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1 Introduction

The initial form of the AdS/CFT correspondence concerns the near-horizon limit of

N D3–branes, which entails the study of dynamics in AdS5 × S5 background. In

ref. [1] probe D7–branes were added to this geometry with the effect of introducing

hypermultiplets in the fundamental representation of the gauge group on the dual

side. The condition for finiteness of the fluctuations of probe branes leads to the

spectra of holographic mesons [2]. Subsequent generalizations were given in [3–6].

Another fruitful possibility is the embedding of D5–brane probes, which wrap

an AdS4 × S2 part of AdS5 × S5 [7]. The dual gauge theory at hand is a supercon-

formal “defect” theory [8] with corresponding hypermultiplets confined to a (2+1)-

dimensional subspace.
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In the present paper we embed probe D7– and D5–branes in global AdS5 × T 1,1

background. On the dual side we have anN = 1 supersymmetric quiver gauge theory,

the Klebanov–Witten model, living on a three-sphere [9]. Holographic studies of

flavoured gauge theories on compact manifolds were initiated in refs. [10, 11], where

the most supersymmetric case of flavoured N = 4 SYM theory on a three-sphere1 was

analysed. A detailed study of the meson spectrum was performed in ref. [12], where

it was shown that for the chiral primaries, the lowest level is given by the scaling

dimension of the operator corresponding to the fluctuations. It was also shown that

the spectrum exhibits an equidistant structure resulting from the summation of the

angular momenta of the fundamental fields composing the mesons.2 In this paper we

perform an analogous study for the flavoured Klebanov–Witten model on a three-

sphere.3 Our study is particularly interesting because of the significantly less amount

of supersymmetry (N = 1/2) of the flavoured Klebanov–Witten model. Interestingly,

the meson spectra exhibit the same properties as for the flavoured N = 4 theory,

the only difference being that the conformal dimensions of the fields composing the

meson states cannot be determined from the free field theory on an S3, which is

natural because of the absence of non-renormalisation theorems for less than two

supersymmetries.

This paper is organised as follows. In section 2 we investigate which probe

brane embeddings are supersymmetric via kappa-symmetry techniques. In section

3 we calculate analytically the meson spectra at zero quark mass for probe D7–

brane fluctuations on the gravity side. Analogously, in section 4 we obtain the scalar

bosonic spectrum for D5–brane fluctuations. We conclude with a brief discussion on

the results in section 5. Finally, there is an appendix, in which we give details about

the parametrization of T 1,1 and the dual gauge theory.

2 Supersymmetric probes

In this section we analyse the kappa symmetry of the probe branes. Our analysis

follows closely the one performed in [25], where the Killing spinors in both global

and Poincare coordinates are discussed.

1Note that the flavours break the N = 4 supersymmetry down to N = 2 one. However, since

the term N = 4 SYM uniquely specifies the field content of the adjoint fields, throughout the paper

we will refer to this N = 2 supersymmetric theory as the flavoured N = 4 theory, keeping in mind

that half of the supersymmetry is broken.
2See also refs. [13–15] for thermodynamic studies with external control parameters.
3For studies of the flavoured Klebanov–Witten model in the Poincare patch, relevant to our

studies, see refs. [16]-[24].
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2.1 Killing spinor.

The metric of the Klebanov–Witten geometry is given by:

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3) +R2ds2T 1,1 , (2.1)

where ds2T 1,1 is the metric on T 1,1 given by:

ds2T 1,1 =
1

6

2
∑

i=1

(

dθ2i + sin2 θi dφ
2
i

)

+
1

9

(

dψ +

2
∑

i=1

cos θi dφi

)2

. (2.2)

Here the ranges of the angles are: 0 < θi < π, 0 < φi < 2π and 0 < ψ < 4π. Using

the one-forms in [25]:

σ1 = dθ1 , σ2 = sin θ1dφ1 , σ3 = cos θ1dφ1 , (2.3)

associated to a two-sphere and the forms

w1 = sinψ sin θ2 dφ2 + cosψ dθ2 ,

w2 = − cosψ sin θ2 dφ2 + sinψ dθ2 , (2.4)

w3 = dψ + cos θ2 dφ2 ,

associated to a three-sphere, one can write down the metric of T 1,1 in the following

form:

ds2T 1,1 =
1

6

(

(σ1)2 + (σ2)2 + (w1)2 + (w2)2
)

+
1

9

(

σ3 + w3
)2
. (2.5)

If we parameterize the three-sphere of the global AdS5 as

dΩ2
3 = dα2

1 + sin2 α1

(

dα2
2 + sin2 α2 dα

2
3

)

, (2.6)

we can choose the following tetrads [25]:

et = R cosh ρ dt , eρ = Rdρ , (2.7)

eα1 = R sinh ρ dα1 ,

eα2 = R sinh ρ sinα1dα2 ,

eα3 = R sinh ρ sinα1 sinα2 dα3 ,

ei =
R√
6
σi , eî =

R√
6
wi , i = 1, 2 ,

e3 =
R

3

(

σ3 + w3
)

.

Let us define the matrix:

γ∗ = ΓtΓρΓα1 α2 α3 , (2.8)

where the Γ’s are the flat gamma matrices associated to the choice of frame (2.7).

One can write down the Killing spinor of the background as:

ε = e−
i
2
ρΓργ∗e−

i
2
tΓtγ∗e−

α1
2
Γα1ρe−

α2
2
Γα2α1e−

α3
2
Γα3α2η , (2.9)
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where η is a constant spinor satisfying the following conditions:

Γ12 η = iη , Γ1̂2̂ η = −iη . (2.10)

Notice that Γ12 and Γ1̂2̂ commute with the matrices on the right-hand side of equation

(2.9) and therefore the Killing spinor also satisfies the conditions (2.10):

Γ12 ε = iε , Γ1̂2̂ ε = −iε . (2.11)

2.2 Kappa-symmetry matrix.

The condition for a probe brane embedding to preserve some fraction of the super-

symmetry of the background is:

Γκ ε = ε , (2.12)

where Γκ is given by:

Γκ =
1

(P + 1)!
√−g ε

µ1...µp+1(τ3)
p−3
2 iτ2 ⊗ γµ1...µp+1 . (2.13)

In equation (2.13) g is the determinant of the induced metric gµν , given by:

gµν = ∂µX
M∂νX

N GMN , (2.14)

and γµ1...µp+1 is an antisymmetrised product of the induced gamma matrices γµ, given

by:

γµ = ∂µX
MEN̄

MΓN̄ , (2.15)

where EN̄
M are the components of the one-form frame given in equation (2.7). The

τa matrices in equation (2.13) are Pauli matrices acting on the vector

(

ε1
ε2

)

, where

ε1 and ε2 are the real and imaginary parts of the complex spinor ε.

2.3 Kappa symmetry for a D5–brane probe.

For a D5–brane probe the kappa-symmetry matrix (2.13) takes the form:

Γκ =
1

6!
√−g ε

µ1...µ6τ1 ⊗ γµ1...µ6 . (2.16)

Note that τ1

(

ε1
ε2

)

=

(

ε2
ε1

)

, which are the components of the complex spinor iε∗.

Therefore we can consider the action of Γκ in complex notation [25]:

Γκ ε =
i

6!
√−g ε

µ1...µ6γµ1...µ6ε
∗ . (2.17)

We are interested in space-filling D5–brane embeddings. Furthermore, the analysis

of the supersymmetries of the D5–brane embeddings in the flat case studied in ref.

– 4 –



[25] shows that supersymmetric embeddings give rise to co-dimension one defect field

theory. In global coordinates this corresponds to a D5–brane embedding wrapping a

maximal two-sphere of the AdS5 three-sphere. Therefore we consider the following

ansatz for the D5–brane embedding:

ξµ = (t, ρ, α1, α3, θ1, φ1) , (2.18)

and

θ2 = θ2(θ1, φ1) , φ2 = φ2(θ1, φ1) , ψ = const , α2 =
π

2
. (2.19)

For this ansatz the kappa-symmetry matrix (2.17) becomes:

Γκ ε =
i√
gX2

γ̃∗γθ1 φ1ε
∗ , (2.20)

where

γ̃∗ = ΓtΓρΓα1Γα3 , (2.21)

and gX2 is the determinant of the induced metric on the internal manifold X2 ∈ T 1,1

wrapped by the D5–brane. The matrix γθ1φ1 is the antisymmetrised product of γθ1
and γφ1 given by4:

γθ1 =
L√
6
Γ1 +

L√
6
(cosψ∂θ1θ2 + sinψ sin θ2∂θ1φ1) Γ1̂ +

L

3
cos θ2∂θ1φ2 Γ3 +

+
L√
6
(sinψ∂θ1θ2 − cosψ sin θ2∂θ1φ2) Γ2̂ , (2.22)

γφ1 =
L√
6
sin θ1Γ2 +

L√
6
(cosψ∂φ1θ2 + sinψ sin θ2∂φ1φ2) Γ1̂ +

+
L

3
(cos θ1 + cos θ2∂φ1φ2) Γ3 +

L√
6
(sinψ∂φ1θ2 − cosψ sin θ2∂φ1φ2) Γ2̂ .

One can check that γθ1φ1 commutes with all matrices acting on the right-hand side of

equation (2.9), however γ̃∗ anticommutes with all matrices except the matrix Γα1ρ,

with which it commutes. This will flip the sign in all of the exponents in equation

(2.9) except the one involving Γα1ρ. On the other hand, in equation (2.17) γ̃∗ is acting

on the complex conjugate of the Killing spinor, which implies a careful choice of the

basis for the gamma matrices. It turns out that choosing Γt ,Γρ ,Γα1 ,Γα2 ,Γα3 ,Γ3

to be imaginary and Γ1 ,Γ2 ,Γ1̂ ,Γ2̂ to be real is a viable choice, and the projection

(2.12) is equivalent to a projection by a constant operator on the constant spinor η.

Let us briefly show this.

Substituting (2.9) and (2.17) in the projection equation (2.12) leads to:

e−
i
2
ρΓργ∗e−

i
2
tΓtγ∗e−

α1
2
Γα1ρe

π
4
Γα2α1e

α3
2
Γα3α2

iγ̃∗γθ1φ1√
gX2

η∗ = (2.23)

= e−
i
2
ρΓργ∗e−

i
2
tΓtγ∗e−

α1
2
Γα1ρe−

π
4
Γα2α1e−

α3
2
Γα3α2η ,

4Note that the expressions in equation (2.22) are the same as in the flat case analysed in [25].
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where we have used that Γργ∗ ,Γtγ∗ ,Γα1ρ ,Γα2α1 and Γα3α2 are real in the chosen

basis. Using that

e
π
4
Γα2α1e

α3
2
Γα3α2 = e−

π
4
Γα2α1e−

α3
2
Γα3α2Γα2α1 and Γα2α1 γ̃∗ = Γt ρα2 α3 , (2.24)

equation (2.23) reduces to:

i√
gX2

Γt ρ α2 α3γθ1φ1η
∗ = η . (2.25)

Let us analyze the form of γθ1φ1 . Using equations (2.22) and the projections5:

Γ12 η
∗ = −iη∗ , Γ1̂2̂ η

∗ = iη∗ , (2.26)

one arrives at the following expression for γθ1φ1η
∗:

γθ1φ1η
∗ = −ic1 η∗ + (c2 + ic3)e

iψΓ12̂ η
∗ + (c4 + ic5)Γ13 η

∗ + (c6 + ic7)e
iψΓ1̂3 η

∗ , (2.27)

where

c1 =
L2

6
[sin θ1 + sin θ2(∂θ1θ2)(∂φ1φ2)− sin θ2(∂θ1φ2)(∂φ1θ2)] , (2.28)

c2 =
L2

6
[sin θ1(∂θ1θ2)− sin θ2(∂φ1φ2)] , c3 = −

L2

6
[∂φ1θ2 + sin θ1 sin θ2(∂θ1φ2)] ,

c4 =
L2

3
√
6
[cos θ1 + cos θ2(∂φ1φ2)] , c5 =

L2

3
√
6
sin θ1 cos θ2(∂θ1φ2) ,

c6 =
L2

3
√
6
[(cos θ1 + cos θ2(∂φ1φ2)) (∂θ1θ2)− cos θ2(∂φ1θ2)(∂θ1φ2)] ,

c7 = − L2

3
√
6
[(cos θ1 + cos θ2(∂φ1φ2)) sin θ2(∂θ1φ2)− cos θ2 sin θ2(∂φ1φ2)(∂θ1φ2)] .

The main restriction on the form of γθ1φ1 comes from the requirement that the

projections (2.25) and (2.10) commute. Given that Γ12 and Γ1̂2̂ are real, this is

possible only if the matrix acting on η∗ on the left-hand side of equation (2.25)

anticommutes with both Γ12 and Γ1̂2̂ . Indeed, let us define:

Pη = Aη∗ , A =
i√
gX2

Γt ρα2 α3γθ1φ1 . (2.29)

Let us rewrite the projection conditions in equations (2.10) and (2.26) as:

(iΓ12) η = −η , (iΓ1̂2̂) η = η , i(Γ12) η
∗ = η∗ , i(Γ1̂2̂) η

∗ = −η∗ . (2.30)

Then we have:

[(iΓ12),P] η = {A, (iΓ12)}η∗ , (2.31)

[(iΓ1̂2̂),P] η = {A, (iΓ1̂2̂)}η∗ .
5Note that in our basis Γ12 and Γ

1̂2̂
are real.
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Therefore we need {A,Γ12} = {A,Γ1̂2̂} = 0, which implies {γθ1φ1,Γ12} = 0 and

{γθ1φ1 ,Γ1̂2̂} = 0 . The only matrix on the right-hand side of equation (2.27) which

anticommutes with both Γ12 and Γ1̂2̂ is Γ12̂. Therefore we arrive at the equations:

c1 = 0 , c4 = 0 , c5 = 0 , c6 = 0 , c7 = 0 . (2.32)

Equation c5 = 0 implies ∂θ1φ2 = 0. The system of equations then reduces to:

cos θ1 + cos θ2(∂φ1φ2) = 0 , (2.33)

sin θ1 + sin θ2(∂θ1θ2)(∂φ1φ2) = 0 . (2.34)

One can see that equation (2.34) is just the derivative of equation (2.33) with re-

spect to θ1. Therefore equation (2.33) is the only independent equation of motion.

Furthermore, if we solve for ∂φ1φ2 in equation (2.33), we obtain:

∂φ1φ2 = −
cos θ1
cos θ2

= p = const , (2.35)

because the left-hand side there is a function of φ1, while the right-hand side is a

function of θ1, and hence the only option is both to be constants. The only restriction

that we impose on p is to be an integer different from zero.6 Namely,

|p| = 1 , 2 , 3 , . . . . (2.36)

Therefore the profile of the supersymmetric D5–brane is given by:

θ2(θ1) = arccos

(

−cos θ1
p

)

, φ2(φ1) = p φ1 + const . (2.37)

Let us consider again the operator P defined in (2.29). Clearly we have P2 = 1,

which implies AA∗ = 1. For the solution (2.37) the matrix A is given by:

A =
i√
gX2

c2 e
iψ Γt ρ α2 α3 Γ12̂ . (2.38)

The condition AA∗ = 1 boils down to:

|c2|2 = gX2 . (2.39)

One can check that indeed for the submanifold X2 specified by (2.37) equation (2.39)

is satisfied. We have also checked that the solution (2.37) is a solution of the equations

of motion obtained from the DBI action of a D5–brane embedding given by the

ansatz (2.19).

6In the analogous analysis for the Poincare patch considered in ref. [25] the authors made a

minor error and concluded that |p| = 1.
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Finally, let us discuss the number of supersymmetries preserved by the D5–brane

probe. Using the solution for θ2 and φ2 one can show that:

c2 = −
L2

6

p

|p|
p2 − cos2 2θ1
√

p2 − cos2 θ1
. (2.40)

However |p| ≥ 1 and hence sign(c2) = −sign(p). The P η = η is given on-shell by:

P η = i sign(p) eiψ Γt ρ α2 α3 Γ12̂ η
∗ = η . (2.41)

Let us define

η = ei(
ψ

2
+π

4 )λ . (2.42)

Clearly the spinor λ is constant and has the same number of independent components

as η. The projection for λ is given by:

sign(p) Γt ρ α2 α3 Γ12̂ λ
∗ = λ , (2.43)

where the matrix on the right-hand side is real. If we decompose λ = λ1+ iλ2, where

λ1 and λ2 are real spinors, we arrive at:

sign(p) Γt ρ α2 α3 Γ12̂ λ1 = λ1 , (2.44)

sign(p) Γt ρ α2 α3 Γ12̂ λ2 = −λ2 .

One can see that half of the degrees of λ1 and half of the degrees of λ2 are pro-

jected out, and therefore the D5–brane embedding preserves half of the number of

supersymmetries of the background, which amounts to four supercharges.

2.4 Kappa symmetry for a D7–brane.

For a D7–brane the kappa-symmetry matrix is given by:

Γκ = −
i

8!
√−g ε

µ1...µ8γµ1...µ8 . (2.45)

We choose the following ansatz for the D7–brane embedding:

ξµ = (t, ρ, α1, α2, α3, θ1, φ1, φ2) , (2.46)

ψ = ψ(φ1, φ2) , θ2 = θ2(ρ, θ1) . (2.47)

The kappa-symmetry matrix reduces to:

Γκ = −
i√−g γt ρ α1 α2 α3 θ1 φ1 φ2 , (2.48)

– 8 –



where:

γt = L cosh ρΓt , γα1 = L sinh ρΓα1 , (2.49)

γα2 = L sinh ρ sinα1 Γα2 , γα3 = L sinh ρ sinα1 sinα2 Γα3 ,

γρ = LΓρ +
L√
6
∂ρθ2 (cosψ Γ1̂ + sinψ Γ2̂) ,

γθ1 =
L√
6
Γ1 +

L√
6
∂θ1θ2 (cosψ Γ1̂ + sinψ Γ2̂) ,

γφ1 =
L√
6
sin θ1 Γ2 +

L

3
(∂φ1ψ + cos θ1) Γ3 ,

γφ2 =
L√
6
sin θ2 (sinψ Γ1̂ − cosψ Γ2̂) +

L

3
(∂φ2ψ + cos θ2) Γ3 .

For the Γκ-symmetry matrix we obtain:

Γκ =
i

VolX3

[

−γ∗γ[θ1 φ1 φ2] +
1√
6
∂ρθ2 Γt α1 α2 α3

(

cosψ Γ[1̂ + sinψ Γ[2̂

)

γθ1 φ1 φ2]

]

,

(2.50)

where X3 is the three-dimensional submanifold of the internal S5 wrapped by the

D7–brane. The second term in equation (2.50) does not commute with the matrices

in the definition of the Killing spinor (2.9). Therefore we need to set ∂ρθ2 = 0. We

arrive at:

Γκ = −
i

VolX3
γ∗γ[θ1 φ1 φ2] . (2.51)

By using the projections (2.11) one can show that:

γ[θ1 φ1 φ2] ε = C1iΓ2̂ ε+ C2iΓ3 ε+ C3Γ132̂ ε+ C4iΓ2 ε , (2.52)

where:

C1 = − L3

6
√
6
sin θ1 sin θ2 e

−iψ , C2 =
L3

18
[sin θ1(∂φ2ψ + cos θ2)− sin θ2∂θ1θ2] ,

C3 = − L3

6
√
6
sin θ2 (∂φ1ψ + cos θ1) , C4 = −

L3

6
√
6
sin θ1 sin θ2 ∂θ1θ2 . (2.53)

On the other hand the projection Γκ ε = ε should be compatible with the projections

(2.11). Therefore we need [Γκ,Γ12] = [Γκ,Γ1̂2̂] = 0. However, γ∗ commutes with Γ12

and Γ1̂2̂, therefore we need γ[θ1 φ1 φ2] to commute with Γ12 and Γ1̂2̂. It is easy to check

that only the term Γ3 ε in equation (2.52) satisfies this condition. Therefore we need

to set C1, C3 and C4 to zero, resulting in the equations:

sin θ1 sin θ2 = 0 , sin θ2 (∂φ1ψ + cos θ1) = 0 , sin θ1 sin θ2 ∂θ1θ2 = 0 , (2.54)

which imply that sin θ2 = 0, hence θ2 = 0 or π. The D7–brane embedding is then

described by:

θ2 = 0 , π , ψ = n1φ1 + n2φ2 + const , n1, n2 ∈ Z and n2 6= − cos θ2 , (2.55)

– 9 –



where the restriction n2 6= − cos θ2 is imposed, because at n2 = − cos θ2 the φ2 cycle

collapses, and X3 is not a three-dimensional manifold anymore.

Let us analyze the amount of preserved supersymmetry. One can show that the

component of the volume form of X3 is given by:

VolX3 =
L3

18
sin θ1

∣

∣∂φ2ψ + cos θ2
∣

∣ = |C2| . (2.56)

On the other hand, for the allowed values of n2 one can easily check that C2 =

sign(n2)|C2|. The projection Γκ ε = ε is given by:

sign(n2)Γt ρ α1 α2 α3 3̂
ε = ε , (2.57)

which can also be written as a projection on the constant spinor η:

sign(n2)Γt ρ α1 α2 α3 3̂
η = η . (2.58)

One can see that half of the degrees of freedom of η are projected out, and hence the

embedding preserves half of the original supersymmetry of the background, which

again amounts to four supersymmetries.

3 Meson spectrum of D7–brane embeddings

In this section we consider particular case of a supersymmetric D7–brane embedding

and analyse the spectrum of fluctuations. We will show that the ground state of

the spectra is given by the conformal dimension of the dual meson operator. The

structure of the spectrum suggests that the Casimir energy dissociates the meson

spectrum.

3.1 General remarks about the D7–brane embedding.

It is convenient to rewrite the metric of AdS5 × T 1,1 in a new radial coordinate

r = sinh ρ. The metric in these coordinates is given by:

ds2 = −
(

1 +
r2

R2

)

dτ 2 + r2dΩ2
3 +

dr2

1 + r2

R2

+R2ds2T 1,1 , (3.1)

and the metric on T 1,1 is given by:

ds2T 1,1 =
1

6

2
∑

i=1

(

dθ2i + sin2 θi dφ
2
i

)

+
1

9

(

dψ +
2
∑

i=1

cos θi dφi

)2

. (3.2)

Let us consider the supersymmetric D7–brane embeddings specified by equation

(2.55). Without loss of generality we can consider embeddings with θ2 = 0, and for

simplicity we will restrict our considerations to the n1 = n2 = 1 case. In fact it will
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be more convenient to redefine ψ → ψ+φ1+φ2+const and write the metric on T 1,1

as

ds2T 1,1 =
1

6

2
∑

i=1

(

dθ2i + sin2 θi dφ
2
i

)

+
1

9

(

dψ +

2
∑

i=1

(1 + cos θi) dφi

)2

. (3.3)

In these coordinates the D7–brane embedding is extended along τ, Ω3, r, θ1 , φ1, φ2

and is at θ2 = 0, ψ = const. Since the internal manifold wrapped by the D7–brane

does not depend on the holographic coordinate ρ, this embedding corresponds to

the addition of a massless flavour to the dual gauge theory. The induced metric

gαβ = ∂αX
µ∂βX

νGµν on the D7–brane’s worldvolume is given by:

ds2M8
= −

(

1 +
r2

R2

)

dτ 2 + r2dΩ2
3 +

dr2

1 + r2

R2

+R2ds2S3
q
, (3.4)

ds2S3
q
=

1

6
(dθ21 + sin2 θ1 dφ

2
1) +

1

9
(2dφ2 + (1 + cos θ1) dφ1)

2 , (3.5)

where S3
q stands for a squashed 3-sphere. The DBI action of the probe brane is given

by:

S =
µ7

gs

∫

d8ξ
√

−det g , (3.6)

where:
√

−det g = G(r)
√

|gS3|
√

|gS3
q
| , G(r) = R3r3 , (3.7)

√

|gS3| = sin2 α1 sinα2 ,
√

|gS3
q
| = 1

9
sin θ1 .

3.2 Meson spectrum.

To study the meson spectrum of the theory, we consider fluctuations of the transverse

scalars:

θ2 = 0 + (2πα′)δθ2 , ψ = 0 + (2πα′)δψ , (3.8)

and expand the DBI action to second order in α′. We obtain:

L(2)
θ2

(2πα′)2
=
Gθ2θ2

2

√

−det g
(

gαβ ∂αδθ2 ∂βδθ2 +
3(1 + 3 cos θ1)

4(1− cos θ1)R2
δθ22

)

, (3.9)

L(2)
ψ

(2πα′)2
=

√−det g
2

[

Gψψ −Gψφi Gψφjg
φiφj
]

gαβ ∂α δψ ∂β δψ . (3.10)

One can see that the scalar excitations do not couple for this choice of coordinates.

Let us first analyse the spectrum of fluctuations along θ2. Furthermore, if one evalu-

ates the coefficient
[

Gψψ −Gψφi Gψφjg
φiφj
]

in equation (3.10) at θ2 = 0 one obtains

a zero. This suggests that for massless (and supersymmetric) embeddings the fluctu-

ations along ψ are not well defined, in a sense fluctuations along the angular variable

ψ correspond to rotations with zero radius, which are not well defined.
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One could ratify this by giving a small mass µ to the quarks and analysing the

leading terms in (3.10) in the limit µ→ 0. However, the embeddings corresponding

to massive quarks have non-trivial radial dependence [25] and for the theory on a

three-sphere they do not correspond to supersymmetric embeddings, making them

significantly more difficult to analyse. This is why we focus on the spectrum of

supersymmetric embeddings and analyse the spectrum of fluctuations along θ2.

The equation of motion for δθ2 is given by:

1

Gθ2θ2

√−det g ∂α
(

Gθ2θ2

√

−det g gαβ∂β δθ2
)

− 3(1 + 3 cos θ1)

4(1− cos θ1)R2
δθ2 = 0 . (3.11)

Next we consider the ansatz for δθ2:

δθ2 = η(r)eiωτY l(S3)ζ(S3
q ) . (3.12)

After splitting
√−det g as in equation (3.7), we obtain:

− g00ω2 +
1

G(r) η(r) ∂r (G(r) g
rr ∂r η(r)) +

1

r2

(

∆3Yl
Yl

)

+ (3.13)

+
1

R2

(

∆̂3 ζ

ζ

)

− 3(1 + 3 cos θ1)

4(1− cos θ1)R2
= 0 .

Using that ∆3 Yl = −l(l + 2)Yl and that the last two terms in equation (3.13) are

independent on r, we can split variables to obtain:

1

r3
∂r

(

r3
(

1 +
r2

R2

)

∂rη(r)

)

+

[

ω2

1 + r2

R2

− l(l + 2)

r2
+

κ

R2

]

η(r) = 0 , (3.14)

∆̂3 ζ(S
3
q )−

[

3(1 + 3 cos θ1)

4(1− cos θ1)
+ κ

]

ζ(S3
q ) = 0 . (3.15)

Before we quantise the spectrum, let us calculate the conformal dimension of the

operators corresponding to δθ2. To this end we solve equation (3.14) near the bound-

ary of the AdS5 space. According to the standard AdS/CFT dictionary the leading

mode should behave as ∝ rk1 = r∆−4+p, while the subleading one should scale as

∝ rk2 = r−∆+p for some constant p. Therefore one can calculate the conformal

dimension from:

∆ = 2 + (k1 − k2)/2 . (3.16)

The asymptotic form of equation (3.14) for r ≫ R is given by:

d2

dr2
η(r) +

5

r

d

dr
η(r) +

κ

r2
η(r) = 0 , (3.17)

with a general solution

η(r) = C1 r
−2+

√
4−κ + C2 r

−2−
√
4−κ . (3.18)
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After applying equation (3.16) we obtain

∆ = 2 +
√
4− κ (3.19)

for the conformal dimensions of the operators corresponding to the excitations of

δθ2. Note that the parameter κ (related to the AdS mass of the scalar fluctuations)

is quantised by solving equation (3.15). However we can still extract non-trivial

information about the spectrum of excitations from solving equation (3.14) first.

Indeed, one can show that the solution regular at r = 0, ∞ is given by:

η(r) =
rl

(1 + r2)
ωR
2

2F1

[

1

2
(2 +

√
4− κ+ l − ωR), 1

2
(2−

√
4− κ+ l − ωR), 2 + l,−r2

]

.

(3.20)

One can check that for this choice of η(r) the coefficient C1 (3.18) vanishes, thus mak-

ing the mode normalisable. After quantising the first argument in equation (3.20),

we obtain:

ω =
1

R
(2 +

√
4− κ + 2n+ l) =

1

R
(∆ + 2n+ l) , n, l = 0, 1, 2, . . . . (3.21)

Therefore the ground state of the spectrum of quantum fluctuations is given by

the conformal dimension of the corresponding operator in units of the inverse radius

of the S3 where the dual conformal theory is defined, which is the same relation

that was uncovered in ref. [12] for the case of flavoured N = 4 SYM theory. The

equidistant structure and the fact that the energies of excitations with the same

angular momentum quantum number l differ, by an even number 2n times 1/R, can

be understood as the result of a summation of angular momentum of the fundamental

fields composing the bound state (the meson). This supports the interpretation that

the mesons are dissociated at zero bare mass due to the effect of the finite Casimir

energy of the theory on a three-sphere. In this presentation the conformal dimension

∆ in equation (3.21) is related to the total zero point energy of the fields building

the meson state.

Following ref. [12] we show in details how the equidistant structure of the spec-

trum (3.21) arises from summation of angular momentum. The operators corre-

sponding to the fluctuations of the D7–brane are of the form [21]:

q̃Oq ∝ q̃ (AB)(AB) . . . (AB) q , (3.22)

where q and q̃ are fundamental fields of appropriate dimension (3/2 in our case)

transforming in the colour (N, 1)c and (N̄, 1)c correspondingly, while the operator

O ∝ (AB)(AB) . . . (AB) is composed of the bi-fundamental fields Aα and Bα (α =

1, 2) having dimensions 3/4 and transforming in the colour (N, N̄)c and (N̄,N)c
correspondingly. The pair (AB) is constructed by summing over the fundamental

index of B and the anti-fundamental index of A and thus transforms in the (N, N̄)c

– 13 –



making the meson operator real. If we denote by E0
q and E0

O the zero point energies

of q and O and use the fact that energy due to the angular momentum along the S3

is of order ∼ l/R, we can expand:

O(t, S3) =
1

√

2E0
O

(

ei EO tX0 + e−i EO tX†
0

)

, (3.23)

q̃(t, S3) =

∞
∑

l1=0

(l1+1)2
∑

I1=0

(

ei(E
0
qR+l1)

t
Ral1I1Ȳ l1I1(S3) + e

−i(E0
qR+l1)

t
R3 b†l1I1Y l1I1(S3)

)

√

2(E0
q +

l1
R
)

,

q(t, S3) =

∞
∑

l2=0

(l2+1)2
∑

I2=0

(

ei(E
0
qR+l2)

t
R bl2I2Ȳ l2I2(S3) + e

−i(E0
qR+l2)

t
R3 a†l2I2Y l2I2(S3)

)

√

2(E0
q +

l2
R
)

,

where Y lI(S3) are the scalar spherical harmonics on S3. Also X0 transforms in the

(N, N̄)c, al1I1 transforms in the (N̄, 1)c and bl2I2 transforms in the (N, 1)c. Note that

we have suppressed the angular momentum along S3 of the bi-fundamental operator

O, reflecting the fact that the geometry also does not have angular momentum

along the three-sphere. Now the meson state can be constructed by acting with

X†
0 , b

†
l1,I1

, a†l2,I3 on the vacuum state defined by:

al1I1|0〉 = bl2I2 |0〉 = X0ij|0〉 = 0 . (3.24)

The meson state is then given by:

q̃ X0 q |0〉 =
1

√

2E0
O

∞
∑

l1,l2=0

(l1+1)2
∑

I1=0

(l2+1)2
∑

I2=0

e−i(∆+l1+l2)
t
R
Y l2I2(S̃3)Y l1I1(S̃3)
√

(E0
q +

l1
R
)(E0

q +
l2
R
)
a†l2I2X0

†b†l1I1|0〉 ,

(3.25)

where we have substituted 2E0
q + E0

O = ∆/R. Note that the state (3.25) is a super-

position of states with definite energy El,J = (∆ + J)/R, where J = l1 + l2. Our

next step is to expand the product of the spherical harmonics in (3.25) in a Laplace

series:

Y l1I1(S3)Y l2I2(S3) =

∞
∑

l=0

(l+1)2
∑

I=0

ClI
l1I1,l2I2Y lI(S3) . (3.26)

The coefficients ClI
l1I1,l2I2

are non-zero only for |l1 − l2| ≤ l ≤ l1 + l2 (addition of

angular momentum) and (−1)l = (−1)l1+l2(conservation of the antipodal map eigen-

value) [22]. Therefore the Laplace series in (3.26) terminates at J = l1 + l2 and we

can write J = 2n+ l ,where n is an integer non-negative number. This implies that

a state with a given energy EJl can be expanded as:

|EJl〉 =
1

√

2E0
O
e−iEJlt

∑

2n+l=J

(l+1)2
∑

I=0

Y lI(S3)C†
nlI |0〉 , (3.27)
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where C†
nlI is defined by:

C†
nlI ≡

∑

l1+l2=2n+l

(l1+1)2
∑

I1=0

(l2+1)2
∑

I2=0

ClI
l1I1,l2I2

√

(E0
q +

l1
R
)(E0

q +
l2
R
)
a†l2I2X0

†b†l1I1 . (3.28)

Now the meson state (3.25) can be written as:

q̃ X0 q |0〉 =
1

√

2E0
O

∞
∑

n,l=0

(l+1)2
∑

I=0

e−i(∆+l+2n+l) t
RY lI(S̃3)C†

nlI |0〉 . (3.29)

Therefore we obtain the same spectra as in equation (3.21). This suggest that the

conformal dimension of the meson operator is a simple sum of the conformal dimen-

sions of the fundamental operators q, q̃ and O. Note that in general the conformal

dimension of O cannot be obtained as a sum of the engineering dimensions of the

bi-fundamental fields Aα, Bα due to contribution from the anomalous dimensions

of these operators. Indeed as we are going to show below only the lowest possible

conformal dimension can be obtained as a sum of the engineering dimensions of its

constituent fields.

To calculate the spectrum of conformal dimensions we need to quantise the

parameter κ in equation (3.19). To this end we substitute the ansatz

ζ(θ1, φ1, φ2) = ζ̂(θ1)e
im1φ1eim2φ2 (3.30)

in equation (3.15) and write down explicitly the equation of motion for ζ̂(θ1):

1

sin θ1
∂θ1

(

sin θ1∂θ1 ζ̂
)

−
[

m2
1

sin2 θ1
+

8m1m2 − 1− 5m2
2 + (m2

2 − 3) cos θ1
8(cos θ1 − 1)

+
κ

6

]

ζ̂ = 0 .

(3.31)

Next we define 2x = 1 − cos θ1 and bring the equation of motion for ζ(x) to the

standard form of a hypergeometric equation. One can show that a solution regular

at x = 0 is given by:

ζ(x) = x

√
1+(m1−m2)

2

2 (1− x)m1
2 2F1





1 +m1 +
√

1 + (m1 −m2)2 +

√

15
6
− m2

2

2
− 2κ

3

2
,

(3.32)

1 +m1 +
√

1 + (m1 −m2)2 −
√

15
6
− m2

2

2
− 2κ

3

2
, 1 +

√

1 + (m1 −m2)2 , x



 .

To truncate the expansion of the hypergeometric function we quantise its first argu-

ment. The resulting spectrum for κ is:

κ = −3(1 + 2m+m1)
√

1 + (m1 −m2)2 +
3

4
[1− 8m(1 +m+m1)−

− 4m1(1 +m1 −m2)− 3m2
2

]

, where m,m1, m2 = 0, 1, 2, . . . . (3.33)
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One can see that in general κ is an irrational number. Furthermore, for m1 6=
m2 it is always irrational. However for m = m1 = m2 = 0 one has κ = −9

4
.

The corresponding conformal dimension is ∆ = 9/2. This suggests that the gauge

invariant operator is of the form q̃(AB)(AB)q.

4 Mesons from probe D5–brane

4.1 General setup for D5–brane embedding.

In this section we focus on the spectra of supersymmetric D5–brane embeddings

corresponding to fundamental defect theory living on a maximal S2 inside the S3.

We write down the metric of AdS5 × T 1,1 as:

ds2 = −
(

1 +
r2

R2

)

dτ 2 + r2(dα2 + sin2 α dΩ2
2) +

dr2

1 + r2

R2

+R2ds2T 1,1 , (4.1)

where the metric on T 1,1 is the usual one (3.2), with ranges of angles: 0 < θi < π,

0 < φi < 2π and 0 < ψ < 4π. The profile of a supersymmetric embedding is given

by equation (2.37). We will consider the particular case when the probe D5–brane is

extended along τ, Ω2, r, θ1 , φ1 and with α = π/2, θ2 = θ1, φ2 = 2π − φ1, ψ = const,

which corresponds to the addition of a massless flavour to the dual gauge theory.

To calculate the spectrum of fluctuations it is more convenient to consider the

following parametrisation of T 1,1:

θ± =
1

2
(θ1 ± θ2); , φ± =

1

2
(φ1 ± φ2); . (4.2)

In the new coordinates the metric of T 1,1 is given by:

dsT 1,1 =
1

3
(dθ2+ + dθ2−) +

1

6
(1− cos 2θ+ cos 2θ−)(dφ

2
+ + dφ2

−) +
1

3
sin 2θ+ + sin 2θ−dφ+dφ−

+
1

9
(dψ + 2 cos θ+ cos θ−dφ+ − 2 sin θ+ sin θ−dφ−)

2 . (4.3)

The classical embedding of the D5–brane is given by θ− = 0, φ+ = π, ψ = ψ0 = const

and the induced metric gαβ = ∂αX
µ∂βX

νGµν on the D5–brane’s worldvolume is given

by:

ds2M6
= −

(

1 +
r2

R2

)

dτ 2 + r2dΩ2
2 +

dr2

1 + r2

R2

+R2ds2S2 , (4.4)

ds2S2 =
1

3

(

dθ2 + sin2 θ dφ2
−
)

, (4.5)

where we introduced θ = θ+. The DBI action of the probe brane is given by:

S =
µ5

gs

∫

d6ξ
√

−det g , (4.6)
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where:

√

−det g = G(r)
√

|gS2|
√

|gS2| , G(r) = R2r2 , (4.7)
√

|gS2| = sin β ,
√

|gS2| = 1

3
sin θ .

4.2 Meson spectrum of D5–brane.

To study the meson spectrum of the theory, we consider the fluctuations:

θ− = 0 + (2πα′)δξ; , φ+ = 0 + (2πα′)δφ+; , ψ = ψ0 + (2πα′)δψ; , (4.8)

and expand the DBI action to second order in α′. We obtain:

L(2)
ξξ

(2πα′)2
∝ 1

2

√

−det g
[

Gθ−θ− g
αβ ∂αδξ ∂βδξ +

(

1

3
+ cot2 θ

)

δξ2
]

, (4.9)

L(2)
φ+φ+

(2πα′)2
∝ 1

2

√

−det g Gφ+φ+ g
αβ ∂αδφ+ ∂βδφ+ , (4.10)

L(2)
ψψ

(2πα′)2
∝ 1

2

√

−det g Gψψ g
αβ∂αδψ ∂βδψ , (4.11)

L(2)
ψφ+

(2πα′)2
∝
√

−det g Gφ+ψ g
αβ ∂αδφ+ ∂βδψ , (4.12)

L(2)
ξφ+

(2πα′)2
∝
√

−det g 2
3
cot θ+ ∂φ−δφ+ δξ , (4.13)

L(2)
ξψ

(2πα′)2
∝ −

√

−det g 2
3
csc θ+ ∂φ−δψ δξ . (4.14)

From equations (4.13) and (4.14) one can see that as long as the fluctuations have

momentum along φ−, δξ couples to δφ+ and δψ. To decouple equation (4.9) we

consider the following ansatz:

δξ = η(r)eiωτY l(S2)ζ(θ) . (4.15)

After splitting
√−det g as in equation (4.7), and using that ∆2 Yl = −l(l+1)Yl, we

can split the variables to obtain:

1

r2
∂r

(

r2
(

1 +
r2

R2

)

∂rη(r)

)

+

[

ω2

1 + r2

R2

− l(l + 1)

r2
+

κ

R2

]

η(r) = 0 , (4.16)

1

sin θ
∂θ (sin θ ∂θζ(θ))−

[

cot2 θ +
1

3
+
κ

3

]

ζ(θ) = 0 . (4.17)

In order to calculate the conformal dimension of the operators corresponding to δξ we

solve equation (4.16) near the boundary of AdS5. The leading mode should behave
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as ∝ rk1 = r∆−3+p, while the subleading one should scale as ∝ rk2 = r−∆+p for some

constant p. Therefore one can calculate the conformal dimension from:

∆ =
3

2
+
k1 − k2

2
. (4.18)

The asymptotic form of equation (4.16) for r ≫ R is given by:

d2

dr2
η(r) +

4

r

d

dr
η(r) +

κ

r2
η(r) = 0 , (4.19)

with a general solution:

η(r) = C1 r
−3/2+

√
9/4−κ + C2 r

−3/2−
√

9/4−κ . (4.20)

After applying equation (4.18) we obtain

∆ =
1

2

(

3 +
√
9− 4κ

)

(4.21)

for the conformal dimensions of the operators corresponding to the excitations of

δξ. Note that the parameter κ (related to the AdS mass of the scalar fluctuations)

is quantised by solving equation (4.17). However we can still extract non-trivial

information about the spectrum of excitations from solving equation (4.16) first.

Indeed, one can show that the solution regular at r = 0, ∞ is given by:

η(r) =
rl

(R2 + r2)
Rω
2

2F1

[

1

4
(3 + 2l −

√
9− 4κ− 2Rω),

1

4
(3 + 2l +

√
9− 4κ− 2Rω),

3

2
+ l,− r

2

L2

]

. (4.22)

The second argument in equation (4.22) is greater than the first one and after quan-

tizing to truncate the series we obtain:

ω =
1

R

(

3

2
+

1

2

√
9− 4κ+ 2n+ l

)

=
1

R

(

∆+ 2n+ l) , n, l = 0, 1, 2, . . . . (4.23)

Therefore the ground state of the spectrum of quantum fluctuations is given by the

conformal dimension of the corresponding operator in units of the inverse radius of the

S2 sphere where the dual conformal theory is defined. Furthermore, we observe the

same equidistant structure of the spectrum as in the case of D7–brane analysed in the

previous section. In fact, one can easily generalise the discussion from the previous

section to the case of a defect field theory living on a maximal two-sphere inside

the three-sphere. Although we don’t know explicitly the composition of the meson

operators, they should still have the structure of a sandwich of two fundamental

fields q̃ and q and a bi-fundamental operator O: q̃O q. The only difference to the

case of a D7–brane is that instead of expanding the operators in spherical harmonics
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on a three-sphere Y lI(S3) one has to expand in the standard spherical harmonics on

a two-sphere Y lm(S2) and use the expansion:

Y l1m1(S2)Y l2m2(S2) =
l1+l2
∑

l=|l1−l2|

l
∑

m=−l
Clm
l1m1,l2m2

Y lm(S2) . (4.24)

to arrive at equation (4.23).

Let us now quantise the parameter κ and the spectrum of the corresponding

conformal dimensions. To this end we define 2x = 1 − cos θ and bring the equation

of motion for ζ(x) to the standard form of a hypergeometric equation. One can show

that a solution regular at x = 0 is given by:

ζ(x) = [x(1− x)] 12 2F1

[

3

2
−
√
33− 12κ

6
,
3

2
+

√
33− 12κ

6
, 2, x

]

.

To truncate the expansion of the hypergeometric function we quantise its first argu-

ment. The resulting spectrum for κ is:

κ = −4 − 9m− 3m2 , where m = 0, 1, 2, . . . . (4.25)

Therefore for the conformal dimension we obtain:

∆ =
1

2
(3 +

√

25 + 12m(3 +m)) . (4.26)

Note that in general the conformal dimension is an irrational number. However

for m = 0 we have that ∆ = 4. It would be interesting to construct explicitly the

operator corresponding to this conformal dimension.

5 Conclusion

In this paper we introduced fundamental flavour to the Klebanov–Witten model on a

three-sphere. Using a holographic description we considered both the cases of probe

D7– and D5–branes corresponding to 3 + 1 and 2 + 1 dimensional flavours.

In section 2 using kappa-symmetry we classified the possible space-filling su-

persymmetric embeddings. Similarly to the case of flavoured N = 4 SYM on a

three-sphere, we concluded that supersymmetric embeddings are possible only at

zero bare quark mass. This reflects the properties of the supersymmetry algebra on

a three-sphere. In the case of D5–branes the supersymmetric embeddings correspond

to fundamental defect field theories living on a maximal S2.

In section 3 we analysed the meson spectrum of the flavoured holographic gauge

theories dual to the supersymmetric set-ups analysed in section 2. We showed that

the meson spectrum has equidistant structure with ground state given by the confor-

mal dimension of the meson operator divided by the radius of S3. We showed that
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this equidistant structure is the result of the addition of the angular momentum of

the fundamental fields composing the meson operator. This supports the interpreta-

tion that for zero bare mass the meson states are dissociated to the their constituent

fields due to the Casimir energy of the theory. For the case of D7–branes we showed

that the lowest conformal dimension is ∆ = 9/2, which is consistent with the iden-

tification of the dual operators suggested in ref. [21]. For the case of D5–branes we

showed that the lowest conformal dimension is ∆ = 4. However, we did not identify

the corresponding dual operator. We would like to return to this interesting task in

a future work.

Finally, it is worth noting that, while we were successful in explaining the equidis-

tant structure of the meson spectra using the same approach as in ref. [12] for the

case of flavoured N = 4 theory, we could not derive the zero point energies of the

constituent fields of the mesons from field theory calculations only. This is in contrast

to the flavoured N = 4 theory on a three-sphere, where the free theory could predict

the conformal dimensions and the zero point energies. This discrepancy is not a

surprise, because the flavoured N = 4 theory has an N = 2 supersymmetry, which

suggests the existence of a non-renormalisation theorem. On the other side, in our

case the flavours break the N = 1 supersymmetry of the Klebanov–Witten model

down to N = 1/2 supersymmetry, which is insufficient for a non-renormalisation the-

orem. This also suggests that the equidistant structure of the spectra reported above

is entirely due to the fact that we have a conformal field theory on a three-sphere

(the flavours are massless) and is not related to the amount of supersymmetry.
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A The parametrization of T 1,1

The conifold defined in C4 × C4 by the equation

z1 z2 = z3 z4 (A.1)

can be parameterized as follows:

z1 = r3/2ei/2(ψ−φ1−φ2) sin
θ1
2
sin

θ2
2
, z2 = r3/2ei/2(ψ+φ1+φ2) cos

θ1
2
cos

θ2
2
,

z3 = r3/2ei/2(ψ+φ1−φ2) cos
θ1
2
sin

θ2
2
, z4 = r3/2ei/2(ψ−φ1+φ2) sin

θ1
2
cos

θ2
2
. (A.2)
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The conifold can be defined also as:

4
∑

i=1

ω2
i = 0 , (A.3)

where ωi are related to zi through:

z1 = ω1 + iω2 , z2 = ω1 − iω2 ,

z3 = −ω3 + iω2 , z4 = ω3 + iω4 . (A.4)

Another helpful parametrization is by making use of homogeneous coordinates (Aa, Bb),

which are related to zi by:

z1 = A1B1 , z2 = A2B2 ,

z3 = A1B2 , z4 = A2B1 . (A.5)

The set (Aa, Bb) transforms under (N, N̄) and (N̄, N) of the gauge group, corre-

spondingly.

B Gauge theory side

The dual conformal field theory is known as the Klebanov–Witten model [9] and

is constructed considering a stack of D3–branes placed at the tip of a conifold. It

is N = 1 supersymmetric U(N) × U(N) gauge theory with two chiral multiplets

Ai in (N,N) and another two, usually denoted by Bi, in (N,N). The angular

part of the conifold is T 1,1, and its isometries determine the global symmetries of

the gauge theory. Being a U(1) bundle over S2 × S2, this theory obviously has

SU(2) × SU(2) global symmetry which acts separately on the doublets Ai, Bi, and

also a non-anomalous U(1) R–symmetry.

The most general superpotential which respects the SU(2) × SU(2) × U(1)R
symmetry is a quartic superpotential of the form:

W =
g

2
ǫijǫkl TrAiBkAjBl . (B.1)

Note that there is also a Z2 symmetry. In the geometric picture, i.e. on the conifold,

it acts as a reflection, and from the gauge theory point of view it exchanges the two

pairs Ai and Bj .

The AdS/CFT correspondence suggests that the anomalous dimensions of gauge

theory operators are encoded in the dispersion relations in the dual string theory.

The latter are expressible in terms of the following three angular momenta:

JA ≡ Pφ1 , JB ≡ Pφ2 , JR ≡ Pψ . (B.2)

– 21 –



Our mesons are composite operators constructed out of Ai and Bj . Then, it

is natural to suggest a correspondence between the quantum numbers in the string

theory and those of the dual operators. As it was shown in [9], the strings moving

in T 1,1 are dual to pure scalar operators, i.e. they do not contain fermions, covariant

derivatives or gauge field strengths. One can construct scalars by making use of the

fact that they are in the bi-fundamental representation. Therefore, the gauge singlets

have the form:

Tr
(

AB · · ·A Ā · · · B̄ B · · · B̄ Ā · · ·
)

. (B.3)

This form of the operators suggests the correspondence:

JA ←→
1

2

[

#(A1)−#(A2) + #(A2)−#(A1)
]

, (B.4)

JB ←→
1

2

[

#(B1)−#(B2) + #(B2)−#(B1)
]

, (B.5)

JR ←→
1

4

[

#(Ai) + #(Bi)−#(Ai)−#(Bi)
]

, (B.6)

where #(A1) is the number of A1’s under the trace of the dual composite operator,

etc.

We note that there exists an inequality between the bare dimension and the

R–charge, which is quite natural when written in terms of string variables:

E ≥ 3|JR| . (B.7)

On the gauge theory side it comes from the unitarity bound of the N = 1 super-

conformal algebra. When the bound is saturated, the primary fields close a chiral

ring. The complete dictionary between conserved charges in the string theory and

the dual gauge theory operators remains an open problem.

B.1 Adding flavours

To add 3+1 dimensional massive flavours one has to add [21] the following terms to

the super potential (B.1):

Wf = Wflavours +Wmasses (B.8)

Wflavours = h q̃ A1Q + g q B1 Q̃ , Wmasses = µ1 q q̃ + µ2QQ̃ , (B.9)

where the constants µ1, µ2 are related to the bare masses of the flavour fields q, Q.

Assuming that one of the masses µi is larger than the other and integrating out the

associated flavours, one can obtain a quartic superpotential of the form [21]:

Wf = q (A1B1 − µ) q̃ . (B.10)

Where the fundamental index of A1 is contracted with the anti-fundamental index

of B1 and the parameter µ is related to the bare quark mass.
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