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Abstract

We study a two parameter single trace 3-matrix model with SO(3) global symmetry. The model has two

phases, a fuzzy sphere phase and a matrix phase. Configurations in the matrix phase are consistent with

fluctuations around a background of commuting matrices whose eigenvalues are confined to the interior of

a ball of radius R = 2.0. We study the co-existence curve of the model and find evidence that it has two

distinct portions one with a discontinuous internal energy yet critical fluctuations of the specific heat but

only on the low temperature side of the transition and the other portion has a continuous internal energy

with a discontinuous specific heat of finite jump. We study in detail the eigenvalue distributions of different

observables.

1 Introduction

One of the most striking and interesting features of multi-matrix models is the phenomenon of emergent

geometry. The notion of classical geometry changes drastically within the context of matrix models; the

geometry is no longer a basic concept which exists a priori but instead it emerges dynamically as a conse-

quence of the reordering of degrees of freedom. This is in many ways exciting because matrix models can

lead to new ways of thinking about the structure of the space time.

The interest in matrix models has grown since it was suggested that they might provide a non-perturbative

definition for M theory [1]. Several kinds of matrix models have been proposed for this purpose [1, 2, 3].

The IIB matrix model (IKKT model) [2] is one of these proposals; it is a large N reduced model [4] of

ten-dimensional supersymmetric Yang-Mills theory and the action is a matrix regularised form of the Green-

Schwarz action of the IIB superstring. It is postulated that it gives a constructive definition of type IIB

superstring theory.

Finite dimensional matrix models have also been used to regulate field theories [7, 8, 9, 10, 11, 12, 13]

and diverse fully non-perturbative numerical studies have been performed, see for instance [14, 15, 16, 17,

18, 19, 20].

The pure commutator action, which we refer to as the Yang-Mills matrix model, is also particularly

interesting since in d = 10, 6 and 4 dimensions it corresponds to the bosonic part of the IKKT model. The

model is well defined in dimensions d > 2 and matrix size N > 3 [29]. In dimension d = 2 the model, with a

quadratic term is added to stabilise it, is exactly solvable [24, 32]. These bosonic Yang-Mills matrix models

in different dimensions have been considered as possible realizations of emergent geometry/gravity [30].

Numerical studies of pure Yang-Mills matrix models were performed in [4] for different dimensions (num-

bers of matrices) and more recently in [5, 6] it is argued that perturbation theory around a background

of commuting matrices gives a good approximation to the 3-dimensional model. In [6] based on a two

loop computation it is predicted that the eigenvalues of the background commuting matrices are uniformly

distributed within a ball of radius R ∼ 1.8 which is in broad agreement with our findings here.

Our starting point is an action in which the basic objects are simple Hermitian matrices; no geometrical

background is assumed a priori. The model describes the statistical fluctuations of matrices with prescribed

energy functional. The geometry arises as a condensate around which the system fluctuates. Generically,

multi-matrix models can undergo transitions between different geometries and phases with no geometrical
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content. Given the novelty of these phenomena it is worth studying the simplest model that exhibits such

phenomena in detail.

The simplest model in which a geometry has been shown to be emergent is a 3-matrix model consisting

of the trace of the square of the commutator of the matrices (a Yang-Mills term) plus the epsilon-tensor

contracted with the trace of the three matrices (a Myers term)[22]. This model was studied in [15, 17, 19, 20]

and is a static bosonic subsector of the BMN model [3].

The model exhibits a geometrical phase for sufficiently large coupling to the cubic Myers term, with the

geometry being that of a fuzzy sphere [23, 24]; a non-commutative [31] version of the commutative sphere

[33].

At a critical coupling, which can be traded for a critical temperature, a phase transition occurs and the

condensed geometry evaporates. In the geometrical, low temperature phase, small fluctuations around this

condensate correspond to a U(1) gauge and scalar field multiplet [13, 25, 20].

The model can be extended by adding appropriate potentials in order to enhance the range of parameters

in which the fuzzy sphere phase is stable [20]. The general phase diagram for a class of such models was

predicted in [20], one of the purposes of this paper is to check these predictions in detain in a non-perturbative

study. We find that indeed the phase diagram is well predicted by theoretical expressions presented in [20].

Manifolds in higher dimensions can emerge from more general matrix models with essentially the same

structure and phenomenology as can be seen in [26, 27, 28].

In the current paper we study, in detail, the high temperature phase of the model and establish that this

phase is consistent with the three matrices fluctuating around commuting matrices where the eigenvalues of

the commuting matrices are confined to the interior of a solid three dimensional ball. The fluctuations are

still significant as the commutator of pairs of matrices is itself a peaked (almost triangular) distribution.

We concentrate on the effect of adding a quadratic, mass like perturbation to the 3-matrix model. We find

that below a critical temperature any negative massive perturbation induces a transition from the matrix

phase to the fuzzy sphere phase. For higher temperatures a more negative quadratic coupling is necessary.

The phase diagram, which is one of the principal results of this paper, is shown in figure 3.

• We find the ground states of the system are characterised by either the N dimensional irreducible

representation of SU(2) (the fuzzy sphere phase) or a continuum spectrum (matrix phase) for one of

the matrices. These characterize the two phases of the system. Though meta stable states other than

the irreducible fuzzy sphere are present in the system they never correspond to the true ground state,

they do however appear stable in the large N limit where tunneling is suppressed.

• We study the phase diagram (see figure 3) as a function of the two parameters τ and α̃ and locate the

co-existence curve with some precision.

• The co-existence curve rapidly asymptotes to the special line τ = 2
9
where the energy functional defining

the model becomes a complete square.

• We found evidence for two distinct types of transition in the emergent geometry scenario: for 0 < τ < 2
9
,

as the transition is approached from the fuzzy sphere phase with fixed τ , the system has a divergent

specific heat with critical exponent α = 1
2
while crossing the phase boundary for fixed α̃ > 4.02 there

appear to be no critical fluctuations and the transition is one with a continuous internal energy and

discontinuous specific heat.

• We find that a useful description of the matrix phase is in terms of fluctuations about a background of

commuting matrices whose eigenvalues are concentrated in a three dimensional ball of radius R = 2.0.

The paper is structured as follows: Section 2 describes the model and the predictions of the phase diagram

from the effective potential [20] in the fuzzy sphere phase. Section 3 describes the matrix phase and the

consequences of a background of commuting matrices with eigenvalues uniformly distributed within a ball.

Section 4 describes our numerical results and section 5 contains our conclusions.

2 The model

We begin by considering an action functional built as a single trace quartic polynomial of 3 Hermitian

matrices with SO(3) symmetry. There are four available invariants:

Tr DaDbDaDb, Tr (D2
a)

2, Tr iǫabcDaDbDc, Tr D2
a. (1)

In this paper we restrict our study to the two parameter model given by the action

S[D] =
α̃4

N
Tr

[

−1

4
[Da, Db]

2 +
i

3
ǫabc[DaDb]Dc + τD2

a

]

; (2)

2



where stability of the model requires the τ > 0. For τ < 0 the action for commuting matrices is unbounded

from below. The most general model would include in addition Tr(D2
a)

2 with an extra coupling.

The action (2) is invariant under unitary transformations U(N), Da → UDaU
† and global SO(3) rota-

tions of the matrices. The modes ca = Tr(Da) decouple from the others and we therefore choose to work

with traceless matrices, Tr Da = 0. The parameters of the model are τ and α̃. α̃ can be identified either as

the Yang-Mills coupling constant g2 ≡ α̃−4 or the temperature T ≡ α̃−4 [20].

Saddle points of the action, derived from the condition δS = 0, are given by solutions of

[Db, iFab] + 2τDa = 0, with Fab = i[Da, Db] + ǫabcDc

and include the trivial solution Da = 0 and Da = φJa where Ja are representations of SU(2), not-necessarily

irreducible. For Da = φJa, then Fab = −(φ2 − φ)ǫabcJc we get an algebraic equation for φ given by

(φ3 − φ2 + τφ) = 0 (3)

the explicit solutions are

φ = {φ0, φ−, φ+} =

{

0,
1 +

√
1− 4τ

2
,
1−

√
1− 4τ

2

}

. (4)

The first corresponds to Da = 0 and is the ground state of the system for τ > 1
4
, is a local minimum for

1
4
> τ > 0 and though it appears to be a local maximum for τ < 0, the model has no ground state for such

value of τ . The second solution gives the local minima Da = φ−Ja, for τ < 1
4
. These minima Da = 0 and

Da = φ−Ja are separated by a potential barrier whose highest point is localised at the local maximum φ+.

As τ approaches zero φ− → 1, which corresponds to the case for m2 = τ = 0 studied in [15, 19, 20]. For

arbitrary τ has been also studied by other authors [21, 20].

For the configurations Da = φJa the action

S[D] = Vclass(φ) =
2

N

∑

i

niC2(ni) α̃
4

(

φ4

4
− φ3

3
+

τφ2

2

)

(5)

where C2(ni) is the Casimir of the representation of dimension ni and
∑

i ni = N . For τ < 2
9
the potential

Vclass(φ−) < 0 and the configurations Da = φ−Ja is of lower energy than Da = 0, which is zero. The

configuration with minimum energy is then given by maximising the sum of Casimirs, this is achieved by

Ja = La, where La is the irreducible representation of dimension N . For τ = 2
9
we have Vclass(φ−) = 0 and

the configurations Da = 0 and Da = φ−Ja, with any representation Ja, become degenerate. Figure 2 shows

the potential (5) for different τ .

Therefore the classical prediction is that for τ < 2
9
, and any value of α̃ the ground state is Da = φ−La

and small fluctuations around this configuration have the geometrical content of a Yang-Mills and scalar

multiplet on a background fuzzy sphere.

The parameter domain 2
9
< τ < 1

4
is of special interest. The classical analysis above suggests that the

fuzzy sphere is unstable here, however, since the potential still has a local minimum and in the N → ∞
limit all representations such that 1

N

∑

i niC2(ni) → 0 become degenerate with the Da = 0 configuration

one might wonder if one of these configurations gives the ground state of the system when fluctuations are

included or perhaps as suggested by the analysis of [20] and discussed in the next section, the fuzzy sphere

phase is stabilised by fluctuation. The answer as we will see, is that numerical simulations do not support

the assertion that the fuzzy sphere is stabilised in this parameter range, but rather that the coexistence

curve between the fuzzy sphere phase and the matrix phase asymptotes to the line τ = 2
9
.

For τ = 2
9
the model is indeed special, the action is always positive semi-definite and can be written in

the form

S[D] =
α̃4

N
Tr

(

i

2
[Da, Db] +

1

3
ǫabcDc

)2

, (6)

from which we see that Da = 0 and the orbit Da = U 2
3
LaU

† have zero action.

2.1 Quantum corrections and critical behaviour

In the previous section we described the classical potential predictions for the phase transition by choosing

Da = φLa and studying the potential for φ. This analysis suggests that φ plays the role of order parameter

for the transitions which are taking place in the model. We will now take into account the quantum

fluctuations. The computation of the quantum effective action and the quantum effective potential was

3
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Figure 1: Classical potential for different values of τ for fixed α̃ = 5.

carried out in detail [25, 19] for a more general SO(3) globally invariant matrix model. The results there

correspond to the present case by setting m2 = 0.

Using the standard background field method around the classical configuration D = φLa one finds the

effective potential in the large N limit is given by

Veff

2C2
= α̃4

[

φ4

4
− φ3

3
+ τ

φ2

2

]

+ log φ2 (7)

As discussed in [25, 19] the phase diagram including fluctuations is obtained from the minimum of this

effective potential. Due to the log term the effective potential (7) is not bounded from below near φ = 0 and

since in its derivation it was assumed that we were expanding around Da = φLa it is only valid where such

a ground state exists.

The minimum is therefore one of the roots of the polynomial φ ∂Veff (φ)
∂φ

= 0 which gives the equation

φ4 − φ3 + τφ2 +
2

α̃4
= 0, (8)

and determines φ in Da = φLa at quantum level. Explicitly the minimum is given by

φ =
1

4
+

1

2

√

1

4
− 2τ

3
+ d+

1

2

√

√

√

√

1

2
− 4τ

3
− d+

1− 4τ

4
√

1
4
− 2τ

3
+ d

, (9)

with the definitions

q = 1− 8τ

3
+

α̃4τ 3

27
, p = q2 − ( 8

3
+ α̃4τ2

9
)3

α̃4
, d = a− 4

3

(

(

q +
√
p
) 1

3
+
(

q −√
p
) 1

3

)

. (10)
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Veff is plotted in figure 2. In figure 2(a) the potential is shown for a fixed value of α̃ = 5 for different

values of τ . In figure 2(b) we fix the value of τ = 0.18 varying α̃. From both pictures we can see that there

exists a region in which the fuzzy sphere ceases to exist. This means that there exists a critical coexistence

curve in the (τ, α̃) plane where the model undergoes a phase transition between the two phases.

These expressions predict that for sufficiently large α̃ or low temperature and τ < 1
4
the fuzzy sphere is

the ground state of the model. The local minimum disappears for the simultaneous solution of V ′
eff(φ) = 0

and V ′′
eff(φ) = 0 so that

4φ2
∗ − 3φ∗ + 2τ = 0 (11)

which gives the critical values for φ and α̃.

φ∗ =
3

8

(

1 +

√

1− 32τ

9

)

and g2∗ =
1

α̃4∗
=

φ2
∗(φ∗ − 2τ )

8
. (12)

These equations defines the phase diagram (τ, α̃) for the present model. They prediction that at zero

temperature i.e. α̃ = ∞ where φ∗ = 1/2 and τ = 1/4.

The phase diagram is presented in Figure 3 together with a comparison with numerical simulations.

Numerical results are in excellent agreement with the prediction from effective potential for τ < 2
9
where

the coexistence curve predicted in (12) clearly delimits the fuzzy sphere phase from the matrix phase. The

fuzzy sphere exists for α̃ > α̃∗ and for τ < τ∗, where τ∗(α̃) is obtained by inverting (12).

However, for 1
4
> τ > 2

9
, simulations show that the coexistence curve asymptotes rapidly to the line τ = 2

9

for α̃ greater than the special value α̃∗ = 12
(

4

107+51
√

17

)1/4

∼ 4.02. As we cross the critical value of α̃, a

rather exotic phase transition occurs where the geometry disappears as the temperature is increased. In

the high temperature phase, which we call a matrix phase, the order parameter φ goes to zero as N−1. In

this phase the fluctuations are insensitive to the value of α̃, they are in fact fluctuations around commuting

matrices. Since, in the large N limit, α̃ is unimportant we can rescale the matrices to eliminate α̃ from the

quadratic term, defining Xa = α̃√
N
Da, we obtain

S[X] = NTr(−1

4
[Xa, Xb]

2 +
2iα̃

3
√
N

ǫabcXaXbXc +
α̃2τ

N
X2

a) (13)

and see that in this rescaled model both τ and α̃ drop out of the model in the large N limit.
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Figure 3: Phase diagram (τ, α̃). The solid line corresponds to the theoretical prediction eq.(12) for τ < τ∗ = 2
9 .

The numerical points are obtained from simulations with matrix sizes N = 19, N = 24, N = 35 and N = 64.

We see some rounding of the coexistence curve near (α̃∗ = 4.02, τ = 2
9 ), before it asymptotes to the line τ = 2

9 .

Next we discuss the numerical results which include the eigenvalue distributions for the configurations.
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2.2 Specific heat and phase transitions.

There are several useful general identities that we can derive between expectation values of observables, the

simplest of these is the relation between different components of the action. Since our action is a polynomial

in the matrices Xa it can be expressed as S = S4 + S3 + S2 where Sk[λX] = λkS[X]. Then if we scale the

fields Xa → λXa in both the action and the measure, the partition function Z, is invariant and under an

infinitesimal rescaling we obtain the constraint

4 < S4 > +3 < S3 > +2 < S2 >= 3(N2 − 1), (14)

which allows us to eliminate < S4 >. Defining Sk = <Sk>
N2 we have for large N obtain

S =
3

4
+

1

4
S3 +

1

2
S2. (15)

For our model, with

Xa =
α̃√
N

Da, (16)

we have

S4 = −N

4
Tr ([Xa, Xb]

2), (17)

S3 = N
2

3
iαǫabc Tr (XaXbXc), (18)

S2 = Nα2τ Tr (X2
a). (19)

Where α = α̃√
N
. In the fuzzy sphere phase we know fluctuations are around the configuration Da = φLa

and we then have the predictions (see [20] for details) the partition function Z = e−F with the free energy

F given by

F (α̃, τ ) =
Veff

N2
+ 3 ln α̃. (20)

where Veff is evaluated with φ given by (9). From this we can then identify

< S2 >

N2
=

τ α̃4φ2

4
,

< S3 >

N2
= − α̃4φ3

6

< S4 >

N2
=

3

4
− α̃4τφ2

8
+

α̃4φ3

8
(21)

In particular for the average of the action S and the specific heat Cv = 1
N2 < (S− < S >)2 > we have

S =
3

4
+

α̃4τφ2

8
− α̃4φ3

24
and Cv =

3

4
+

α̃5

32
φ(φ− 2τ )

dφ

dα̃
. (22)

3 The Matrix Phase

In terms of Xa of (16) the model (2) becomes

S[X] = N Tr

[

−1

4
[Xa, Xb]

2 +
i

3

α̃√
N

ǫabc[XaXb]Xc + τ
α̃2

N
X2

a

]

. (23)

We see that at high temperature where α̃ → 0, provided fluctuations in Xa do not grow too rapidly with

either α̃ or N then in the large N limit the model reduces to the pure Yang-Mills term

S[X] = −N

4
Tr [Xa, Xb]

2. (24)

Our numerical results support this and we find that <
TrX2

a
N

> and 2
3
α̃ǫabc < Tr(Xa, XbXc) > are indepen-

dent of N , see Figures 4.

We see immediately from (15) and the reduction to (24) that in the high temperature, matrix phase

we should expect both S = 3
4
= Cv irrespective of the value of α̃ and τ . This is in accordance with our

numerical results shown in Figures 5 and 7 and the earlier results of [20], but there is some discrepancy with

Figure 6 which we believe is due to finite size effects as discussed below.

It is argued in [5, 6] that fluctuations are about a background of commuting matrices whose eigenvalues

are uniformly distributed in the interior of a solid ball in R
3. This in turn predicts that the eigenvalue

distribution of a single matrix, say X3, is the parabolic distribution

ρ(x) =
3

4R3
(R2 − x2). (25)

6
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both plots in the range showed.

In [6], based on a two-loop approximation, it was estimated that R ∼ 1.8. This is in reasonable agreement

with our numerical results (see Fig 13) which give R = 2.0. In Figure 13 we can see that the numerical

results for the eigenvalue distribution of X3 are very well fit by the parabola (25).

In the same figure we present the distribution for the commutator i[X1, X2] showing a symmetric dis-

tribution with support lying in the interval [−1.5, 1.5]. This indicates, that the fluctuations around this

background are non-commuting variables.

If we accept the parabolic distribution (25) and radius R = 2 we can predict

<
Tr

N
(X2

a) >= 3

∫ R

−R

dx1ρ(x1)x
2
1 =

3R2

5
=

12

5
. (26)

Therefore we have

S2 = α2τ
< Tr X2

a >

N
= τ

α̃2

N

12

5
, (27)

which goes to zero for fixed α̃ in the large N limit. Our numerical results are in very good agreement with

this result for S2, as we can see in figure 4 (right). The value of the radius extracted from here is R = 2.01,

in accordance with the value obtained from the eigenvalues of X3. However, as α̃ increases we can observe

small deviations. The value R = 2 corresponds to the limit of infinite temperature and large N .

From our numerical simulations we see that S3 goes to zero even more rapidly than S2. In figure 4 we

see that the curves for different N collapse when we

< S3 >

N1/2
=

〈

2

3
iα̃ǫabc Tr XaXbXc

〉

(28)

as a function of α̃. For different values of 2
9
< τ < 1

4
we find S3

α̃
behaves linear in α̃, however the approxi-

mation becomes poorer as τ → 1
4
and higher corrections subleading in N should be taken into account. The

data for τ = 0.23 is well fit by

< S3 >

N1/2
= 0.142533 α̃− 0.799823 α̃2,

< S2 >

N2
= 0.557965 α2. (29)

For τ = 0.24 we find

< S3 >

N1/2
= 0.0243563 α̃− 0.757264 α̃2,

< S2 >

N2
= 0.574869 α2 (30)

7
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Figure 6: Observables < S >,Cv for τ = 0.25. The range of α shown corresponds to α̃ < 3.7

From which we deduce that S3 → 0 as N− 3
2 .

Taking this into account we can write the expectation value of the action <S>
N2 given by eq. (15)

S =
3

4
+

1

4N
(0.142533 α̃− 0.799823 α̃2) + τ

α̃2

N

6

5

=
3

4
+

1

4N1/2
(0.142533 α)− 1

4
(0.799823 α2) + τα2 6

5
; for τ = 0.23, (31)

S =
3

4
+

1

4N
(0.024356 α̃− 0.757264 α̃2) + τ

α̃2

N

6

5

=
3

4
+

1

4N1/2
(0.024356 α)− 1

4
(0.757264 α2) + τα2 6

5
; for τ = 0.24, (32)

S =
3

4
+

1

4N1/2
(−0.159707 α)− 1

4
(0.701843 α2) + τα2 6

5
; for τ = 0.25. (33)

The expectation values for the action S are shown in figure 8 for these last two particular values of τ .

4 Numerical Results

We now describe the results of the numerical results for the expectation value of the action < S > and the

specific heat Cv/N
2 =< (S− < S >)2 > as function of α̃ for a fixed value of τ .

For all values of τ < 2/9 we observed that there is a discontinuity in the expectation value of the action

< S > across the transition line in Figure 3. This jump in S is well predicted by the theoretical expression

∆S = −α̃4(− τφ2
∗

8
+

φ3
∗

24
) (34)

with φ∗ given by equation (9) evaluated on the transition. The specific heat is non-analytic along the

transition, but the nature of its non-analyticity differs on the critical line τ = 2
9

and the critical curve
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Figure 7: Observables < S >,Cv as function of τ for α̃ = 5. The transition occurs at τ = 0.219± 0.005.

(τ < 2
9
, α̃∗(τ )). In the former case the specific heat has the standard jump of a 1st order transition while on

the latter it diverges as the transition is approached from the low temperature or fuzzy sphere phase side of

the transition but there is no observable increase in the specific heat as the transition is approached from

the high temperature side.

To identify the transition we choose that value of α̃ that gives the specific heat and identify this as α̃∗.

In figure 5 we show the curve of the specific heat Cv for fixed values of τ = 0.08 and τ = 0.15. The critical

value of the coupling α̃∗ measured from simulation is 2.40 ± 0.05 for τ = 0.08 whereas we found a value of

α̃∗ = 2.85 ± 0.05 when τ = 0.15. These are to be compared to the prediction (12) from which we get the

values α̃∗ = 2.366 and α̃∗ = 2.790 respectively. As we can see the numerical results are in good agreement

with the our theoretical predictions.

Thought the transition is characterised by a latent heat, as it was pointed out in [19, 20], it is unusual

in that there are also critical fluctuations in the specific heat as the transition is approached from the low

temperature phase for τ < 2
9
. These lead to a divergent specific heat with specific heat exponent α = 1/2.

Our simulations are consistent with the expected divergence in the low temperature phase.

In figure 6, where we show S for τ = 1/4 and α̃ < 3.7. We see the data collapses when plotted against

α. We also show that the specific heat is fluctuating around Cv = 3
4
. These are consistent with a uniform

distribution of commuting Xa whose eigenvalues are distributed within a ball of radius R = 2.0.

In figure 7, we show S and the specific heat as a function of τ for α̃ = 5.0 and we observe that the

transition occurs at τ = 0.219 ± 0.005 a value consistent with τ = 2
9
. We have chosen α̃ = 5.0 to represent

the typical behaviour for α̃ > α̃∗(τ = 2/9) = 4.02, so that the curve crosses the critical line τ∗ = 2/9.

Our theoretical prediction for the critical value of the specific heat when the transition is approached from

the low temperature phase, eq. (22) predicts Cv(τ = 2/9, α̃ = 5) = 1.02, which is in agreement with our

simulations. Figure 7 also shows that S has a bend but there is no apparent, jump. It also appears that the

bend occurs at a slightly larger value than τ = 2
9
. The precision of our numerical results show that the bend

occurs at τ = 0.222 ± 0.002, showing small deviations when α̃ is close (and larger) to α̃∗(τ = 2/9) = 4.02

where the transitions take place at slightly larger values than τ = 2
9
(see figure 3), however this might be

due to finite size effects. The specific heat shows there are no strong fluctuations, so the classical theory

should be a good approximation and in fact predicts the critical point τ∗ = 2/9 see eq. (12). The finite size

effects in the specific heat are consistent (31) and account for the deviation from the limiting large N value

of Cv = 0.75.

4.1 Eigenvalue distributions

By measuring the eigenvalue distribution of the matrices Xa and the commutators i[Xa, Xb] we can in-

vestigate in more detail the features of the configurations at quantum level. The model has global SO(3)

invariance, therefore each of the three matrices has the same eigenvalue distribution and also each of the

commutators share a common distribution. We also measure the eigenvalues for the 2N × 2N matrix

C = σaXa (35)

where σa are the three Pauli matrices. This matrix is particularly useful because it encodes information from

the three matrices Xa simultaneously and its spectrum can be easily computed for specific configurations.
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Figure 8: Expectation value of the action < S > and specific heat Cv for τ = 0.23, 0.24 as a function of

α = α̃/
√
N . These values of τ lie in the matrix phase.

For instance, when Xa = αLa, where La are IRRs of SU(2), with LaLa = N2−1
4

, we have

(σaLa)
2 = L2

a − σaLa then (σaLa +
1

2
)2 =

N2

4
1 (36)

and we find that with C → U−1
CdiagU with U ∈ U(2N) and noting that C is traceless and is the SU(2)

tensor product 2⊗N = (N + 1) ⊕ (N − 1) we see that the eigenvalue multiplicities are N − 1 for −N
2
− 1

2

and N + 1 for N
2
− 1

2
therefore

Cdiag = α

(

(N − 1)

2
1N+1 ⊕

(−N − 1)

2
1N−1

)

. (37)

More generally for a reducible representation Ja of (5) we have

Cdiag = α⊕i

(

(ni − 1)

2
1ni+1 ⊕

(−ni − 1)

2
1ni−1 + 0

)

. (38)

where 0 corresponds to the one dimensional representations in Ja. We see that C is sensitive to the repre-

sentation content of the matrices. The spectrum of C will have distinct eigenvalues for the different SU(2)

IRRs present in Xa.

We also measure the eigenvalues of the Dirac operator

D := σa[Xa, ·], (39)

where [Xa, ·] means Xa acting as commutator: [Xa,M ] = XaM −MXa for any matrix M ∈ MatN .

The spectrum of D = σa[Xa, ·] can be easily computed when Xa = αLa. For this particular case we have

D = σa[Xa, ·] = α σ · L = α

[

J 2
a − L2

a − 3

4

]

= α

[

j(j + 1)− l(l + 1) − 3

4

]

, (40)

with j = l ± 1
2
with l taking the values l = 0, 1, .., N − 1 and we obtain the spectrum

spec{D} = α











l; j = l + 1
2
, g(l) = 2(l + 1)

−(l+ 1); j = l + 1
2
, g(l) = 2l

0; l = 0, g(l) = 2

(41)
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g(l) is the degeneracy. The Dirac operator D has therefore the spectrum

spec{D} = α{−N,−(N − 1), . . . ,−3,−2, 0, 1, 2, 3, . . . , (N − 1)}. (42)

This spectrum is well reproduced in our numerical simulations for the parameter range of the phase diagram

Figure 3 corresponding to the fuzzy sphere, see Figure 10.

4.2 Numerical results for eigenvalue distributions

4.2.1 The τ = 0 case

We begin with our results for the case τ = 0. This situation corresponds to the model studied in [15, 19, 20]

and the system crosses the phase boundary of Figure 3 at α̃ = 2.08 as predicted from the effective potential

or α̃ = 2.01 ± 0.01 as measured from simulations.

In the low temperature phase (large α̃), the dominant configurations are IRRs of SU(2), Da ∼ La. Figure

9 shows the eigenvalue distribution for N = 24 and α̃ = 5.00 and τ = 0. The simulation indeed shows that

the spectrum of both D3 and i[D1, D2] are discrete and equally spaced consistent with an IRR of SU(2).

In figure 10, the eigenvalues for the matrix C = σaDa and the Dirac operator D = σa[Da, ·] are shown1

and are consistent with the spectrum (37) for matrix C, and (42) for D.
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Figure 9: Eigenvalues for D3 and i[D1, D2]. We observe a discrete spectrum. N = 24, α̃ = 5.00, τ = 0.0.
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Figure 10: Eigenvalues for matrix C = σaDa and Dirac operator D = σa[Da, ]. N = 24, α̃ = 5.00, τ = 0.0. The

eigenvalues for the matrix C are nicely distributed in two peaks around C = − 25
2 = −12.5 and C = + 23

2 = 11.5

as expected. While the operator D reproducing the spectrum (42).

In the matrix phase, we observe a continuous spectrum for the matrices Xa; we also observe that the

eigenvalue distribution for Xa has an increasing number of oscillations and becomes a smooth convex spec-

trum for large N and as might be expected from (23) the spectrum of Xa is largely independent of α̃. The

1Note: We have defined C = αC and D = αD. Also, the operator D differs from the standard Dirac operator [34] on the sphere,

this would now be D + φ.
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eigenvalue distribution of each Xa is symmetric around zero and its support is localised within the interval

[−2, 2] and the parabola law (25) fits excellently with R = 2.0. The distribution for the commutator is also

symmetric around zero.

The matrix C = σaXa shows a distribution with two maxima around ±2. The distribution, however, is

not symmetric with the peak on the right hand slightly higher than the one on the left. There is a small

effect of non-zero α̃ which is larger than any effect on Xa or i[Xa, Xb]. The distribution for the operator

D has three peaks for small N , with the central peak around zero disappearing as N is increased. The

distribution also shows a slight distortion with the right hand peak larger than the left. Numerical results

are shown in figure 11 and 12 for N = 24, 35 with α̃ = 1.00, in figure 12 we also show the case N = 24 with

α̃ = 0.60 in order to compare.
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Figure 11: Eigenvalues for X3 and i[X1, X2] in matrix phase. N = 24, α̃ = 1.00, τ = 0.0.
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Figure 12: Eigenvalues for matrix C = σaXa and Dirac operator D = σa[Xa, ] in the matrix phase N = 24,

α̃ = 0.60, 1.00, and N = 35, α̃ = 1.00 for τ = 0.0. The eigenvalue distributions for the matrix C and operator

D are asymmetric

We highlight the special case of both τ = α = 0 which we refer to as the pure Yang-Mills matrix model

and show the distributions of Xa, i[Xa, Xb], in figure 13 and those of C and D in figure 14. These are all

symmetric and consistent with our interpretation of the matrix phase as fluctuations around commuting

matrices whose joint eigenvalue distribution is a solid ball of radius R = 2.0.

The eigenvalue distribution for C = σaXa has two peaks at approximately ±1.9. In the large N limit

the Dirac operator D, has two peaks peaks located at approximately ±2.4 and support of its spectrum lies

in the interval [−4, 4].

4.2.2 The τ 6= 0 case

We again focus on the eigenvalue distributions of the observables; Da, i[Da, Db], C = σaDa and the operator

Dirac D in the fuzzy sphere phase and Xa, i[Xa, Xb], C and D in the matrix phase. By a close inspection of

the spectrum of these matrices we confirm that the numerical results are in good accord with φ as predicted

by equation (9) in the fuzzy sphere phase as we will now describe.
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Figure 13: Eigenvalues for X3 (left) and i[X1, X2] (right) for pure Yang-Mills matrix model for different N . The

eigenvalue distribution of X3 is fit by the parabolic distribution (25) with R = 2.0 (solid line) and is consistent

with a background of commuting matrices whose eigenvalues are uniformly distributed inside a solid 3-ball of

radius R.
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Figure 14: Eigenvalues for matrix C = σaXa and the Dirac operator D = σa[Xa, ] for the pure Yang-Mills

matrix model. Both distributions are symmetric.

Fuzzy sphere phase. The eigenvalue distributions in the region of the parameter space in which the

fuzzy sphere solution Da = φLa exists is delimited by the critical line (12) and defined for α̃ > α̃∗ whenever2

τ < 2/9. The effect of τ is to increase the critical point α̃∗ according to (12), in other words, the critical

temperature at which the transition occurs, is lowered. For a specific set of parameter N, α̃ we can measure

the value for φ for a fixed value τ . Knowing that in this phase the ground state is an IRR of SU(2), i.e.

D ∼ φ diag(−s,−(s − 1), · · · ,+(s − 1),+s) (with s, the spin labeling the IRR: s = N−1
2

) we can extract

the value of φ measured in simulations since φ = 1
s
eigenvalues(D)(=

√
N

α̃s
eigenvalues(X)). For instance, in

Figure 15(a) for N = 37, α̃ = 5, τ = 0.18 using the largest eigenvalue, the simulation gives φ = 0.7539 while

the prediction (9) gives φ = 0.75.

Selecting the first positive and negative eigenvalues of Da, which should correspond to ev(L3) = ±1, we

obtain ev(Da)1 = 0.73 and ev(Da)−1 = −0.77, (see figure 15(b)). Taking the average modulus we can get

an estimate for φ of φ = 0.75 while the predicted value from eq.(9) is φ = 0.7537. We can now replot Da/φ

and the operator D/φ in figure 16; we can observe that the configurations are indeed around Da/φ ∼ La.

Our numerical results are in excellent agreement with the analytical predictions.

Alternatively, we can extract φ from the eigenvalue distribution of matrix C = σaDa. In the fuzzy sphere

we have Da = φLa. We know that the eigenvalues of C are given by

C± = αφ

(

±N

2
− 1

2

)

. (43)

Therefore by choosing for instance C+ the value for φ can be extracted from the numerical results for the

corresponding set of parameters. We obtain similar result by choosing C−. See figure 17.

2The model is unstable for τ < 0, yet since tunneling is suppressed in the large N limit and the fuzzy sphere phase is in fact

stable.
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Figure 15: (a) Eigenvalues for matrix Da deep inside the fuzzy sphere region α̃ = 5 and τ = 0.18. (b) On the

right a zoom for the first peak on the right side of zero eigenvalue of Da from which the value for φ is measured.
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Figure 16: Eigenvalues for matrix Da and the operator D = σa[Da, ·] deep inside the fuzzy sphere region α̃ = 5

and τ = 0.18. The eigenvalues are divided by the measured value of φ = 0.75 in order to show that Da/φ are

fluctuating around La, irrep. SU(2) for N = 37.

Matrix phase. In this phase as we have mentioned before, the dependence on N drops out if we con-

centrate on Xa = αDa = α̃√
N
Da as our basic operator. We observe that the distribution for eigenvalues

coincides, to our numerical accuracy, with that of the pure Yang-Mills model and there is no observable

dependence on the parameters α, τ and matrix size N . The data is well fit by the parabolic distribution

(25) with R = 2.0. We also observe that the eigenvalue distribution of the commutator shows no observable

deviation from that of the pure Yang-Mills model. Figure 18 shows the case for τ = 0.15, α̃ = 1 for different

matrix size.

In our simulations we observe that the spectrum of the matrix C = σaXa and the operator D are not

symmetric, but rather distorted with respect to the pure Yang-Mills case; see figure 19(a) for τ = 0.15 and

fixed value α̃ = 1 and figure 20 (a) and (b) for C and figure 20 (c) for D. As we see from the graphs the

asymmetry is due to the Myers term. We attribute this asymmetry to a residual dependence on the Myers

term which drops out as 1√
N
, noting that graphs correspond to α = 0, 0.122 and α = 0.169 for α̃ = 0, 0.6

and α̃ = 1.0 respectively.

The operator D has a continuous spectrum and turning on the Meyrs term again gives an observable

asymmetry to its spectrum, see figure 19(b) for α̃ = 1.0 and fixed value τ = 0.15 and figure 20 (c) for a

range of parameter values. It is only for τ ≥ 2
9
that the asymmetry survives the large N limit since for all

τ < 2
9
increasing N for fixed α drives across the transition line and into the fuzzy sphere phase.

From the distributions we can see that the transitions that takes place in the model is the one which goes

from a non-commutative fuzzy sphere as geometrical background to a solid 3-ball with fixed radius R = 2.

X2
a =

N2 − 1

4
α2φ2 −→ X2

a ≤ 4 (44)

Or if we rescale to the Da we get a collapse of a sphere to a point.
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Figure 17: Here we use the eigenvalue distribution of the matrix C = σaDa in order to extract the value of φ

since 2
√
NC+

α̃(N−1) = φ. The parameters are given by α̃ = 5 and τ = 0.18, for different values of N . We can see that

the numerical value for φ is in very good agreement with the theoretical prediction φ = 0.7537 given by eq.(9).

On the left the corresponding plot for C−, where φ is given by φ = − 2
√
NC

−

α̃(N+1) .
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Figure 18: Eigenvalues for X3 and i[X1, X2] for different N , τ = 0.15 in the matrix phase α̃ = 1. Eigenvalues

distribute uniformly inside a 3-solid ball.

This transition occurs when α̃ reaches the critical value α̃∗ following the critical in the phase diagram

depicted in figure 3. The transition line is defined by the critical curve (12) whenever τ is in the range

0 ≤ τ < 2/9. The model is unstable for τ < 0. However, when τ < 0 and α̃ > α̃∗(τ ), the fuzzy sphere is a

local minimum of the model with negative action which goes to −∞ as N → ∞ and tunneling out of this

well becomes impossible.

In figure 21 we track the evolution of the eigenvalue distribution of Xa and matrix C as a function of

τ along the line α̃ = 5.0 starting in fuzzy sphere. We can see the fuzzy sphere disappears as we cross

the critical value τ = 2/9. We observe that τ = 2
9
actually falls in the matrix phase. We find that the

transition tracks the line τ = 2
9
for different α̃. However, as the end point of this line is approached, i.e.

α̃ = 12
(

4

107+51
√

17

)1/4

∼ 4.02 we observe that in a small neighbourhood of this value the transition actually

occurs at τ∗ < 2
9
see figure 3. In figure 22 we see that there appears to be some deviation from the predictions

of (9) where one would expect that for α̃ = 4.02 the transition would occur at τ = 2
9
∼ 0.222, however we

find the transition at τ = 0.213±0.002. For this transition < S > shows a clear discontinuity consistent with

the predictions from (9) and we expect there is still a divergent specific heat though this is more difficult to

detect.

Figure 23 shows the history of the expectation value of the action < S > /N2 for N = 24, 35, α̃ and

τ = 0.24 from different initial configurations; cold (Da = La), zero and random start. When starting from

cold configuration we observe the system goes through metastable states. All reach the same energy level

and no decay was observed after 219 Monte Carlo steps or sweeps, defined as the step in which all the matrix

elements are updated according to the Metropolis algorithm.
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Figure 19: (a) Eigenvalues for matrix C = σaXa. (b) D = σa[Xa, ] in the matrix phase for τ = 0.15, α̃ = 1

Massive Yang-Mills model Since, in the model (23) the limit α = 0 removes the quadratic and Meyrs

term we treat this the massive deformation of this case separately.

For α = 0 we therefore also study the model

S[X] = N Tr

(

−1

4
[Xb, Xb]

2 +
r

2
X2

a

)

. (45)

We study the eigenvalue distributions for matrix Xa and matrix C = σaXa for different values of the

parameter r and matrix size N . We find that the phenomenology for this model is similar to that of τ = 0

described above. The eigenvalue distribution for the matrix configurations Xa and small r are fit by the

parabola (25).

We also observe that the eigenvalues for the matrix C distribute as in the pure Yang-Mills model. See

figure 24. For values r
2
< 0 the matrix action is not bounded from below.

Comment on the Massive Myers model with complex Meyrs coupling. For completeness

let us consider the following action

S = N Tr

(

iα

3
ǫabcXa[Xb, Xb] +

r

2
X2

a

)

. (46)

The model is exactly solvable (see Hoppe [24]) and is equivalent to a 2-matrix Yang-Mills model with massive

deformation. For real α the model is not stable with no ground state. It may however be possible to localise

configurations in a well by suppressing tunneling in the large N limit. We observe that such wells exist for

large positive r.

5 Conclusions

We have performed numerical simulations of a simple two parameter 3-matrix model with energy functional

given by (2). In particular we studied the phase diagram as a function of the two parameters τ and α̃. Earlier

studies [20] looked at the case τ = 0 and found that it exhibited an exotic phase transition at α̃∗ = ( 8
3
)
3/4

. It

was argued, based on an effective potential calculation that the model should have a line of phase transitions

dividing the (τ, α̃) plane in two and predicting the coexistence curve. We find that for 0 < τ < 2
9

the

coexistence curve is predicted well by the theoretical expressions. The coexistence curve asymptotes to the

line τ = 2
9
and appears to deviate slightly from the prediction of the effective potential (9). This special

value of τ corresponds to the value where the action is a complete square, see eq. (6). We examine the

eigenvalue distributions of different operators. In particular we look at C = σaXa which detects the SU(2)

representation content of the configurations Xa. We find the IRR of dimension N has fluctuations around

a lower S than any other configuration in the parameter range corresponding to the fuzzy sphere phase.

Also, in this range the spectrum of C has the two peaks corresponding to αφσaLa with La the SU(2) IRR

of dimension N . In the parameter range corresponding to the matrix phase C has a continuum spectrum.

We also study the Dirac operator D = σa[Xa, ·] and find that in the fuzzy sphere phase its spectrum is (as

expected) a shifted, cutoff version of the commutative sphere.

We found evidence for two distinct transition types in the emergent geometry scenario. For 0 < τ < 2
9

we found that, as the transition is approached from the fuzzy sphere phase with fixed τ , the model has a
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Figure 20: Effect of Myers term on the eigenvalues for matrix C = σaXa (left) and Dirac operator D = σa[Da, ]

(bottom) in the matrix phase. We can see that the Myers term has a small effect of the distributions, they are

no longer symmetric as compared with the pure Yang-Mills (in black thick line).

divergent specific heat with critical exponent α = 1
2
. However for α̃ > α̃∗ = 12

(

4

107+51
√

17

)1/4

∼ 4.02,

and crossing the transition at fixed α̃, there appear to be no critical fluctuations; the transition is one

with a continuous, but non-differentiable internal energy, and a discontinuous specific heat. In all cases the

transition is from a fuzzy sphere to a matrix phase. We study the matrix phase in detail and find that a

useful description of this phase is in terms of fluctuations about a background of commuting matrices whose

eigenvalues are concentrated within a sphere of radius R = 2.0. This is consistent with the estimates of [6]

who performed a 2-loop analysis and estimated R ∼ 1.8

We find that, though it is possible for configurations other than the irreducible fuzzy sphere to be present

in the model, they never correspond to the true ground state of the system. Such configurations, were they

present, would be easily detected by the matrix C. Furthermore for τ = 2
9
we find that < S > when trapped

in a fuzzy sphere configuration is larger than that for fluctuations in the matrix phase, and the fuzzy sphere

is not a true ground state of the system. Also, for τ > 2
9
we observe decays from the fuzzy sphere to the

matrix phase, i.e. the fuzzy sphere is a meta-stable configuration for the system, with observable decay. In

contrast for the critical line τ = 2
9
we observe no decay of the fuzzy sphere to the true ground state. We

infer that the barrier is sufficiently high in this case that the limit of N → ∞ prevents tunneling out of the

local minimum corresponding to the fuzzy sphere.

A natural further stage in the study undertaken here is to include the effect of Fermions. However, the

most interesting case involves either complex actions or fluctuating signs in the Fermionic sector [35] both

of which lead to significant numerical difficulties.

In d = 10 the pure Yang-Mills model has received significant attention in a scenario of emergent gravity

[30]. It appears from our study, that for finite N , all such configurations will be meta stable. In the large

N limit tunneling will be suppressed and these states may become stable. unfortunately, reliable numerical

simulations in such a situation are more difficult.
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fuzzy sphere disappears. On the right eigenvalues for the matrix C = σaXa.
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