

Finally, the uniform–non-uniform order phase boundary line which was studied in detail in this

paper is approximately straight with equation

Uniform - non-uniform order: c = 0.2(−b)+ 0.07 (29)

which just prolongs the disorder/uniform order line, up to error bars.

These three coexistence curves, (26,28,29), intersect at a triple point given by

(bT ,cT ) = (−2.3,0.52). (30)

These values are consistent with the data presented in [11]. In fact, figures (11-30) there correspond

precisely to c = 0.5 ≃ cT , and by identifying the point where the eigenvalue density undergoes the

one cut–two cut transition described in section 5.2, one finds that his data gives bT ≃ 2.3 consistently

for N = 15,17,19,21,23.

If instead one takes the asymptotic form of the disorder non-uniform order transition line given by

the one cut–twocut transition (27) instead of (26), and finds its intersection with the disorder–uniform

order transition curve (28), the triple point occurs at

(b
e

T ,ce
T ) = (−0.92,0.21). (31)

We conclude from this that the effect of the kinetic term is to move the triple point to larger values

along the line governing the disorder/uniform order transition.
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8 Conclusions

In the main part of the paper, we presented the results for the numerical simulation by means of an

optimized Metropolis algorithm for the φ4 matrix model. In the appendix we develop the metropolis

algorithm which makes more efficient the simulation of matrix models. In particular, we argue that the

algorithm proposed presents considerable advantages with respect to the usual Metropolis algorithm

in the simulation of matrix models [30]. The reduction in the processing time for both non-uniform

ordered and uniform ordered phases will be more evident for large matrices and, of course, when we

are far away from the coexistence curves due to the fact that the minima of the potential are more

separated. A different approach was used with equal success in [11].

Figure 6 shows the phase diagram for the model given by (16) and refines the phase diagram

which was incomplete in [6]. The data have been collapsed using the scaling form shown on the axis

and defined in (25). It is consistent with the scaling of the exact solution of the pure matrix model

which only fixed the quotient of the two scalings. One of the important features of the diagram is that

all three coexistence lines can be collapsed simultaneously. This did not have to happen and in fact

the corresponding lines do not all collapse together for a related three dimensional model [31], where

the spacetime is taken to be a fuzzy sphere direct producted with a temporal direction.

This diagram contains the information about three different phases, the well known disordered

and uniform ordered phase, and a new phase, the non-uniformly ordered phase (where the SO(3)

spatial symmetry of the round sphere is spontaneously broken), as well as the scaling of the model,

and the coexistence curves. We could even estimate the coordinates of the triple point which is the

point where the three phases coexist in equilibrium. The coordinates of this triple point are consistent

with the independent simulation [11].

Another article [13] finds different results, including an extra phase and no scaling. An obvious

reason may be that in the phase diagram they show for N = 25, our scale–free parameter −b has a very

small range in our scale–free parameters of [0;0.13], meaning it only shows a tiny corner of our phase

diagram of figure 6. Furthermore, they use the probability distribution of φ11 (denoted Φ11 there) as

an observable to detect the transition between the two ordered phases. First, this does not seem to be a

physically meaningful observable, especially given the SU(2) symmetry of the model. Furthermore,

they obtain a curve somewhat similar to the one cut curve for the eigenvalues of φ, but they locate the

transition when this profile gets deformed with a dip at zero, instead of when it switches to two cut (if

it ever does). This boundary line is absent in our phase diagram and in previous ones [6, 11, 12], and

we find no evidence for such a transition or a new phase in this region of the phase diagram. As for the

lack of scaling for the other phase boundaries, it is difficult to decide the cause, but it is disquieting
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that their simulations sometimes depend on the initial condition, such as when they find hysteresis.

In the large N limit the model with a = 0 has a third order phase transition between disordered

and non–uniform ordered phases [28, 29]. The disordered phase is described by a single connected

eigenvalue distribution called a “one cut phase” distribution, whereas the ordered phase is described

by an eigenvalue distribution split into two disconnected distributions centered on opposite values

and called a “two cut phase” distribution. The transition occurs when the two cuts merge to become

a single cut for c = b2/4N. Figure 7 confirms numerically the convergence of the disordered/non–
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Figure 7: Plot of the specific heat at the disordered/non–uniform ordered transition for increasing N and

its N → ∞ limit, the exact pure potential model, given by Eq. (23).

uniform ordered transition towards this exact critical line of the pure potential model as the coupling

is increased. The simulations of Panero [11, 12] confirm that this transition for the full model is

indeed a one cut–two cut transition though the eigenvalue distribution now has a richer structure.

We expect that the existence of the cut transition of matrix models and of a triple point is a generic

feature of fuzzy scalar field models, since all such models should reduce to a pure matrix model when

the kinetic term becomes subdominant. This means that fuzzy scalar field models should generically

have an exotic phase with spontaneously broken spacetime symmetry.

Numerically, it is not difficult to find the coexistence curve between the uniform ordered and
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disordered phases which exist for low values of c. On the other hand, the coexistence curve between

the two ordered phases is difficult to evaluate because it involves a jump in the field configuration and

tunneling over a wide potential barrier.

In the current model the triple point is estimated to be located at

(bT ,cT ) = (−2.3,0.52). (32)

This is obtained by extrapolating the three coexistence lines till they meet. Surprisingly good agree-

ment with this result was obtained in [7] by performing perturbation theory in the kinetic term, i.e.

by expanding in the parameter a to second order. It is not however, totally clear that the triple point

identified there coincides with the one here as a different scaling of the parameters was necessary, but

the salient features are the same.

The position (31) where the curve (27) intersects the disordered /uniform order transition line

suggests that the effect of the kinetic term is to push the transition, and hence the triple point, to larger

negative values of b. This is a positive feature since it indicates that adding a higher derivative term

to the model will allow one to tune the triple point to large coupling. The conjecture is that this will

be sufficient to eliminate the UV/IR mixing problems [22] and recover the commutative theory with

the correct fluctuations [23].

It still remains to be seen what thermodynamic limits can be drawn from the phase diagram and

the scalings in each of the limits of the fuzzy sphere introduced in table 1: the ordinary sphere, the

ordinary plane, and the Moyal plane.

To that end, we want to reexpress the positions of the coexistence curves (26,28,29) which depend

on a = 1, b, c and N as a function of parameters well defined in the thermodynamic limit. These are

the radius of the sphere R and the non-commutative parameter Θ = 2R2/
√

N2 −1 appearing in (6)

and in the list of possible limits of the fuzzy sphere of Table 1, and r and λ appearing in the action

(16,17).

Using the scalings of (25) and N ≃ 2R2/Θ, we find

b =
rΘ3/2

2
√

2R
, c =

λ Θ
48π

. (33)

which can now be replaced in the algebraic fits for the coexistence curves to get

Disorder/non-uniform: (λ Θ) = 122
(

− rΘ3/2

R

)

−715 (34)

Disorder/uniform order: (λ Θ) = 12.3
(

− rΘ3/2

R

)

(35)

Uniform/non-uniform order: (λ Θ) = 10.7
(

− rΘ3/2

R

)

+ 10.6 (36)

Triple point:

(

− r
T

Θ3/2

R
= 6.5, λ

T
Θ = 78.4

)

. (37)
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Since the phase boundary lines and the triple point all scale in the same way, it is not surprising to

find that, out of the four physical quantities available, only two are independent: rΘ3/2/R and λ Θ.

As a result there are not enough physical parameters to fix the limiting procedure. For instance, if the

limiting space, represented by R and Θ, is fixed, one can still scale the field model parameters r and

λ freely.

A Optimized algorithm for matrix models

We now present an improved Monte-Carlo scheme we used to speed up our simulations.

The probability transition function (denoted by PTF for short) of a Monte-Carlo algorithm Wf ,i

from an initial state i with probability Pi to a final state f with probability Pf , must satisfy the detailed

balance equation

PiWf ,i = Wi, f Pf . (38)

The Metropolis PTF

Wf i = min

[

1,
Pf

Pi

]

(39)

is the best known example of one such, but another introduced in [32] is given by

W B
f ,i

= w
f ,i min

[

1,
Pf

Pi

w
i, f

w
f ,i

]

, (40)

which is a generalization of the Metropolis PTF when w
f ,i
6= w

i, f
. In our case, we have selected the

further generalization

w
f ,i = min

[

1,
p f

pi

]

, (41)

which is equivalent to the Metropolis PTF using a different probability distribution p yet to be defined.

The Boltzmann probability density distribution P(x) to find a configuration in the volume (x,x+ dx)

is defined by

P(x) =
1

Z
e−S[x], (42)

where S [x] is the action or energy, and Z is the partition function which contains the whole relevant

information of the system. In general, it is not possible to obtain an exact expression for the partition

function analytically or numerically. The Monte–Carlo algorithm via the Metropolis PTF (38) is so

important because it does not depend on Z.

With ∆S = S [x f ]−S [xi], putting (42) in (39) gives us the PTF in terms of the Boltzmann proba-

bility density distribution (denoted PDDfor short), that is

Wf ,i = min
[

1,e−∆S
]

. (43)
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∆S ≤ 0 ∆S > 0

∆s ≤ 0 W B
f ,i

= min
[

1,e−∆S+∆s
]

W B
f ,i

= e−∆S+∆s

∆s > 0 W B
f ,i

= e−∆s W B
f ,i

= min
[

e−∆s,e−∆S
]

Table 2: Possible cases in the evaluation of the Probability Transition Function W B
f ,i

.

In the same way as (42), we can associate a kind of energy s(y) to the probability distribution p

introduced in (41)

p(y) =
1

z
e−s[y]. (44)

Now, the new Metropolis-Boghosian PTF which comes from the equations (40), (41), (42) and (44)

is given by

W B
f ,i

= min
[

1,e−∆s
]

min
[

1,e−∆S+∆s
]

= min
[

1,e−∆s,e−∆S,e−∆S+∆s
]

, (45)

where ∆s = s [x f ]− s [xi] is the equivalent of the ∆S defined above. All the possible cases for the PTF

(45) are presented in the table 2.

We can ask why we might need the PTF (45) when we have a simpler function (43) already?

When the evaluation of ∆S is quite simple, for instance for the Ising model, this methodology is

counterproductive because more exponential functions must be evaluated. On the contrary, when the

evaluation of ∆S is computationally very expensive, as the matrix models are, the PTF (45) avoids

the evaluation of very improbable changes in the configurations due to the implementation of the filter

∆s, which reduces the processing time.

Numerically, we do not want to evaluate both ∆S and ∆s. If s is a good approximation of the

effective potential created by S but simpler to evaluate then, we can use the Metropolis algorithm

with the action s to refuse or accept the new configurations before the evaluation of ∆S (which is

complicated to evaluate and only will take machine time).

In this section, we propose a variant calculation of PTF (45) shown in table 3, where we avoid the

evaluation of ∆S when the previous evaluation of Metropolis algorithm with ∆s refuses the attempt to

change the configuration.

A.1 Relative error

The new PTF, denoted by W F
f ,i

, can not satisfy the detailed balance equation (39). This fact introduces

deviations in the probabilities, in exchange for a computational time reduction, since ∆s will be chosen
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¡ ∆S ≤ 0 ∆S > 0

∆s ≤ 0 W F
f ,i

= min
[

1,e−∆S+∆s
]

W F
f ,i

= e−∆S+∆s = min
[

1,e−∆S+∆s
]

∆s > 0 W F
f ,i

= e−∆s W F
f ,i

= e−∆s

Table 3: Proposition for a faster Probability Transition Function.

∆S ≤ 0 ∆S > 0

∆s ≤ 0 0 0

∆s > 0 0

{

0 if ∆S ≤ ∆s

1− e−∆S+∆s if ∆S > ∆s

Table 4: Relative error (46) between the probability transition functions, W B
f ,i

and W F
f ,i

.

simple to calculate. Anyway, we will make sure to keep under control the error introduced by this

breaking of the detailed balance equation.

In accordance to this, the relative error between W B
f ,i

and W F
f ,i

is defined as

err =

∣

∣

∣

∣

∣

1−
W B

f ,i

W F
f ,i

∣

∣

∣

∣

∣

, (46)

and its values are shown in table 4. As we can see in that table, only the case ∆S > ∆s > 0 presents a

relative error different from zero. This error goes to zero when ∆S & ∆s and it goes to one when ∆S ≫
∆s. Similarly, when ∆S ≫ 1 we can almost take for granted the rejection of the new configuration by

Metropolis. Thus, the introduction of the PTF W F
f ,i

is very convenient to estimate the PTF given by

(43) breaking the detailed balanced equation, where we only expect a tolerably small deformation in

the averages (specifically in regions with low probability) with respect to the averages obtained from

the PTF’s (43) and (45).

In our experience, we can obtain a better approximation when we replace ∆s → (∆S)′ only in

the case ∆S > ∆s > 0. The prime indicate the difference of energy obtained by Metropolis one step

before under the condition ∆S > ∆s > 0. In that way, the algorithm has a kind of “auto–regulation”

which reduces the deviation of the averages with respect to the PTF which obeys the detailed balance

equation. With this auto–regulation we only update the energy reference level.
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A.2 Application to the fuzzy scalar field model

We can now adapt this scheme to the matrix model (16) we are considering in this article. A finite

variation of the action, from a configuration φ to a configuration φ+φ is defined by ∆S = S
[

φ+φ
]

−
S [φ], where φ must be a Hermitian matrix. The evaluation of (∆S)µν for the φ4 matrix model for a

single entry (µ ,ν), involves the evaluation of a cubic polynomial in the matrix. This is a highly

non-local function which causes the main slow–down in the code.

Figure 8 shows a comparison for the same set of internal parameters (Monte Carlo time, ther-

malization time, decorrelation time, etc.), at a collapsed point (b,c) = (−23/2,1) from the phase

diagram -Figure 6- corresponding to the non-uniform ordered phase, between the results obtained by

direct integration (explained in Section 5.1), and the Monte Carlo simulations via either of the three

probability transition functions presented above: Metropolis, Metropolis-Boghosian, and Metropolis-

Boghosian-Fergar (the one in Table 3). The small deviations (noise) of the Monte–Carlo simulations

with respect to the direct integration are a normal effect of the Monte Carlo simulations and can be

reduced by increasing the number of samples produced by the code.

Going back to the choice of the filter s introduced in (44), we want a function that incorporates

the main features of S but is easier to evaluate.

We can notice that the action (16) for a fixed entry (µ ,ν) of the matrix φ correspond to a quartic
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polynomial in the entry φµν , thus

Sµν = Cφ4
µν + Bφ2

µν + A,

where the coefficients A, B and C depend on the rest of the entries in the matrix. In that sense, we

propose

sµν = C′φ4
µν + B′φ2

µν + A′, (47)

where A′, B′ and C′ are constant coefficients. Thus, sµν goes to Sµν when {A′,B′,C′}→ {A,B,C}. We

will obtain a better concordance between both ∆S and ∆s by choosing a set of parameters {A′,B′,C′}
close to the non-primed parameters. As a first approximation, we took

{

A′,B′,C′} =















{0,b,c} if µ = ν

{0,0,c} if µ 6= ν

where b and c are respectively the bare mass and interaction parameters of the model (16). For

simplicity we have fixed A′ = 0 but in general, we can use any other real number and it will not affect

∆s. This set of primed parameters for s, was chosen to contain the most basic information of the full

model S.

At the end of section 3, we have shown that the action (16) has two symmetric minima with

respect to the trace. Those minima are located in Tr [φ] = ±N

√

− b
2c

. Thus, we can consider that

every single diagonal entry in the matrix contributes to the trace minima with φµµ = ±
√

− b
2c

, where

(µ = 1,2, . . . ,N). A simple function of φµµ with the same set of minima has been given in the equation

(47) with the parameters (A′ = 0,B′ = b,C′ = c).

For non-diagonal entries, we have observed that their probability distribution is around zero. Thus,

it is enough to consider the function (47) with the parameters (A′ = 0,B′ = 0,C′ = c).

A.3 The algorithm

The algorithm is basically the same as the usual Metropolis algorithm although with some adaptations

to the current setting. In the figure 9 we show the flow chart for the implementation of the new method

that we have proposed.

Internal variables in the flow chart 9.

• x and x′: random numbers uniformly dis-

tributed in the open interval (0,1).

• Metropolis(∆ f ): indicates the Metropolis

algorithm using the difference of energy
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Figure 9: Flow chart of the Optimized Monte–Carlo method.

∆ f .

• β : represents the difference of the energy

from a Monte–Carlo step which had been

evaluated before.

• p: ratio of implementation of the new

method with respect to the standard one.

• 1 : part of the subroutine where we avoid

to evaluate ∆S.

In the flow chart presented above, we have emphasized with 1 , the step in the simulation where

we avoid the evaluation of ∆S. This would seem to be insufficient to reduce in a significant way

the processing time but it is not true at all. The number of times that the algorithm passes trough

1 divided by the total number of times that the Modified Metropolis Algorithm (MMA for short)

has been used, will be an estimation of the efficiency of the new method with respect to the Usual

Metropolis Algorithm (UMA for short).

Let us first define an efficiency parameter for our MMA to compare it to the UMA. If T
MC

is the

Monte Carlo time to run the simulation for N×N Hermitian matrices under the model (16), and τ the

number of times that the algorithm passes trough the new feature 1 , then

eff =
τ

N2T
MC

, (48)

defines the efficiency of the modified algorithm. In particular, if t
full

is the time for a run with a UMA,

which is without our routine 1 and t
gb

the time with it then, we have t
gb
≈ (1− eff) t

full
.

Remember that the figure 9 only represents one attempt to switch one entry and, if β has been
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updated then it must be saved for the next one.

The modification of the Metropolis algorithm presented in this chapter allows us to simulate ma-

trix models with a decrease of the calculation time with respect to the usual method. The explicit

breaking of the detailed balance equation by our proposition involves a systematic error which we

can keep under control at any time.

A.4 The optimized Metropolis method

As a second part, we present the results obtained with the optimized Metropolis method. As explained

in section A.2, this method was successfully tested in the lowest dimensional N = 2 case.

As we saw in the figure 9, the Modified Metropolis Algorithm (or MMA) had to evaluate three

exponential functions compared with the Usual Metropolis Algorithm (or UMA) where we only have

to evaluate one. Thus, when the efficiency eff defined in (48) is too small, it could be better to use the

UMA. This happens for instance, in the disordered phase: the difference in processing time between

UMA and MMA is not appreciable3 . Even worse, the processing time in MMA could be a little

bigger in that phase.

It is not the same for the other two phases where tunneling plays an important role. There the

efficiency eff goes to one and the MMA is greatly more efficient4.

To keep under control the relative error when eff is close to one, we have to adjust the p ratio.

Thus, p ≈ 0 means a fast run, but could present a considerable relative error. At the other extreme,

when p ≈ 1, the run will be slow but the relative error will be very small. We have to look for a

balance between accuracy and speed. We have set p between 0.55 and 0.70 but it is also possible to

set it dynamically.

As an example, in the figure 10, we show the behavior of the processing time per configuration

with respect to the matrix size obtained by means of the usual Metropolis algorithm for some given

processor5 when a = 1, b = −4 and c = 0.10 which corresponds to the uniform ordered phase where

we expect some gain. And indeed, the best fit for this curve time = (1.49±0.02×10−6)N2 +(3.18±
0.02×10−8)N4 s grows like N4.

3They have approximately the same velocity of processing because a large percent of attempts will be in the range of

fluctuations of s.
4In these phases, the new method is faster than the old one because a large percentage of attempts could be out of the range

of fluctuations of s, thus avoiding the evaluation of ∆S.
5In this example we have used a Mobile Intel(R) Pentium(R) III CPU - M 800MHz, 369.10Mb RAM. On gcc-4.0.2 2005-

10-01, Ubuntu, kernel 2.6.12-10-386. Kubuntu 5.10 Breezy Badger.
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Figure 10: Processing time per configuration for the UMA.

Starting from a random configuration, it can be thermalized or decorrelated using the MBF

method described by Table 3, then we can use the usual Metropolis algorithm to evaluate the prob-

ability of transition between the old configuration and this new sample obtained from MBF. Doing

this, we save processing time and, at the same time, we do not introduce any systematic error because

the usual Metropolis algorithm will reject or accept the new configuration which only contains the

statistical error.
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