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1 Introduction

Noncommutative spaces with four dimensions are an interesting way to model space-time

at small length scales. Amongst the simplest four dimensional manifolds S4 is, on account

of the one-point compactification of Euclidean field theories, an important model. We

focus on the fuzzy approach to noncommutative spaces, where the function algebra is

replaced by a sequence of finite dimensional matrix algebras AL and the metrical geometry

is determined, in our case, by a Laplacian acting on “functions” ∆. We will also present a

Dirac type operator that recovers the spectrum of the standard round Dirac operator on

S4 in a certain limit.

The fuzzy noncommutative 4-sphere, S4
F , was first constructed in [11] but has been

known for some time in different settings [1]-[2] along with other 4-dimensional fuzzy spaces

[3]-[4]. The key feature of S4
F is that the algebra of functions does not form a closed

associative algebra. This can be understood since the product of two “functions” takes one
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out of the algebra of functions of S4
F and a projection is necessary to bring the product

back [5].

Here we follow the line presented in [6] where the algebra is associative but it includes

modes which do not belong to the fuzzy 4-sphere. The quantized version of S4 can be

constructed only in an indirect manner if one demands associativity of the algebra, this is

a consequence of the fact that S4 does not admit a Poisson structure. The approach taken

here is based on the fuzzy complex projective spaces, first given in [7] and further explored

in [8]-[10], and in the fact that CP3 is a fibration over S4. In this context a construction

for the scalar theory on a fuzzy 4-sphere was first carried out as a Hopf fibration in [11],

but without a method of suppressing the unwanted modes. The necessary suppression

mechanism was supplied in [6].

A method to obtain an effective scalar field theory on S4
F was given in [6], there, an

algebraic approach was taken to eliminate the unwanted modes by constructing a positive

definite operator whose kernel consists of exactly all the modes in CP3
F that belong to S4

F ,

this operator was interpreted as a modification of the Laplacian. In the present work we

give a geometrical interpretation of the suppresion mechanism in terms of the fibre bundle

picture for CP3.

In section 2 we present a brief review of the aspects needed of CPN
F and S4

F , we follow

essentially [7], [6]. Section 3 presents the construction of our case of interest, CP3, first

as a Spin(6) and then as a Spin(5) adjoint orbit. It continues with the calculation of the

invariant line element and isotropy subgroup in both approaches using the Maurer-Cartan

forms of the aforementioned groups, this is done only at a particular fiducial point that

we call the “north pole”, by equivariance this suffices. Section 4 presents a one-parameter

dependent squashed Laplacian ∆h which fixes the symmetry of CP3
F to be Spin(5) instead

of the “round” Spin(6) symmetry. This Laplacian turns out to be an interpolation of

Spin(5) and Spin(6) quadratic Casimir operators. Section 5 deals with the use of the ∗-
product map to construct the commutative analogue of ∆h. The metric of the squashed

CP3 is obtained from the squashed Laplacian explicitely as a combination of projectors.

The line element of the bundle CP3 → S4 is computed and reinterpeted in terms of the

found radii of the fibre and base space. In section 6, in the spirit of [12], we present a

first order operator on CP3
F that projects down to the Dirac operator in a certain limit

and hence give a prescription to construct an action for fermions supressing the unwanted

degrees of freedom. Section 7 presents our conclusions.

2 Review of CPN
F and S4

F

In the usual construction, CPN is defined as the space of all equivalence classes [ψ] of

unit vectors ψ ∈ C
N+1, |ψ| = 1, given by the equivalence relation: ψ1 ∼ ψ2 if and only if

ψ1 = eıϕψ2 for some ϕ ∈ (0, 2π]. We follow closely the presentation in [7] where the general

details are given, and specialize later to the case under study of CP3. It was shown in [7]

that each equivalence class is associated with a hermitian rank one projector in C
N+1,

P = ψ ⊗ ψ†, we have then the following alternative definition of CPN
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CPN := {P ∈MatN+1 : P2 = P = P†, TrP = 1}. (2.1)

Each projector P is associated with a point in CPN , a coordinate system is introduced

by expanding the projector in the basis of matrices given by the identity and the generators

of su(N + 1) in the fundamental representation, denoted by {Λµ, µ = 1, . . . , N2 + 2N}:

P =
1

N + 1
+

1√
2
ξµΛµ. (2.2)

The generators have been chosen to be orthogonal and with such normalization that their

algebra is

ΛαΛβ =
2

N + 1
δαβ1+

1

2
(dαβγ + ıfαβγ)Λγ . (2.3)

The conditions in (2.1) together with (2.2) and (2.3) result into a set of quadratic constraints

for the real coordinates ξµ,

ξµξµ =
N

N + 1
, dαβγξαξβ =

√
8

(
N − 1

N + 1

)
ξγ , (2.4)

these constraints describe the embedding CPN →֒ R
N2+2N , wherefrom the coordinates ξµ

can be seen to be a globally well defined overcomplete coordinate system. The metric P,

complex structure J, and Kähler structure K on CPN were found in [7] to be given as

Pαβ =
2

N + 1
δαβ +

1√
2
dαβγξγ − 2ξαξβ,

Jαβ =
1√
2
fαβγξγ , (2.5)

K =
1

2
(P+ ıJ).

Notice that the complex structure satisfies J2 = −P.

One may obtain the fuzzy complex projective space CPN
F by considering the algebra

of functions to be the full matrix algebra given as

MatdNL
= ··︸ ︷︷ ︸

L

⊗ ··︸ ︷︷ ︸
L

(2.6)

whose decomposition into irreducible representations of SU(N + 1) corresponds with the

expansion into polarization tensors of a function on CPN
F . The dimension of the matrix

algebra (2.6) is dNL =
(
L+N
N

)
. The right-invariant vector fields induced by the action of

SU(N+1) are Lµ = ı√
2
Jµν

∂
∂ξν

, and in the fuzzy realization they take the form ad(Lµ) where

Lµ are the generators of the totally symmetric irreducible representation; the associated

Laplacian is then the quadratic Casimir operator ∆ = 1
R2 (ad(Lµ))

2, and reflects the SU(N+

1), hereafter called “round”, symmetry of CPN
F . The parameter R is a length scale that

fixes the size of CPN . We will analize in what follows a deformation of the Laplacian which
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breaks the round symmetry and corresponds to a Kaluza-Klein-type [13] fuzzy space, first

constructed in [6], which effectively reduces a scalar field theory from CP3
F to S4

F through

a probabilistic penalization method. To this end we shall briefly review the construction

of S4
F .

2.1 S4
F revisited

We center our attention in the representation theory necessary to construct the S4
F , further

details can be found in [6] and [5]. Consider the Euclidean gamma matrices of R5, {Γa : a =

1, . . . , 5}, they satisfy the Clifford algebra relations {Γa,Γb} = 2δab1. One may observe

that by defining the operators χa := R√
5
Γa for some real positive number R the relations

χaχa = R21 (2.7)

are fulfilled. These can be interpreted as the fuzzy analogue of the embedding equations for

S4 →֒ R
5 at the lowest level of the matrix algebra sequence, that is, the defining Spin(5)

representation (12 ,
1
2 ).

1 Functions on S4
F at this level are given by elements of the form

F = F01 + FaΓa and even at this level they do not form a closed subalgebra. To solve

this difficulty the approach that we follow, taken in [6], is to adopt the full matrix algebra

Mat4. By using the L-fold symmetrized tensor product of the defining representation,

(L2 ,
L
2 ), and choosing as algebra of functions the sequence of matrix algebras formed by the

products (L2 ,
L
2 )⊗ (L2 ,

L
2 ), the operators

Ja :=


Γa⊗1⊗ · · · ⊗1︸ ︷︷ ︸

L factors

+1⊗Γa⊗ · · · ⊗1+ · · ·+ 1⊗1⊗ · · · ⊗Γa




sym

(2.8)

generalize Γa to the L-th level and satisfy the constraint

JaJa = L(L+ 4)1. (2.9)

We generalize the matrices χa by defining Xa := R√
L(L+4)

Ja which satisfy the constraint

XaXa = R21. In the large L limit the algebra becomes the commutative algebra C∞(S4)

as the commutators [Xa,Xb] vanish in the limit L → ∞ while the constraint remains.

However, at a finite level L the algebra of functions is still not closed. The procedure

presented in [6] is to enlarge the algebra of functions to the full matrix algebra and then

suppress the modes which are not associated with the S4
F degrees of freedom in the (scalar)

fields by giving them a very large excitation energy. The sequence of matrix algebras

obtained is then Matd3
L
, and we can therefore conceive S4

F effectively as a deformed CP3
F .

In what follows we aim to give a geometrical interpretation of this procedure.

3 The orbit construction of CP3

In this section we present the construction of CP3 following [6] as Spin(6)(∼= SU(4) local

isomorphism) and Spin(5) orbits and obtain the metric in terms of the Maurer-Cartan forms

1We use everywhere the highest-weight vector labeling for representations.

– 4 –



of these groups. Hereafter we will specialize toN = 3, recalling the Lie algebra isomorphism

spin(6) ∼= su(4) we find it convenient to replace the index µ = 1, . . . , 15 in (2.2) by a

composite index µ = AB where each index A,B = 1, 2, · · · , 6 and the understanding that

they appear only in antisymmetrized form. In this manner we preserve the use of Einstein’s

summation convention. Following [14] the algebra (2.3) of the Spin(6) generators in the

fundamental representation takes the form:2

ΛABΛCD = AAB;CD
1

2
+

1

4
ǫABCDEFΛEF (3.1)

+
ı

2
(δACΛBD + δBDΛAC − δBCΛAD − δADΛBC) .

AAB;CD is the two-index antisymmetrizer:

AAB;CD =
1

2
(δACδBD − δADδBC) . (3.2)

The d and f tensors in (2.3) can be read from (3.1):

dABCDEF =
1

2
ǫABCDEF ,

fABCDEF = δACABD;EF − δADABC;EF + δBDAAC;EF − δBCAAD;EF .

The projector P ∈Mat4 in (2.2) is expanded as:3

P =
1

4
(1+ nABΛAB), (3.3)

the constraints (2.4) take the form:

nABnAB = 6, (3.4)

ǫABCDEFnABnCD = 8nEF . (3.5)

By contractions of (3.4)-(3.5) we get the additional identities:

nACnCB = −δAB, (3.6)

ǫABCDEFnEF = 2(nABnCD + nADnBC − nACnBD), (3.7)

ǫABCDEFnABnCDnEF = 48. (3.8)

In the coordinate system {nAB} the geometrical objects (2.5) are

PAB;CD =
1

2
AAB;CD +

1

8
ǫABCDEFnEF − 1

4
nABnCD, (3.9)

JAB;CD =
1

4
fABCDEFnEF ,

=
1

4
(δACnBD − δADnBC + δBDnAC − δBCnAD),

KAB;CD =
1

2
(PAB;CD + ıJAB;CD) .

2The relations between gamma matrices and the Spin(6) generators of the 4 representation is ΛAB =
1

2
(1 + Γ) 1

4ı
[ΓA,ΓB ], where Γ = ıΓ1 · · ·Γ8 = Γ† is the chirality and satisfies Γ2 = 1.

3 We take ξµξµ = 1

8
nABnAB . This is a more convenient normalization for our purposes.
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Where, as before, J, P and K stand for the complex structure, metric and Kähler structure

on CP3.

A more compact way to express the metric in (3.9) is

PAB;CD =
1

2
(AAB;CD −QAB;CD) (3.10)

where:4

QAB;CD =
1

2
(nACnBD − nADnBC) . (3.11)

The projector PAB;CD has rank 6, it is the basic projector onto CP
3. The orthogonal

complementary projector in R
15 is the rank 9 projector

P⊥
AB;CD =

1

2
(AAB,CD +QAB,CD). (3.12)

We also have a rank 1 projector orthogonal to CP3,

NAB;CD =
nABnCD

6
. (3.13)

Notice that PAB;CD in (3.10) and NAB;CD in (3.13) give a rank 7 projector. PAB;CD +

NAB;CD projects R15 onto S7 which can be viewed as an SU(4) orbit over SU(3). Since they

are orthogonal and project onto CP3 and U(1) this S7 admits one squashing parameter.

This is a special case of the more general result that S2N+1 = SU(N + 1)/SU(N) and

there is always one squashing parameter associated with the sum of the CPN and normal

projectors.

3.1 CP3 as an orbit under Spin(6)

We give an explicit construction of CP3 as a Spin(6) orbit and analize the induced metric.

As the adjoint action of Spin(6) in the space of projectors (2.1) is transitive, CP3 can be

obtained as the Spin(6) orbit of an appropriate fiducial projector P0:

P = UP0U−1, U ∈ Spin(6). (3.14)

For P0 we choose:

P0 =
1

4
(1+ n0ABΛAB),

=
1

4
1+

1

2
(Λ12 +Λ34 +Λ56) . (3.15)

We call the point corresponding to P0 the “north pole”.

The projector (3.9) plays an essential rôle in any differential relations since

dnAB = PAB;CDdnCD. (3.16)

The line element is defined as5

ds2 :=
R2

8
dnABdnAB =:

R2

8
dn2AB =: −R

2

8
Tr(dN )2 =

R2

8
PAB;CDdnABdnCD, (3.17)

4One can then easily check that AQ = QA = Q, Q2 = A and Tr[Q] = 3.
5We will typically set R = 1 for the round CP3.
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and justifies the appellation metric to the projector PAB;CD.

The generators ΛAB transform as a rank 2 tensor under Spin(6):

nAB = RACRBDn
0
CD. (3.18)

It may be shown that the line element is given as ds2 = −R2

4 Tr
[
R−1dR,N 0

]2
,where N 0

is the matrix with entries n0AB and we rewrite R−1dR in terms of left invariant Maurer-

Cartan forms of Spin(6) 6: R−1dR =: −ıeABTAB, where TAB are the generators of the

vector representation.7 The line element is hence:

ds2 = 4R2eABP
0
AB;CDeCD = 4R2

(
(e13 − e24)

2 + (e14 + e23)
2 + (e15 − e26)

2 +

(e16 + e25)
2 + (e35 − e46)

2 + (e36 + e45)
2
)
. (3.19)

It becomes apparent from (3.19) that the orbit is a six dimensional space, as expected for

CP3. It is possible to obtain the isotropy subgroup by looking at the combinations of forms

eAB which do not appear in the metric; the corresponding combinations of generators span

the isotropy subalgebra. In the SU(4) formulation the isotropy group is easily identified

as S(U(3) × U(1)). We obtain a coset space realization for CP3

CP3 = SU(4)/S(U(3) × U(1)). (3.20)

3.2 CP3 as an orbit under Spin(5)

Observe that {Λab, a, b = 1, ..., 5} generate the spin(5) subalgebra of spin(6) while Λa6

transforms as a vector under Spin(5). We define Λa := Λa6 so we can write the projector

(2.2) as:

P =
1

4
1+

na
2
Λa +

nab
4

Λab, (3.21)

the projector (3.15) takes the form:

P0 =
1

4
1+

1

2
Λ5 +

1

2
(Λ12 + Λ34) . (3.22)

The action of Spin(5) on the space of projectors (2.1) is also transitive, hence we obtain

CP3 as an orbit of (3.15) or (3.22) under Spin(5).

The function algebra of CP3 is now built from the two Spin(5) representations na
which carries the 5-dimensional representation and nab which carries the 10-dimensional

representation. The SO(6) invariant line element (3.17) can therefore be deformed to:

ds̄2 = αdn2a + βdn2ab. (3.23)

6It would be more natural to use right-invariant Maurer-Cartan forms (see Appendix B), since these are

dual to the vector fields LAB discussed below, but both will be equivalent at the north pole, the resulting

right-invariant expressions are equivalent to replacing the projectors at the north pole by those at a generic

point.
7The normalization of the generators TAB is such that they satisfy the same Lie algebra as ΛAB with

identical structure constants, their matrix elements being (TAB)IJ = −ı(δAIδBJ − δAJδBI).
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We will leave α, β undetermined for the moment, so that this is the most general induced

Spin(5)-invariant line element, we will come back to this point at the end of this section

and in section 5. It is now possible to write

dn2ab = −Tr
[
R−1dR, n0

]2
, (3.24)

dn2a = |R−1dRn0v|2, (3.25)

where n0 stands for the matrix of coefficients n0ab, and n0v for the column vector with

components n0a.

As before we express the line element in terms of the Spin(5) Maurer-Cartan forms

R−1dR := −ıeabTab where Tab are the generators of the spin(5) subalgebra in the vector

representation.

We obtain for the line element:

ds̄2 =
(R2

S4

2
P
0
ab,cd +R2

S2X
0
ab,cd

)
eabecd (3.26)

= (α+ 2β)
(
e215 + e225 + e235 + e245

)
+ 4β[(e14 + e23)

2 + (e13 − e24)
2]

From (3.26) we can observe two interesting features: First, the isotropy subgroup can

be constructed as before giving the following coset space realization CP3 = Spin(5)/[U(1)×
SU(2)] and second, the space is locally of the form S2 × S4; CP3 is indeed a fibre bundle

with base space S4 and fibre S2. The constants α, β can now be reinterpeted in terms of

the squared radii of these spheres: R2
S4 = α+2β and R2

S2 = 4β and the line element (3.23)

can be written in the form

ds̄2 = R2
S4dn

2
a +

R2
S2

4
(dn2ab − 2dn2a). (3.27)

Furthermore using

dna = nacnbdncb (3.28)

one can extract the projector Xab;cd onto the S2 fibre. This and related projectors are

discussed in section 5.1 below. The line element can therefore be written as

ds̄2 = R2
S4dn

2
a +

R2
S2

4
Xab;cddnabdncd. (3.29)

If we restrict the Maurer-Cartan forms in (3.19) to SO(5) we see that we recover the line

element (3.26) with R2
S4 = R2

S2 = R2.

4 Scalar field theory on S
4
F revisited

As it was stated in section 3, CP3 can be obtained as a Spin(6) or Spin(5) orbit. In order

to specify the geometry all that is needed is to define a Laplacian. In principle we can

choose the Spin(6) or Spin(5) quadratic Casimir operators, or even a more general choice:

an interpolation between both of them:

k1C
Spin(6)
2 + k2C

Spin(5)
2 .
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In [6] a prescription for a generic scalar field theory on fuzzy CP3 was given, the

expression for the action reads

S[Φ] =
Tr

dL

(
1

2
Φ∆hΦ+ V [Φ]

)
, (4.1)

where the full Laplacian is

∆h =
1

8R2

(
C
Spin(6)
2 + h(2C

Spin(5)
2 −C

Spin(6)
2 )

)
. (4.2)

As mentioned in section 2, the algebra of functions on CP3 is approximated by a sequence

of matrix algebras of dimension d3L = (L+1)(L+2)(L+3)
6 .

The quadratic Casimir operators can be written using the adjoint action of the corre-

sponding generators

1

2
C
Spin(6)
2 = (adJAB)

2 , (4.3)

1

2
C
Spin(5)
2 = (adJab)

2 . (4.4)

The normalization of J in (4.3) has been chosen so that in the fundamental representation

JAB = 1
2ΛAB . In the same manner we have in (4.4) Jab =

1
2Λab for the fundamental repre-

sentation. For the Spin(6) generators we use those in the L-fold symmetric tensor product

representation (L2 ,
L
2 ,

L
2 ) with the same dimension d3L, for Spin(5) we use the generators of

the (L2 ,
L
2 ) representation, whose dimension is also d3L.

The choice (4.2) for the Laplacian can be understood analyzing the effect of the term

∆I =
1

8R2

(
2C

Spin(5)
2 − C

Spin(6)
2

)
(4.5)

on S4
F modes. After an analysis of the representation content for (2.6) it was proved in [6]

that ∆I is a strictly positive operator for the non-S4
F modes and has as its kernel precisely

the S4
F modes.

The mechanism is one of probabilistic penalization as the probability of a field config-

uration Φ can be separated into

P[Φ] =
e−S[Φ]−hSI [Φ]

Z
(4.6)

where

Z =

∫
d[Φ]e−S[Φ]−hSI [Φ] (4.7)

is the partition function of the model. Taking the limit h → ∞ makes the non-S4
F modes

unreachable. The final result is that the CP3
F field configurations not related to S4

F are

dynamically supressed in this limit.
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5 Geometric analysis of the supression mechanism

The product of matrices together with a map to functions induces a noncommutative

product on functions, this is the *-product [7]. This useful tool allows us to access the

commutative limit explicitely. Let M̂1, M̂2 be two matrices of dimension d3L and M1(n),

M2(n) be the corresponding functions obtained by the mapping:

M1(n) := Tr
(
PL(n)M̂1

)
(5.1)

PL(n) is constructed by taking the L-fold tensor product of P defined in (2.2), it provides

a map to functions at the level L.

The *-product is then defined through:

(M1 ∗M2) (n) := Tr
(
PL(n)M̂1M̂2

)
. (5.2)

For CPN the *-product can be written as a finite series of derivatives on the coordinates

nAB , for our purposes we will use the prescription given in [7].

nAB := 4Tr (PL(n)JAB) . (5.3)

The commutator of JAB maps into the right-invariant vector fields:

LABM(n) := Tr
(
PL(n)

[
JAB, M̂

])
(5.4)

= 2ıJAB;CD∂CDM(n) (5.5)

The images of (4.3)-(4.4) under the *-product map are:

1

2
C
Spin(6)
2 M̂ =

[
JAB, [JAB , M̂ ]

]
−→ C(6)M(n) = −4κ6M(n), (5.6)

1

2
C
Spin(5)
2 M̂ =

[
Jab, [Jab, M̂ ]

]
−→ C(5)M(n) = −4κ5M(n). (5.7)

where

κ6 = JAB,CD∂CD (JAB,EF∂EF ) (5.8)

= PCD;EF∂CD∂EF + JAB;CD(∂CDJAB;EF )∂EF (5.9)

κ5 = Jab,CD∂CD (Jab,EF∂EF ) (5.10)

Now, we are interested in extracting the metric tensor comparing the relevant contin-

uous Laplacian with the general form:

− L2 =
1√
G
∂µ

(√
GGµν∂ν

)
(5.11)

= Gµν∂µ∂ν + (∂µG
µν) ∂ν +

1√
G
Gµν

(
∂µ

√
G
)
∂ν . (5.12)
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When we retain the full Spin(6)-symmetry we have the Laplacian C(6), the associated metric

tensor is just PAB;CD as can be seen from a straightforward calculation of κ6:

κ6 =
1

2
∂2AB +

1

2
nCBnDA∂AB∂CD − nAB∂AB . (5.13)

If one retains only the Spin(5) symmetry, the following expressions are found

κ6 =
1

2
∂2ab + ∂2a +

1

2
ncbnda∂ab∂cd + 2nanbc∂ab∂c − nanb∂a∂b (5.14)

−nab∂ab − 2na∂a,

κ5 =
1

2
∂2ab +

1

2
∂2a −

1

2
nanb∂ac∂bc +

1

2
ncanbd∂ab∂cd − nancb∂ab∂c (5.15)

−1

2
nanb∂a∂b −

3

4
nab∂ab − na∂a.

5.1 The vertical and horizontal projectors

The vertical and horizontal projectors can be constructed explicitely in our coordinate

system in a Spin(5)-covariant manner. The coordinates nAB break up under Spin(5) as

nab and na. These are the basic objects we will need to build projectors. From (3.6) they

satisfy

nacnbc = δab − nanb = Pab, (5.16)

nanab = 0, (5.17)

nana = 1, (5.18)

Pab is a rank 4 projector, it projects R5 7→ S4, the usual continuum embeding of S4 in R
5,

and its orthogonal complement is P⊥
ab = δab − Pab = nanb. Defining

Qab,c =
1

2
(nacnb − nanbc), Qab;cd =

1

2
(nacnbd − nadnbc) (5.19)

we observe that

2Qab,eQcd,e = Pab;cd =
1

2
(δacP

⊥
bd − δadP

⊥
cb + δbdP

⊥
ac − δbcP

⊥
ad). (5.20)

Where Pab,cd projects R10 7→ S4, it is therefore the metric on S4, the horizontal projector.

We can then define the projectors X and Y :

Xab;cd =
1

2
(Aab;cd − Pab;cd −Qab;cd), (5.21)

Yab;cd =
1

2
(Aab;cd − Pab;cd +Qab;cd). (5.22)

Notice the ranks Tr[X] = 2 and Tr[Y ] = 4.

To see that these are orthogonal projectors one needs to observe that

Qab;cdQcd;ef = Aab;ef − Pab;ef . (5.23)

– 11 –



The tensor Xab;cd is the projector onto the fibres of CP3 as an S2 bundle over S4, it is

the vertical projector. X, Y and P are complementary and add up to the identity in R
10,

Aab,cd. It is straightforward to write the projector to the bundle, Pab,cd : R10 7→ CP3 as

Pab,cd := Xab;cd + Pab;cd =
1

2
(Aab;cd + Pab;cd −Qab;cd). (5.24)

Using these projectors we construct an ansatz for the metric of the squashed CP3.

For completeness we also give the complex structure of CP3 in the Spin(5) formulation,

we start by defining

Tab;cd =
1

4
(Pacnbd − Padnbc + Pbdnac − Pbcnad)

T̃ab;cd =
1

2
(P⊥

acnbd − P⊥
adnbc + P⊥

bdnac − P⊥
bcnad)

and noting that

Tab;efTef ;cd = −Xab;cd , Tab;efTef ;ghTgh;cd = −Tab;cd ,
T̃ab;ef T̃ef ;cd = −Pab;cd and T̃ab;ef T̃ef ;ghT̃gh;cd = −T̃ab;cd .

One constructs J = T + T̃ resulting into:8

Jab;cd =
1

4
(δacnbd − δadnbc + δbdnac − δbcnad + P⊥

acnbd − P⊥
adnbc + P⊥

bdnac − P⊥
bcnad). (5.25)

It is easy to prove that

J2 = −P. (5.26)

We return now to the discussion regarding the Laplacian. For the deformed case, which

possesses only Spin(5) symmetry, the corresponding Laplacian acting on functions is L2
h,

we have

∆h =
1

8R2

(
C
Spin(6)
2 + h

(
2C

Spin(5)
2 − C

Spin(6)
2

))
(5.27)

and the mapping is:

Tr
(
PL(n)∆hM̂

)
=:

1

R2
L2
hM(n), (5.28)

then

− L2
h = κ6 + h (2κ5 − κ6) . (5.29)

Our ansatz for the metric tensor related to L2
h is the following:9

8It should be mentioned that since S4 does not even admit an almost-complex structure, so T̃ is not a

complex structure on it.
9 Double indices in Pab;cd and Xab;cd are raised and lowered using Aab;cd and Aab;cd, the complex structure

J is thus an up-down tensor.
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Gab;cd =
2Pab;cd + (h+ 1)Xab;cd

R2
=

2Pab;cd

R2
+

X
ab;cd

R2
S2

; (5.30)

the tensor Xab;cd = Xcd;ab is recovered from the combination

2κ5 − κ6 =
1

2
∂2ab −

1

2
nabncd∂ac∂bd − nanb∂ac∂bc −

1

2
nab∂ab (5.31)

by comparing the term in second derivatives in (5.31) against the h-dependent term in

(5.30), Xab;cd∂ab∂cd, and we find that X thus obtained is indeed the fibre metric we had

previously identified in (5.21), i.e.

Xab;cd =
1

2
Aab;cd −

1

4
(δacnbnd − δadnbnc + δbdnanc − δbcnand)

−1

4
(nacnbd − nadnbc) . (5.32)

In order to invert the metric tensor (5.30) we observe that PX = XP = X, hence the

covariant metric tensor is a linear combination of X and P, in fact

Gab;cd = R2(
Pab,cd

2
+

1

h+ 1
Xab;cd) =

R2
Pab,cd

2
+R2

S2Xab;cd (5.33)

satisfies the required condition: Gab;cdGcd;ef = Pab
ef .

6 Fermion fields

A fuzzy four-dimensional fermion field has the representation content:

Ψ ∈ (
1

2
,
1

2
,
1

2
)⊗ (

L

2
,
L

2
,
L

2
)⊗ (

L

2
,
L

2
,−L

2
). (6.1)

It is shown in [6] that the algebra of fuzzy functions decomposes as

(
L

2
,
L

2
,
L

2
)⊗ (

L

2
,
L

2
,−L

2
) =

L⊕

n=0

(n, n, 0), (6.2)

hence, the relevant decomposition is

(
1

2
,
1

2
,
1

2
)⊗ (n, n, 0) = (n +

1

2
, n+

1

2
,
1

2
)

︸ ︷︷ ︸
n≥0

⊕ (n+
1

2
, n− 1

2
,−1

2
)⊕ (n− 1

2
, n− 1

2
,
1

2
)

︸ ︷︷ ︸
n≥1

:= Dn
+ ⊕Dn

0 ⊕Dn
−. (6.3)

The restrictions below show when these representations appear in the decomposition. The

spinor field decomposes into components Ψ = Ψ+ ⊕Ψ0 ⊕Ψ−.

For a Dirac operator on S4
F we propose the linear spinor operator in the spirit of [12]

given by the ansatz

D/
h̃
= σAB[JAB , ·] + 2 + h̃ (2σab[Jab, ·]− σAB [JAB, ·]) , (6.4)
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where σAB are the Spin(6) generators in the fundamental representation (12 ,
1
2 ,

1
2) and σab

are the corresponding Spin(5) generators. The operator D/
h̃
can be expressed in terms of

the differences of Casimir operators C2 := 2([J , ·] + σ
2 )

2 and C2 = 2[J , ·]2 .

By “completing the square” we may rewrite the operator D/
h̃
purely in terms of

quadratic Casimir operators. Note that [C
Spin(5)
2 ,C

Spin(6)
2 ] = 0 as can be readily verified

by expanding out C
Spin(6)
2 in Spin(5) indices in a Spin(5) invariant manner. It is then

clear that both Casimir operators can be simultaneously diagonalized in the appropriate

basis. In order to compute the spectrum of the given operator (6.4) we use the following

reductions under Spin(5)

(n+
1

2
, n− 1

2
,−1

2
) =

n−1⊕

m=0

(
(n+

1

2
,m+

1

2
)⊕ (n − 1

2
,m+

1

2
)

)
, (6.5)

(n+
1

2
, n +

1

2
,
1

2
) =

n⊕

m=0

(n+
1

2
,m+

1

2
). (6.6)

Wherefrom we find the decompositions

Ψ+ =

n⊕

m=0

Ψ
(n+ 1

2
,n+ 1

2
, 1
2
)

(n+ 1
2
,m+ 1

2
),+
, (6.7)

Ψ0 =

n−1⊕

m=0

(
Ψ

(n+ 1
2
,n− 1

2
,− 1

2
)

(n+ 1
2
,m+ 1

2
),0

⊕Ψ
(n+ 1

2
,n− 1

2
,− 1

2
)

(n− 1
2
,m+ 1

2
),0

)
, (6.8)

Ψ− =
n−1⊕

m=0

Ψ
(n− 1

2
,n− 1

2
, 1
2
)

(n− 1
2
,m+ 1

2
),− . (6.9)

The spectrum of the operator D/ h corresponding to the component Ψ0 has no coun-

terpart in the known spectrum for the Dirac operator on S4, therefore this component

corresponds to degrees of freedom extraneous to the S4 and it will, in fact, be completely

supressed by our dynamical mechanism. The contributions to Ψ+ and Ψ− in the kernel

of D/ I = 2σab[Jab, ·]− σAB [JAB, ·] reproduce a cutoff version of the canonical spectrum of

Dirac operator on the round S4.

In detail we have the following eigenvalues, calculated with the expressions found in

appendix A

D/
h̃
Ψ

(n+ 1
2
,n+ 1

2
, 1
2
)

(n+ 1
2
,m+ 1

2
),+

= (n+ 2 + h̃m)Ψ
(n+ 1

2
,n+ 1

2
, 1
2
)

(n+ 1
2
,m+ 1

2
),+

n ≥ 0,

D/
h̃
Ψ

(n− 1
2
,n− 1

2
, 1
2
)

(n− 1
2
,m+ 1

2
),− = (−n− 1 + h̃m)Ψ

(n− 1
2
,n− 1

2
, 1
2
)

(n− 1
2
,m+ 1

2
),− n ≥ 1, (6.10)

D/ hΨ
(n+ 1

2
,n− 1

2
,− 1

2
)

(n+ 1
2
,m+ 1

2
),0

= (1 + h̃(n+m+ 1))Ψ
(n+ 1

2
,n− 1

2
,− 1

2
)

(n+ 1
2
,m+ 1

2
),0

n ≥ 1,

D/ hΨ
(n+ 1

2
,n− 1

2
,− 1

2
)

(n− 1
2
,m+ 1

2
),0

= (1 + h̃(m− n+ 2))Ψ
(n+ 1

2
,n− 1

2
,− 1

2
)

(n− 1
2
,m+ 1

2
),0

n ≥ 1.
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In the large h̃ limit the portion of the spectrum not in the kernel of D/ I is sent to infinity,

the remaining low lying spectrum coincides with the spectrum of the Dirac operator on S4

up to a truncation [15], namely

{±(n+ 2) : n = 0, 1, · · · , L− 1} ∪ {L+ 2}, deg(n + 2) =
2(n+ 1)(n + 2)(n + 3)

3
.

The degeneracies have been calculated using the formulae in appendix A, clearly one has

deg(n + 2) = dim(n+ 1
2 ,

1
2).

A fermionic action may be now be written for a free spinor field with mass M as

SΨ =
Tr

d3N

(
Ψ̄(D/ h̃ +M)Ψ

)
. (6.11)

We remark that the deformed spinor operator D/ h̃ is not a Dirac operator on CP3 with a

squashed metric, our purpose here is to find a suitable operator for Fermions on fuzzy S4.

The operator we have found has similarities to higher spin Dirac operators introduced in

[16]. As in the case of the scalar theory the statistical penalization mechanism will suppress

the functional degrees of freedom in the spinor field Ψ which are not associated to S4
F .

One can check that when maped to functions the operatorDI is mapped to σabXab;cd∂cd
and since ne is in the kernel of this operator any function of ne is in the kernel. It sees

only the dependence on nab. The parameter h̃ is similarly related to the radius of the S2

fibres and for large h̃ we are shrinking the fibres relative to the S4 base.

7 Conclusions

We review the construction of fuzzy CP3 presented in [7]. The main motivation to discretize

this 6 dimentional space is due to its relation to S4, a compactification of R4.

The standard construction of CP3 involves Spin(6) symmetry, giving as result a

“round” version of CP3. We gave a different construction of CP3 and its fuzzy version

as a Spin(5) orbit where the local structure S2 × S4 is manifiest. The isotropy group was

found to be SU(2)×U(1). Following the results obtained in [6] in which a convenient inter-

polation of the Spin(6) and Spin(5) quadratic Casimirs was introduced as the Laplacian, we

interpret the deformation parameter h introduced in [6] in terms of the radii of a squashed

CP3. From the point of view of a scalar field theory this procedure can be interpreted as a

Kaluza-Klein construction, where the entire space is non-trivial fibre bundle with base S4

and fibre S2, and in the large h limit the radius of the S2 fibres is sent to zero.

Along the way we constructed the complex structure of CP3 as a Spin(5) orbit. The

square of the complex sturcture gives minus the CP3 projector and it naturally splits into

parts which give the S4 base and S2 fibres.

Using *-product map techniques we have presented an explicit manner to extract

the metric of the space under consideration from its Laplacian. The explicit form of the

deformed metric tensor Gµν was obtained. Examining the resulting line element ds2 we

found the ratio between radii:

RS2

R
=

1√
(1 + h)

.
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The limit h→ ∞ corresponds to shrinking the S2 fibres down to zero size, while the limit

h→ −1 makes the fibres infinitely large.

We have also proposed a linear spinorial operator on S4
F , based on the same geometric

structure as the scalar case, and identified the relevant spinor subspaces that contain the

correct spectrum of the Dirac operator on S4, up to a truncation. This operator acts on

four component spinors and does not correspond to a Dirac operator on CP3, though it is a

well defined first order operator on CP3 and its fuzzy version. As with scalar fields, spinor

fields on S4
F have additional degrees of freedom in the construction, however all become

of arbitrarily large mass as the parameter h̃ is sent to infinity and so are dynamically

suppressed.
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A Casimir operators and dimensions

The quadratic Casimir operators for Spin(6) and Spin(5) found in [17–19] were used,

C
Spin(6)
2 (m1,m2,m3) = m2

1 +m2
2 +m2

3 + 4m1 + 2m2, (A.1)

C
Spin(5)
2 (m1,m2) = m1(m1 + 3) +m2(m2 + 1), (A.2)

which for the involved representations amount to

C
Spin(6)
2 (n, n, 0) = 2n(n+ 3), (A.3)

C
Spin(6)
2 (n+

1

2
, n+

1

2
,
1

2
) = 2n(n+ 4) +

15

4
, (A.4)

C
Spin(6)
2 (n+

1

2
, n− 1

2
,−1

2
) = 2n(n+ 3) +

7

4
, (A.5)

C
Spin(5)
2 (n+

1

2
,m+

1

2
) = n(n+ 4) +m(m+ 2) +

5

2
, (A.6)

C
Spin(5)
2 (n− 1

2
,m+

1

2
) = n(n+ 2) +m(m+ 2)− 1

2
. (A.7)

We rewrite the square taking into account the following normalization:

(
σAB

2
)2 =

1

2
C
Spin(6)
2 (

1

2
,
1

2
,
1

2
) =

15

8
, (A.8)

[JAB, [JAB , ·]] =
1

2

L⊕

n=0

C
Spin(6)
2 (n, n, 0). (A.9)

Some useful formulae for the dimensions of representations we deal with are
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dim(m1,m2,m3) =
1

12
(m2

1 −m2
2 + 4m1 − 2m2 + 3) (A.10)

×(m2
1 −m2

3 + 4m1 + 4)(m2
2 −m2

3 + 2m2 + 1)

dim(m1,m2) =
1

6
(m2

1 −m2
2 + 3m1 −m2 + 2) (A.11)

×(2m1 + 3)(2m2 + 1).

dim(n, 0) =
1

6
(n+ 1)(n + 2)(2n + 3), (A.12)

dim(n, n, 0) =
1

12
(n+ 1)2(n+ 2)2(2n + 3), (A.13)

dim(n+
1

2
, n+

1

2
,
1

2
) =

1

6
(n+ 1)(n + 2)3(n + 3), (A.14)

dim(n+
1

2
, n − 1

2
,−1

2
) =

1

6
n(n+ 1)(n + 2)(n + 3)(2n + 3), (A.15)

dim(n+
1

2
,m+

1

2
) =

2

3
(n(n+ 4)−m(m+ 2) + 3) (A.16)

×(n+ 2)(m+ 1),

dim(n− 1

2
,m+

1

2
) =

2

3
(n(n+ 4)−m(m+ 2))(n + 1) (A.17)

×(m+ 1).

The spinor components in (6.7)-(6.9) are eigenvectors of
(
2C

Spin(5)
2 − C

Spin(6)
2

)
which

appear as a part in the r.h.s of (6.4):

(
2C

Spin(5)
2 − C

Spin(6)
2

)
Ψ

(n± 1
2
,n± 1

2
, 1
2
)

(n± 1
2
,m+ 1

2
),± =

(
2m(m+ 2) +

5

4

)
Ψ

(n± 1
2
,n± 1

2
, 1
2
)

(n± 1
2
,m+ 1

2
),±,

(
2C

Spin(5)
2 − C

Spin(6)
2

)
Ψ

(n+ 1
2
,n− 1

2
,− 1

2
)

(n+ 1
2
,m+ 1

2
),0

=

(
2n+ 2m(m+ 2) +

13

4

)
Ψ

(n+ 1
2
,n− 1

2
,− 1

2
)

(n+ 1
2
,m+ 1

2
),0

,

(
2C

Spin(5)
2 − C

Spin(6)
2

)
Ψ

(n+ 1
2
,n− 1

2
,− 1

2
)

(n− 1
2
,m+ 1

2
),0

=

(
−2n+ 2m(m+ 2)− 11

4

)
Ψ

(n+ 1
2
,n− 1

2
,− 1

2
)

(n− 1
2
,m+ 1

2
),0

.

B Right-invariant Maurer-Cartan forms

The Spin(6) right-invariant Maurer-Cartan forms are defined by dRR−1 = −ıeABTAB , they

are dual to the right-invariant vector fields

< eAB ,LCD >= ıPAB;CD, (B.1)

and

PAB;CD =
1

16
Tr([TAB ,N ][TCD,N ]). (B.2)

By noticing the relations
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1

2
C
Spin(5)
2 = LabPab;cdLcd, (B.3)

1

2
C
Spin(6)
2 = Lab(Xab;cd + 2Pab;cd)Lcd, (B.4)

it follows that the line elements corresponding to these operators are respectively

ds25 = eabPab;cdecd, ds26 = eab

(
Xab;cd +

Pab;cd

2

)
ecd. (B.5)

From here we obtain the line element (3.26) associated with ∆h:

ds̄2 = 4R2
eab

(
Pab;cd

2
+

Xab;cd

1 + h

)
ecd. (B.6)

In order to fix a normalization for the radii we define the line element (3.17) by choosing

ds2 =
R2

4
dnABdnAB = 4R2

eABPAB;CDeCD (B.7)

and split it up under Spin(5) as:

ds2 = R2

(
dn2a +

dn2ab − 2dn2a
4

)
= 4R2

eab

(
Pab;cd

2
+ Xab;cd

)
ecd. (B.8)

We can then read off from (3.23) R2
S4 = α+2β and R2

S2 = 4β. Finally using (4.2) we find,

as before,

R2
S4 = R2, R2

S2 =
R2

1 + h
. (B.9)
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