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Abstract

The behaviour of the critical point between quantum Hall plateaux, as
the Zeeman energy is varied, is analysed using modular symmetry of the Hall
conductivities following from the law of corresponding states. Flow diagrams
for the conductivities as a function of temperature, with the magnetic field
fixed, are constructed for different Zeeman energies, for samples with particle-
hole symmetry.
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1 Introduction

The quantum Hall effect continuous to intrigue both experimentalists and
theorists not only because of the beautifully rich patterns visible in the data
but also because of the fascinating physics involved in the collective phe-
nomena of strongly interacting systems. The first suggestion of a connection
between the quantum Hall effect and the modular group appeared in [1], al-
though these authors focused on a sub-group of the full modular group that
did not turn out to have any direct relevance to the current experimental
data. Subsequent papers on symmetries of the phase diagram of the quan-
tum Hall effect [2, 3] appeared almost simultaneously from two very different
directions and laid the foundations for the application of modular symmetry
to the quantum Hall effect. Although reference [2] did not use the mathemat-
ical language of modular symmetry the “Law of Corresponding States” put
forward in that reference is in fact equivalent to the assumption of modular
symmetry [4].

Modular symmetry gives predictions [5] for the manner in which the con-
ductivity of a two-dimensional quantum Hall sample flows, as the temper-
ature is varied keeping the magnetic field fixed — predictions which have
already received strong experimental support [6, 7, 8, 9, 10].

While the flow diagram presented in [5] was for spin-split samples the
experimental data presented in [6] is for spin-degenerate samples. Zeeman
splitting in the context of modular symmetry was analysed in [11] and a flow
diagram, deformed by interactions between adjacent Landau levels, was given
but the fully spin-degenerate case has not yet been treated using modular
symmetry

In this paper restrictions on the temperature flow due to modular sym-
metry are combined with a Zeeman splitting analysis to determine the way in
which temperature flow changes as the Zeeman splitting is smoothly varied
between the two extremes of samples with well-split spins and fully spin-
degenerate samples. The analysis is restricted to situations with particle-
hole symmetry, as modular symmetry is particularly powerful in this case
but does not give strong predictions otherwise. A central prediction of the
analysis is that pairs of critical points of the quantum Hall phase transitions
between adjacent plateaux in spin-split samples must merge as the Zeeman
splitting is reduced, as shown in figures 12 and 13.
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2 The modular group

The law of corresponding states [2, 12], for isotropic quantum Hall samples
with spins well split, can be written in terms of the complex conductivity

σ = σxy + iσxx

(for isotropic samples σxx = σyy). A general map between two quantum Hall
states can be constructed by iterating two generating maps, [3, 4, 13]: the
Landau level addition transformation, L,

σ → σ + 1,

and the flux attachment transformation, F2,

σ → σ

2σ + 1
,

which attaches two units of statistical gauge field flux to each electron (we
use units with e2

h
= 1).

In samples which enjoy particle-hole symmetry there is a third map, the
particle-hole transformation, P1,

σ → 1 − σ.

These maps generalise Jain’s transformations on ground state wavefunctions,
[14], to include non-zero Ohmic conductivity. Repeated iteration of F2 and
L generate an infinite discrete group which we shall denote Γ0(2).

The infinite discrete group generated by repeated applications of L and
F is called the modular group and is usually denoted by Γ(1) in the mathe-
matical literature [15]. A general element γ ∈ Γ(1) sends

σ → γ(σ) :=
aσ + b

cσ + d
, (1)

where a, b, c and d are any four integers satisfying ad − bc = 1. Group
multiplication can be realised in terms of the 2 × 2 matrix

γ =

(

a b
c d

)

(2)
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and demanding that det γ = 1. It is easy to check from the definition (1) that,
for any three such matrices satisfying γ1γ2 = γ3, we have γ1(γ2(σ)) = γ3(σ).
Thus the group multiplication law is given by matrix multiplication.

The full modular group Γ(1) is not a symmetry of quantum Hall effect,

for example the element

(

0 1
−1 0

)

sends σ → −1/σ which has a fixed point

for σ = i, i.e. σxx = 1, σxy = 0. There is no indication in the experimental
data on the quantum Hall effect that this point has any special significance
(though it is important in the insulator — superconductor phase transition
[16, 17]).

The group Γ0(2) is a sub-group of the modular group, it is represented
by matrices of the from (2) with the extra condition that c be even. In
matrix notation Landau level addition and Flux attachment are represented

by  L =

(

1 1
0 1

)

and F2 =

(

1 0
2 1

)

.

If the electron spins are not split then the story is different. For simplic-
ity first consider the situation if Zeeman splitting is completely absent and
states corresponding to two different electron spins are completely degener-
ate. Then Landau level addition sends

σ → σ + 2,

or σ
2
→ σ

2
+ 1, which is L2 =

(

1 2
0 1

)

. Attaching two units of flux to each

electron sends

σ

2
→

(

σ
2

)

2
(

σ
2

)

+ 1
⇒ σ → σ

σ + 1
,

which is F =

(

1 0
1 1

)

acting on σ. Thus spin generate Landau levels give

rise to an infinite discrete group generate by  L2 and F. A general element of

this group is of the form γ =

(

a b
c d

)

with a, b, c and d integers satisfying

ad− bc = 1, but with b restricted to be even. We denote this group by Γ0(2).
In fact that Γ0(2) acting on σ is the same as Γ0(2) acting on σ

2
. Particle-

hole symmetry for degenerate spins is also modified to P2 = σ → 2 − σ, so
P2 = P1 + 1.
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For spins that have a slight splitting, so that the Landau levels corre-
sponding to opposite spins are not completely degenerate but are still close
enough for there to be some mixing between Landau level wave-functions,
one expects  L2 to be a symmetry rather than  L. At the same time adding
two units of statistical flux to each electron in the individual levels is de-
scribed by F2. For this intermediate case therefore the group is generated

by  L2 and F2 and a general element is represented by γ =

(

a b
c d

)

with

ad − bc = 1 and both b and c even integers. This group is denoted by Γ(2).
Clearly Γ(2) ⊂ Γ0(2) and Γ(2) ⊂ Γ0(2). We are led to suggest the follow-
ing sequence of symmetries as the Zeeman splitting relative to the cyclotron
energy is varied from large to small:

Γ0(2) −→ Γ(2) −→ Γ0(2),

thus the symmetry first decreases and then increases again as the Zeeman
splitting is varied.

Since the modular group has an infinite number of elements the law of cor-
responding states maps between an infinite number of quantum Hall phases,
which is clearly a mathematical idealisation which is never realised in any
physical system. Obviously the symmetry breaks down in various limits, such
as weak magnetic field, when the Landau level splitting becomes comparable
with thermal energies, or very strong magnetic fields, when a Wigner crystal
is expected to form. The range of validity is discussed in [18].

It was pointed out in [19] that the law of corresponding states applies to
the AC conductivity in the limit of infinite frequency rather than the DC
conductivity. This is because the conductivity is a a function of frequency
over temperature, σxx

(

ω
T

)

, and the derivation of the law of corresponding

states in [2] takes the limit T → 0 before ω → 0 and this does not in general
commute with the limit required to extract the DC conductivity, namely
ω → 0 before T → 0. The precise relationship between these two limits
can only be explored in the context of a specific microscopic theory for the
conductivity and is not accessible solely through infra-red effective action
techniques such as the law of corresponding states. Nevertheless the law of
corresponding states has been applied to DC conductivities, for example with
regard to temperature flows, and the experimental data are in remarkable
agreement with the predictions [6, 7, 8, 9, 10, 18]. While some microscopic
models may display a symmetry which makes the order in which the limits are
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taken irrelevant [19] this is not generic, but since we do not commit ourselves
to a specific model here we cannot address this question directly. Rather
our philosophy will be to develop the predictions of the law of corresponding
states, see where they lead, and future experiments will test their validity.

3 Temperature flow

Scaling arguments [20] suggest that, at low temperatures, the DC conduc-

tivity should be a function of a single variable, σ
(

∆B
Tκ

)

, rather than of the
temperature T and magnetic field B separately. Here ∆B = B − Bc is
the deviation of the magnetic field from the critical value Bc separating two
quantum Hall phases and κ is a scaling exponent, experimentally κ ≈ 0.44.
The conductivity depends on the electron scattering length l and we define
the scaling function

Σl(σ, σ) = −l
dσ

dl
.

Assuming l is a strictly monotonic function of temperature, increasing as T
decreases, the temperature flow described by the scaling function

ΣT (σ, σ) = T
dσ

dT

will have the same topology as the flow described by Σl — they will have
the same fixed points, ΣT = 0 if and only if Σl = 0. We do not need to
determine either Σl or ΣT exactly, in fact if s(T ) is any monotonic function
of T , decreasing as T decreases, then the flow described by

Σs(σ, σ) = s
dσ

ds

will have the same topology as both that of ΣT and of Σl.
If the law of corresponding states correctly describes the low temperature

physics then the scaling flow commutes with the law of corresponding states
map. From this it can be concluded that any value of the complex conduc-
tivity σ∗ that is a fixed point of the modular group (in the sense that there
exists an element γ of the modular group such that γ(σ∗) = σ∗) must also
be a fixed point of the scaling flow, [4, 13]. This implies that

Σs(σ∗, σ∗) = 0.
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This follows because the assumption γ(σ∗) = σ∗ requires

Σs(σ∗, σ∗) = Σs(γ(σ∗), γ(σ∗)) = s
dγ(σ)

ds

∣

∣

∣

∣

∣

σ∗

=
1

(cσ∗ + d)2
Σs(σ∗, σ∗) (3)

which is only possible if (cσ∗+d)2 = 1 or if Σs(σ∗, σ∗) = 0 or ∞. If (cσ∗+d)2 =
1 then aσ∗+b = ±σ∗ and, excluding the trivial case a = ±1, b = 0, this is not
possible if the Ohmic conductivity (σ∗)xx > 0 at the fixed point. Assuming
Σs(σ∗, σ∗) is not infinite we conclude that Σs(σ∗, σ∗) = 0 and σ∗ is a fixed
point of the flow. The fixed points with Im(σ∗) > 0 are isolated and easy to
enumerate, since

γ(σ∗) = σ∗ ⇒ σ∗ =
a− d±

√

(a + d)2 − 4

2c
.

Now ad − bc = 1, with bc even for all three groups Γ0(2), Γ0(2) and Γ(2),
hence ad must be odd so both a and d must be odd. Demanding Im(σ∗) > 0
then requires that −2 < a + d < 2. Hence a + d = 0, ±1, but a and d are
both odd so ±1 is ruled out and we can conclude that d = −a. Hence

σ∗ =
a + i

c
(4)

as the Ohmic conductivity, Im(σ∗), cannot be negative. A matrix γ that
leaves σ∗ fixed must now be of the form

γ =

(

a b
c −a

)

with bc = −(1 + a2) with a odd. Let a = 2p + 1 for some integer p, then
bc = −4p(p+ 1)− 2 and bc = 2 mod 4. In particular b and c cannot both be
even so Γ(2) has no fixed points with Im(σ) > 0.

To summarise: Γ0(2) has fixed points above the real axis of the form (4)
with a odd and c even; Γ0(2) has fixed points above the real axis of the form
(4) with a and c both odd; Γ(2) has no fixed points above the real axis.

Although any fixed point of the modular group with Im(σ∗) > 0 must
be a fixed point of the flow the converse does not necessarily hold, there
could be fixed points of the flow that are not fixed points of the modular
group. Any such point would have an infinite number of images under the
group action. However there is no sign any such extra fixed points in the
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experimental data for spin split samples so we shall assume that there are
no fixed points for Γ0(2), other than those required by the symmetry. For
brevity in the following this will be referred as the minimalist assumption.
If we assume that the topology of the flow varies smoothly as the Zeeman
energy is varied then the Γ0(2) fixed points cannot suddenly disappear when
Γ0(2) is broken to the smaller group Γ(2), they must move down towards the
real axis. We shall likewise assume that the only fixed points of the flow for
degenerate spins are those of Γ0(2) and these move smoothly down towards
the real axis as the degeneracy is lifted.

The topology of the flow is determined by the fixed points and some
other rather mild assumptions [5], such as decreasing Ohmic conductivity
when σxx >> σxy as the temperature is reduced, as in a semi-conductor, and
attractive fixed points at integer quantum Hall plateaux. We can plot the
flow by changing variables from σ to λ(σ) where λ is invariant under Γ(2),
i.e. λ(γ(σ)) = λ(σ), with γ ∈ Γ(2), [11, 21]. Since Σs(σ, σ) represents a
vector flow in a two-dimensional space this is just a change of co-ordinates
in that space. In the new parametrisation the flow is given by

Σλ(λ, λ) = s
dλ

ds
= Σs(σ, σ)λ′ ⇒ Σs(σ, σ) =

Σλ

λ′
,

where λ′ = dλ
dσ

.
The invariant function λ that has the smallest number of poles and zeros

in the complex plane is unique, up to a constant rescaling and addition of a
constant, [22]. It is most easily expressed in terms of Jacobi ϑ-functions:

λ =
ϑ4
2

ϑ4
3

where

ϑ3(σ) =
∞
∑

n=−∞

eiπn
2σ and ϑ2 = 2

∞
∑

n=0

eiπ(n+
1

2
)2σ. (5)

It is also useful to define

ϑ4
4(σ) =

∞
∑

n=−∞

(−1)neiπn
2σ = ϑ4

3(σ) − ϑ4
2(σ). (6)

Then these functions have the following transformation properties under L
and F2:

ϑ2(σ + 1) = e
iπ
4 ϑ2(σ), ϑ2

(

σ

2σ + 1

)

=
√

2σ + 1 ϑ2(σ),
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ϑ3(σ + 1) = ϑ4(σ), ϑ3

(

σ

2σ + 1

)

=
√

2σ + 1 ϑ3(σ),

ϑ4(σ + 1) = ϑ3(σ), ϑ4

(

σ

2σ + 1

)

=
√

2σ + 1 e−
iπ
2 ϑ4(σ),

(we use the notation of [22]).
Furthermore under P2, ϑi → ϑi for i = 2, 3, 4. Hence particle-hole inter-

change swaps λ ↔ λ and assuming particle-hole symmetry has the important
consequence for the scaling function that

Σλ(λ, λ) = Σλ(λ, λ) = Σλ(λ, λ). (7)

This then implies that an expansion of Σ in powers of λ and λ has only real
co-efficients and we draw the important conclusion that, starting from any
point for which λ is real, the flow can never generate an imaginary part for
λ. In other words any curve on which λ is real is in integral curve of the
flow [21]: this is a key observation in creating the flow diagrams below. In
particular λ is real on vertical lines above the integer points on the real line
and one the semi-circles of radius 1/2 joining the integers (see figure 1).

While λ is not invariant under the larger groups Γ0(2) and Γ0(2) the
following functions of λ are:

• µ = λ−1
λ2 = −ϑ4

3
ϑ4

4

ϑ8

2

is invariant under Γ0(2);

• ρ = λ
(1−λ)2

=
ϑ4

2
ϑ4

3

ϑ8

4

is invariant under Γ0(2).

The functions µ and ρ can be used to determine the topology of the flow
for Γ0(2) and Γ0(2) respectively. Fixed points of Γ0(2), respectively Γ0(2),
must be fixed points of the flow, and these are enumerated in equation (4).
Next, as above, we argue that demanding particle-hole symmetry implies
that curves on which µ, respectively ρ, is real will be integral curves of the
flow. The flow can then be modelled qualitatively by taking Σs to be a
meromorphic function of σ, Σs(σ). Although there is no physical argument
for meromorphicity by plotting the flow in this case we can get a picture
of what it looks like, the inclusion of σ dependence can only result in a
smooth deformation of the meromorphic flow which leaves the fixed points
invariant. Meromorphic functions satisfying (3) are called modular forms in
the mathematical literature [15] and their properties are well known. For
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Γ0(2) it was shown in [5] that the minimalist assumption leads to

Σs(σ) = − µ

µ′
=

λ(1 − λ)

λ′(2 − λ)
=

1

iπ(2ϑ4
3 − ϑ4

2)
, (8)

where µ′ = dµ

dσ
(the second and third forms of this equation rely on equation

(6) and the fact that
λ(1 − λ)

λ′
=

1

iπϑ4
3

, (9)

a result that can be derived using the techniques in [5, 11]). The integral
curves of the flow (8) are plotted in figure 3.

It should be borne in mind that (8) does not give a quantitative descrip-
tion of the temperature flow, because the function s(T ) is undetermined.
By changing s(T ), Σs can be multiplied by a function of T , but as long as
s(T ) is strictly monotonic and real this will not change the fixed points nor
will it change the fact that curves on which µ is real are integral curves of
the flow — it will merely change the rate at which the flow lines in figure 3
are traversed as the temperature is changed, and this rate is not evident in
the figure. Also physical quantum Hall samples cannot be expected to give
meromorphic flow, in a real sample Σ(σ, σ) will depend on σ and σ indepen-
dently, but similar arguments apply: σ dependence can only distort the flow
smoothly from the meromorphic flow shown leaving the fixed points invari-
ant and, again assuming particle-hole symmetry, the vertical lines above the
integers and the semi-circles, together with their images under Γ0(2), will not
be affected (equation (7) does not require meromorphicity). Figure 3 should
be compared to the experimental data in [7, 8, 9] for spin split samples.

For Γ0(2) similar arguments applied to ρ lead to

Σs(σ) =
ρ

ρ′
=

λ(1 − λ)

λ′(1 + λ)
=

1

iπ(ϑ4
3 + ϑ4

2)
(10)

and this flow is plotted in figure 11. This should be compared to the ex-
perimental flow for the spin degenerate sample in [6] – the agreement is
remarkable.

For samples intermediate between degenerate and well split spins Γ(2)
symmetry is not as powerful as there are no fixed points with σxx > 0.
Nevertheless we would expect there to be fixed points of the flow, the fixed
points of Γ0(2) for spin split samples and of Γ0(2) for spin degenerate samples
can hardly just disappear when the Zeeman splitting is smoothly varied. The
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minimalist assumption cannot be used for Γ(2). We can however assume
that the fixed points of Γ0(2) and Γ0(2) persist when the Zeeman splitting
is varied, but their position is no longer dictated by modular symmetry. We
seek a smooth deformation from figure 3 to figure 11, equation (8) to equation
(10), as the Zeeman splitting is increased, a deformation which is compatible
with particle-hole symmetry, Σλ(λ) = Σλ(λ). In order to avoid creating new
spurious fixed points we keep the order of the polynomials in λ fixed in the
numerators and denominators of (8) and (10), and this dictates that the
interpolating flow must be of the form

Σs(σ) =
λ(A + Bλ)

λ′(C + Dλ)
, (11)

where A, B, C and D are constants. Particle-hole symmetry requires Σs(σ) =
Σs(σ), which dictates that A, B, C and D be real. Equation (9) shows that a

factor (A+Bλ)
ϑ4

3
(1−λ)

will appear in Σs(σ), unless A = −B, and this would introduce

a new zero when λ = −A
B

that is not there in either (8) or (10). To avoid
this we set A = −B and the only possible deformation that is compatible
with our assumptions is, up to an overall constant factor,

Σs(σ) = z
λ(1 − λ)

λ′(λ + z)
=

1

iπ

z

(ϑ4
2 + zϑ4

3)
, (12)

with z independent of σ and real. The free parameter z varies from z = −2
for Γ0(2) to z = 1 for Γ0(2) (an overall factor of 2 multiplying (8) does not
change figure 3, indeed (8) is only derived in [5] up to an overall positive
constant).

Figure 2 shows how the fixed point σ∗ = 1+i
2

of Γ0(2) moves as z is varied:
particle-hole symmetry constrains it to keep to the real curve of λ shown in
figure 1. The point associated with z = 1 can be gained from from z = −2
either by going anti-clockwise or clockwise. Suppose first that z increases
monotonically between −2 and 1 as the Zeeman splitting is varied smoothly
from well-split spins, Γ0(2), to degenerate spins, Γ0(2). Figure 2 shows that,
as z is increased from −2 to −1, the fixed point at σ∗ = 1+i

2
of the Γ0(2) flow

(figure 3) follows the semi-circular arc of radius 1
2
, moving down to the left

until it hits the origin in the σ-plane, σ∗ = 0 when z = −1. It then continues
up the imaginary axis, through σ∗ = i for z = −1

2
, to σ∗ = i∞ for z = 0

(near z = 0 equation (12) can be replaced with

Σs(σ) =
1

iπ

z̃

(z̃ϑ4
2 + ϑ4

3)
, (13)
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where z̃ = 1/z, multiplying Σs by a constant does not change the topology
of the flow). The fixed point subsequently moves down from σ∗ = 1 + i∞ to
σ∗ = 1 + i (a Γ0(2) fixed point, figure 11) as z increases from 0 to 1. While
experimental data to date do show a fixed point on the semi-circle spanning
1 to 0 that is to the left of 1+i

2
, [9, 10, 23], it does not seem likely that

this sequence of flows can be the correct one. A fixed point at σ∗ = i when
z = −1

2
has never been seen in any Hall sample. Indeed such fixed points were

identified in [17] as being associated with bosonic pseudo-particles excitations
(as in the superconductor-insulator transition of [16] for example), rather the
fermionic pseudo-particle excitations of the quantum Hall effect. Since no
quantum Hall sample to date has ever exhibited a critical point at σ = i we
exclude this possibility.

An alternative possibility is that the flow morphs from figure 3 to figure
11 by decreasing z from −2 going through −∞ to +∞ to continue down to
+1. The nine plots in figures 3 to 11 show the series of flows for

z = −2,−10,−100,±∞, 100, 20, 10, 2 and 1.

The fixed point at 3+i
2

for samples with well-split spins moves left and down
as the Zeeman splitting is decreased, along the semi-circle of radius 1

2
centred

σ = 3
2
, until it hits the real axis at σ = 1 (for |z| = ∞), where it merges

with the incoming fixed point coming from 1+i
2

on the left. It then moves
vertically upwards to the point 1 + i when z = 1, which is the fixed point
for degenerate samples with symmetry Γ0(2). Every flow in the sequence has
Γ(2) symmetry, which is enhanced to Γ0(2) or Γ0(2) at the extreme values
z = −2 and z = 1 respectively.

In real samples particle-hole symmetry is hardly likely to be an exact
symmetry of the system, there will be deviations from this picture. But
any deviations will be small if particle-hole interchange is a reasonably good
symmetry: for example if mp−mh

mp+mh
is small, where mp is the particle mass and

mh the hole mass. In particular the collision of the critical points at σ = 1
(|z| = ∞) seems likely to be an artifact of the mathematical idealisation
of exact particle-hole symmetry, as there is no obvious physical mechanism
governing the merging of two critical points as the Zeeman energy is reduced.
The most plausible scenario here is that the merge is postponed in a real
sample until the Zeeman splitting is reduced to very small values and the
proposed trajectory of a real sample, in which particle-hole interchange is
a good but not exact symmetry, is shown in figure 12. This is a small
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perturbation of the mathematically idealised flows shown in figures 3 to 11
which is still compatible with the proposed symmetries.

4 Conclusions

The topology of the temperature flow of conductivities in quantum Hall sam-
ples is tightly constrained by the law of corresponding states, expressed in
terms of modular transformations on the complex conductivity (2). For the
extreme cases of well-split spins and degenerate spins the critical points in
the complex plane are determined by the symmetry. For intermediate values
of the Zeeman splitting modular symmetry does not determine the position
of the critical points but one can assume that they move around the complex
plane in a continuous manner as the Zeeman splitting is varied.

In the case of samples exhibiting particle-hole symmetry modular symme-
try is particularly powerful, leading to the statement that the curves in figure
1, and their images under Γ(2) modular transformations, will be trajectories
of the conductivity flow as the temperature is varied keeping the magnetic
field fixed. This statement should be true for any Zeeman splitting. Zeeman
energies which are large enough to give well-split spins result in critical points
at σxy + iσxx = n + 1+i

2
between integer Hall plateaux σxy = n and n + 1

(figure 3). Zeeman energies which are so small that the spins are degenerate
give critical points at σxy + iσxx = 2n + 1 + i between integer Hall plateaux
σxy = 2n and 2n + 2 (figure 11).

The form of the flow as the Zeeman splitting is varied from the spin-split
to the spin degenerate case is shown in figures 3 to 11. Figure 12 shows
proposed trajectories of two critical points as the Zeeman energy is reduced
in a real sample exhibiting symmetry under particle-interchange which is
good but not exact.

The analysis here has assumed that the parameter z varies monotonically
as the Zeeman energy is varied, implying that the critical point at σ = 1+i

2

in the transition between σ = 1 and σ = 0 in spin-split samples moves to
the right, down towards to σ = 1, as the Zeeman splitting is reduced. There
is as yet no experimental evidence for such behaviour: indeed in [9, 10, 23]
a critical point is found on the semi-circle spanning 0 to 1 in the complex
conductivity plane which is to the left of σ = 1+i

2
. This could be a consequence

of a constant re-scaling of σxx, [11], or, perhaps more likely, it may indicate
that z is not monotonic. It could be that the critical point at σ = 1+i

2
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(z = −2 in equation (12)) in spin-split samples first starts to move down and
to the left (z > −2) and then reverses to retrace its steps back to z = −2
before starting to travel down to the right towards σ = 1 as z decreases
below −2. A possible trajectory is shown in figure 13. While this would
be compatible with the experimental data to date any physical explanation
of such a trajectory, which is certainly allowed by the law of corresponding
states combined with particle-hole symmetry, would go beyond the general
predictions following from these assumptions and would probably require a
more specific microscopic model. More experimental data would be welcome
in order to determine the true behaviour of the critical points.
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Figure 1: Lines on which the invariant function of Γ(2), λ(σ) in the text, is real.

16



����

���� ����

���
���
���
���

������

σ

1

z=−1/2 z=1

z=−2

z=−1 |z|=

z=0

0

Figure 2: The movement of the Γ0(2) fixed σ∗ = 1+i
2

as the parameter z
is varied away from −2. The arrows show the direction of increasing z.

17



Figure 3: Spins well split, Γ0(2) symmetry.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Figure 10: Splitting reduced, Γ(2) symmetry.
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Figure 11: Spins degenerate, Γ0(2) symmetry.
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σ

Figure 12: Proposed movement of the fixed point σ = (1+i)
2

for non-degenerate spins, Γ0(2),
to σ = 1 + i for spin degenerate samples, Γ0(2), as the Zeeman energy is reduced.
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Figure 13: Possible movement of the fixed points if the mathematical parameter
z does not vary monotonically with the Zeeman splitting.
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