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Abstract: We study the maximally supersymmetric BFFS model at finite temperature and

its bosonic relative. For the bosonic model in p + 1 dimensions, we find that it effectively

reduces to a system of gauged Gaussian matrix models. The effective model captures the

low temperature regime of the model including the phase transition. The mass becomes

p1/3λ1/3 for large p, with λ the ’tHooft coupling. For p = 9 simulations of the model give

m = (1.90 ± .01)λ1/3, which is also the mass gap of the Hamiltonian. We argue that there

is no ‘sign’ problem in the maximally supersymmetric BFSS model and perform detailed

simulations of several observables finding excellent agreement with AdS/CFT predictions

when 1/α′ corrections are included.
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1 Introduction

The leading candidate for a non-perturbative formulation of M-theory is expected to be the

infinite matrix size limit of a matrix model of some kind. One such proposal is the BFSS

model [2, 6, 11] which was conjectured to capture the entire dynamics of M-theory1. Relatives

of this model such as the BMN model [4] or models derived from the ABJM model [5] are

also considered possible viable candidates for such a non-perturbative formulation. All of

these conjectured formulations of M-theory are regularised versions of the supermembrane

and are matrix quantum mechanical systems. They are based on the matrix regularisation of

membranes introduced by Hoppe [1] and extended to the supermembrane in [2] and [3].

In the second half of the paper we focus on the BFSS model. However, we dedicate the

earlier sections of the paper to a careful study of the Hoppe regulated bosonic membrane

which is the bosonic part of the BFSS model. This model is also of separate interest since it

is the high temperature limit of maximally supersymmetric 1 + 1 dimensional SU(N) Yang-

Mills (or matrix string theory) compactified on a circle when the fermions decouple due to

their anti-periodic boundary conditions at finite temperature.

1With a periodically identified lightlike direction for finite matrix size.

– 1 –



We then continue our study with the BFSS model. This model first emerged as N = 16

supersymmetric Yang-Mills quantum mechanics [7–9], later it arose as the 11-dimensional su-

permembrane in Hoppe’s regularization and most recently as the BFSS model [6], a candidate

for a non-perturbative formulation of M-theory, and it also describes the low energy effective

theory of a system of D0-branes [10].

Our lattice regularisation of the model follows Catterall and Wiseman [20]. In this

formulation it is clear that the Pfaffian obtained when the Fermions are integrated out can

in general be complex. However, we find that the phase of the Pfaffian is restricted to a

narrow band so that cos(Θpf ) ∼ 1. There is therefore no real phase or ‘sign problem’ as far

as simulations of the model are concerned. We simulate the model using a rational hybrid

monte carlo algorithm (RHMC) and find excellent agreement with results reported in [19–22]

though our values for the energy are slightly higher than those of [19, 22] but in excellent

agreement with predictions of AdS/CFT when leading 1/α′ corrections are included. Those

interested primarily in the supersymmetric model can skip to section 4 for our discussion of

the model and results, consulting section 2 for the continuum model and our notation.

The principal results of this paper are:

• We perform monte carlo simulations of the model and measure the two point corre-

lation function, the mass gap and the eigenvalue distribution of each matrix. All fit

with Gaussian matrix quantum mechanics with the same mass as that found from the

correlation function.

• We derive an effective description of the bosonic model using a 1/p expansion where p

is the number of matrices. The description is in terms of p massive scalar fields that

are gauged under the adjoint action of SU(N) but are otherwise free scalar fields.

• The effective model reproduces the two phase transitions (see [13]) of the full model

with surprising precision2.

• We study the maximally supersymmetric BFSS model and present arguments showing

that though the lattice model in general has a complex phase, it is only the cosine of

this phase that enters in simulations and the model is such that the angle is restricted

to regions where the cosine is positive hence there is no sign problem in the full model.

• We simulate the model using a Fourier accelerated rational hybrid monte carlo algo-

rithm confirming results found earlier by other groups and find excellent agreement with

predictions of AdS/CFT when subleading 1/α′ corrections are included.

The simulations we report provide a useful test of our code as we proceed to examine

further observables and the inclusion of longitudinal M5-branes or equivalently D4-branes.

2The model can also be interpreted as the high temperature description of the maximally supersymmetric

1+1 dimensional Yang-Mills compactified on a circle. In this setting its two transitions are the high temperature

limit of the black hole black string transition in the dual gravity model, but now captured in a Gaussian model.
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Our goal being the Berkooz-Douglas matrix model holographically dual to the backreacted

D0/D4 brane system. Such studies can provide a solid test of the AdS/CFT correspondence

with flavour degrees of freedom, which is a widely used tool for non-perturbative analysis in

flavour dynamics.

The layout of the paper is as follows: In section 2 we introduce the BFSS model and

continue in section 3 with a study of the bosonic part of the model describing our lattice

discretisation and hybrid monte carlo algorithm. We then present our numerical results for

this bosonic model and continue in section 3.5 to develop an expansion for the model in terms

of the inverse of the number of matrices. This leads us to introduce our effective Gaussian

model and compare it with the full model. In section 4 we return to the supersymmetric

model and resent our lattice discretisation of this model. We give a discussion of the Pfaffian

phase of the model and present our results. The paper ends with a discussion of our results

in section 5.

2 The BFSS model

The BFSS matrix model is a one dimensional supersymmetric Yang-Mills theory naturally

arising in type IIA superstring theory as a low energy effective description of D0-branes. It

is conjectured that in the limit of a large number of D0-branes, N , the model is equivalent

uncompactified eleven dimensionalM -theory [6] while for finite N it corresponds toM -theory

compactified on a lightlike circle [11]. The easiest way to obtain the BFSS matrix model is

via dimensional reduction of ten dimensional supersymmetric Yang-Mills theory down to one

dimension. The resulting reduced ten dimensional action is given by [12]:

SM =
1

g2

∫

dtTr

{

1

2
(D0X

i)2 +
1

4
[Xi, Xj ]2 − i

2
ΨTC10 Γ

0D0Ψ+
1

2
ΨTC10 Γ

i[Xi,Ψ]

}

, (2.1)

where Ψ is a thirty two component Majorana–Weyl spinor, Γµ are ten dimensional gamma

matrices and C10 is the charge conjugation matrix satisfying C10Γ
µC−1

10 = −ΓµT . We take a

representation for Γµ in terms of nine dimensional (euclidian) gamma matrices γi:

Γi = γi ⊗ σ1 , for i = 1, . . . , 9 ,

Γ0 = 116 ⊗ iσ2 ,

C10 = C9 ⊗ iσ2 , (2.2)

where C9 is the charge conjugation matrix in nine dimensions satisfying C9γ
iC−1

9 = γi
T
and

σi are the Pauli matrices. With the following choice for the Majorana–Weyl spinor:

Ψ = ψ ⊗
(

1

0

)

, (2.3)

where ψ is a sixteen component Spin(9) Majorana fermion and Wick rotating to Euclidean

time, we obtain the Euclidean action:

SE =
1

g2

∫

dτ Tr

{

1

2
(DτX

i)2 − 1

4
[Xi, Xj ]2 +

1

2
ψTC9Dτψ − 1

2
ψTC9 γ

i[Xi, ψ]

}

, (2.4)
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which, as is manifest, is Spin(9) invariant. Note: we have not imposed any restriction on the

nine dimensional spinor basis. For example if we choose γi to be in the Majorana representa-

tion (where the nine γi are taken to be real and symmetric) then C9 = 116 and we arrive at

the more standard from for the action (2.4). However, we are interested in a basis in which

the discrete theory is free of fermion doubling, which can be achieved by taking a basis [20] in

which C9 = 18 ⊗ σ1. We will return to this in section 4, where we consider the discretisation

of the full BFSS matrix model.

3 Bosonic BFSS on the lattice

In this section we focus on the the bosonic part of the action (2.4) given by:

Sb =
1

g2

∫ β

0
dt tr

{

1

2
(DtX

i)2 − 1

4
[Xi, Xj ]2

}

. (3.1)

The zero temperature model was introduced by Hoppe [1] as a gauge fixed and regulated

description of membranes. The model has also been extensively studied in the literature3. Its

phase structure at finite temperature has been explored in [13], where the authors found that

as the temperature is decreased the model first undergoes a 2nd order deconfining-confining

phase transition into a phase with non-uniform but gapless distribution for the holonomy. As

the temperature is further decreased there is a 3rd order transition to a gapped holonomy

with a quadratic decrease in the internal energy to a constant value for lower temperatures.

The high temperature expansion of the model was developed in [14]. In what follows we

will reproduce the main results of [13] and elaborate on the properties of the theory at zero

temperature. In particular we will provide evidence that the model has an effective description

in terms of a free massive scalar which captures essentially the all of finite temperature features

of the model including the phase transitions.

3.1 Discretisation

We discretise time to Λ sites tn = an, (n = 0, . . . ,Λ−1), where the lattice spacing is a = β/Λ,

and impose periodic boundary conditions identifying the point tΛ = Λa = β with the point

0. To discretise the covariant derivative Dt we define the transporter fields:

Un,n+1 = P exp

[

i

∫ (n+1)a

na
dtA(t)

]

, (3.2)

where P denotes a path ordered product. Let us consider for a moment the pure derivative

part of Dt. On the lattice we have:

∂tX
i
n → Xi

n+1 −Xi
n

a
. (3.3)

3The model is also the high temperature limit of 1 + 1 dimensional N = 8 supersymmetric Yang-Mills on

R × S1 where β is now the period of the S1 and the fermions drop out due to their anti-periodic boundary

conditions at finite temperature.
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To make the above expression gauge covariant we have to transport back the field at tn+1 to

tn. For the discrete version of the covariant derivative, we obtain:

Dt →
Un,n+1X

i
n+1Un+1,n −Xi

n

a
, (3.4)

where Un+1,n = U †
n,n+1. Using equation (3.4) for the discrete bosonic action we obtain:

Sb = N

Λ−1
∑

n=0

tr

{

−1

a
Xi
nUn,n+1X

i
n+1U

†
n,n+1 +

1

a
(Xi

n)
2 − a

4
[Xi

n, X
j
n]

2

}

, (3.5)

where without loss of generality we have taken g = 1√
N
.4 The action Sb can be written in a

much simpler form by using the U(n)Λ gauge symmetry of the model. Indeed, at each lattice

site we have a local U(N) symmetry. Using that symmetry we can perform the transformation:

X ′i
0 = Xi

0 , (3.6)

X ′i
1 = U0,1X

i
1 U

†
0,1 ,

X ′i
2 = (U0,1U1,2)X

i
2 (U0,1U1,2)

† ,

. . .

X ′i
Λ−1 = (U0,1U1,2 . . . UΛ−2,Λ−1)X

i
Λ−1 (U0,1U1,2 . . . UΛ−2,Λ−1)

†

introducing the notation W = (U0,1U1,2 . . . UΛ−2,Λ−1UΛ−1,0) for the bosonic action (3.5) we

obtain:

Sb = −1

a
Ntr

{

Λ−2
∑

n=0

X ′i
nX

′i
n+1 +X ′i

Λ−1W X ′i
0W†

}

+N

Λ−1
∑

n=0

tr

{

1

a
(X ′i

n)
2 − a

4
[X ′i

n, X
′j
n]

2

}

.

(3.7)

The unitary matrix W has the decomposition W = V DV †, where D = diag{eiθ1 , . . . , eiθN } is

a diagonal unitary matrix and V is a unitary. But the action (3.7) has the residual symmetry

X ′i
n → V X ′i

nV
†, which we can use to diagonalise W. Furthermore, it has an additional

symmetry X ′i
n → hnX

′i
nh

†
n, where hn is a diagonal unitary matrix, which we can use to

“distribute” the diagonal matrix D among all of the hop terms. Indeed, defining the matrix

DΛ = diag{eiθ1/Λ, . . . , eiθN/Λ}, which satisfies (DΛ)
Λ = D, one can verify that under the

transformation:

X ′i
n = (V hn)X̃

i
n(V hn)

† ,where : hn = (DΛ)
n , (3.8)

the action (3.7) transforms into:

Sb[X̃,DΛ] = N

Λ−1
∑

n=0

tr

{

−1

a
X̃i
nDΛX̃

i
n+1D

†
Λ +

1

a
(X̃i

n)
2 − a

4
[X̃i

n, X̃
j
n]

2

}

. (3.9)

4This can always be arranged by an appropriate rescaling of the matrices and the time coordinate and β

becomes the dimensionless temperature parameter λ1/3

T
with λ = g2N the ’t Hooft coupling.
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Now let us discuss the measure of the transporter fields Un,n+1. The measure can be written

as:
Λ−1
∏

n=0

DUn,n+1 =

Λ−1
∏

n=1

DUn,n+1DU0,1 =

Λ−1
∏

n=1

DUn,n+1DW , (3.10)

where we have used the that U0,1 = W (U1,2 . . . UΛ−2,Λ−1)
† and the invariance of the measure.

But the action (3.9) depends only on the matrix W (in fact only on the eigenvalues of W).

Therefore the integration over the measure of the transporter fields reduces to:

∫ Λ−1
∏

n=0

DUn,n+1e
−Sb[X̃,DΛ] = (V olU(N))Λ−1

∫

DWe−Sb[X̃,DΛ] ∝ (3.11)

∝
∫ N
∏

k=1

dθk
∏

l>m

|eiθl − eiθm |2 e−Sb[X̃,DΛ(θ)] ∝
∫ N
∏

k=1

dθk e
−Sb[X̃,DΛ(θ)]−SFP[θ] ,

where SFP[θ] is given by:

SFP[θ] = −
∑

l 6=m
ln

∣

∣

∣

∣

sin
θl − θm

2

∣

∣

∣

∣

. (3.12)

3.2 Hybrid Monte Carlo

To implement the Hybrid Monte Carlo algorithm it is convenient to work in a gauge in which

the holonomy matrix is non-trivial only at the one link (we choose the one connecting sites

zero and Λ − 1. To this end we omit the diagonal matrices hn in the transformation (3.8).

The action (3.9) is then given by:

Sb[X,D] = Ntr

{

−1

a

Λ−2
∑

n=0

Xi
nX

i
n+1 −

1

a
Xi

Λ−1DX
i
0D

† +
Λ−1
∑

n=0

[

1

a
(Xi

n)
2 − a

4
[Xi

n, X
j
n]

2

]

}

.

(3.13)

The corresponding Hamiltonian for the molecular dynamics part of the HMC algorithm is

then:

Hbos =
1

2

Λ−1
∑

n=0

trP in.P
i
n +

1

2

N−1
∑

l=0

P ld
2
+ Sb[X,D(θ)] + SFP[θ] , (3.14)

where P in are the canonical momenta corresponding to the hermitian matrices X̃i
n, and p

l
d are

the canonical momenta associated to the angles θl. Hamilton’s equations read:

Ṗ in, lm = −∂Sb/∂Xi
n,ml , Ṗ ld = −∂Sb/∂θl , (3.15)

Ẋi
n, lm = P in, lm , θ̇l = P ld ,
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where dots denote derivatives are with respect to the Monte Carlo time. Using equation

(3.13), for the corresponding forces we obtain:

− ∂Sb/∂X
i
0,ml =

N

a

(

Xi
1 − 2Xi

0 +D†Xi
Λ−1D

)

lm
+Na

[

Xj
0 ,
[

Xi
0, X

j
0

]]

lm
,

−∂Sb/∂Xi
n,ml =

N

a

(

Xi
n+1 − 2Xi

n +Xi
n−1

)

lm
+Na

[

Xj
n,
[

Xi
n, X

j
n

]]

lm
for n = 1, . . . ,Λ− 2 ,

−∂Sb/∂Xi
Λ−1,ml =

N

a

(

DXi
0D

† − 2Xi
Λ−1 +Xi

Λ−2

)

lm
+Na

[

Xj
Λ−1,

[

Xi
Λ−1, X

j
Λ−1

]]

lm
,

−∂Sb/∂θl =
2N

a

N−1
∑

m=0

ℜ
(

iXi
Λ−1mlX

i
0 lme

i(θl−θm)
)

+
∑

m,m 6=l
cot

(

θl − θm
2

)

, (3.16)

which we implement in the Hybrid Monte Carlo.

3.3 Phase structure

In this section we reproduce the studies of the phase structure of the bosonic model originally

obtained in [13]. The main observables that we focus on are the internal energy of the system

E, the “extent of space” 〈R2〉 and the Polyakov loop P defined via:

E/N2 =

〈

− 3

4Nβ

β
∫

0

dtTr
(

[Xi, Xj ]2
)

〉

, (3.17)

〈R2〉 =

〈

1

Nβ

β
∫

0

dtTr
(

Xi
)2

〉

. (3.18)

P ≡ 1

N
TrU , (3.19)

U ≡ P exp



i

β
∫

0

dtA0(t)



 , (3.20)

where the holonomy matrix, U , is the continuum limit of the link variable U0,Λ defined in

equation (3.2). The expectation value of the Polyakov loop 〈|P |〉 plays the rôle of an order

parameter for the confining-deconfining phase transition discussed in [13]. In figure 1 we

presented a plot of this order parameter as a function of the temperature. The plot is for

N = 16 and lattice spacing a ≈ 0.05. One can see that near temperature T ≈ 0.90 there is

a second order phase transition. The change of the slope of the curves and the fluctuations

in the simulations near T ≈ 0.9 is consistent with the existence of a second order phase

transition.

In figure 2 we present plots of the energy and “extent of space” as functions of the

temperature, for N = 16 and lattice spacing a ≈ 0.05. The dashed curves represent the

analytical high temperature behaviour obtained in [14]. Our results agree very well with the

corresponding studies in [13].
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Figure 1. A Plot of the expectation value of the Polyakov loop |P | as a function of the temperature,

for N = 16 and lattice spacing a ≈ 0.05. One can see that near T ≈ 0.90 the theory undergoes a

second order phase transition.
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Figure 2. Plots of the scaled energy E/N2 and the “extent of space” 〈R2〉 as functions of the

temperature. The dashed curves correspond to the high temperature behaviour obtained in [14]. One

can see that near T ≈ 0.9 the plots suggest the existence of a second order phase transition. The

energy and temperature in the plots are in units of λ1/3.

A more detailed analysis of the temperature range close to the transition revealed that

there are in fact two transitions. To uncover more detail on the nature of the phase transition

the authors of [13] analysed the distribution of the holonomy matrix near the phase transition

and uncovered behaviour consistent with the Gross-Witten model [16] and concluded that the

holonomy undergoes a transition from a uniform distribution at Tc2 ≃ 0.8758(9) to a gapped

distribution at Tc2 = 0.905(2). In figure 3 we present our plots of the distribution of the

holonomy around the phase transition. The dashed curves in the plot represent fits with the

gapped and ungapped forms of the Gross-Witten distribution which are in excellent agreement

with those of [14] and we have not attempted to refine their results, rather our purpose is to
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Figure 3. Plots of the distribution of the holonomy P for temperatures T = 0.900 (the gapped phase)

and T = .9006 (the ungapped phase). The plots are for size N = 16 and lattice spacing a ≈ 0.05. The

dashed curves correspond to fits to the Gross-Witten gapped and untapped distributions.

uncover a hidden Gaussian structure in the model.

3.4 Gap and eigenvalue distribution

In this section we investigate the eigenvalue distribution of the scalar fields. We also perform

studies of the mass of the theory at zero temperature. Our results suggest that at all tem-

peratures the eigenvalue distribution of any one of the Xi is given by a Wigner semicircle,

with a radius Rλ following the temperature behaviour of the observable 〈R2〉.5 Therefore, we

conclude that while the radius of the distribution experiences a phase transition the shape of

the distribution remains unchanged. We believe that the main reason for this behaviour is

that for nine scalar fields the commutator squared term can be replaced and approximated

by a quadratic mass term in the spirit of [17], where an expansion at large number of scalar

field has was developed. Generalising these techniques, we are able to obtain an estimate of

the mass, which agrees very well with both the gap measured from correlation functions and

the radius of the distribution which are obtain from Monte Carlo simulations.

In the limit of high temperature the model reduces to the 10-dimensional Yang-Mills

matrix model considered in [17]. The obtained behaviour of the radius is in agreement with

the large temperature expansion performed in [14] and provides an analytic approximation

to the leading coefficients in this expansion.

We begin by considering the model at zero temperature. In this case the holonomy can

be completely gauged way and the model simplifies. Furthermore, at zero temperature the

correlator:
〈

Tr
(

X1(0)X1(t)
)〉

∝ e−mt + . . . , (3.21)

5The semicircle law implies R2
λ = 4〈R2〉.
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Figure 4. On the left: A plot of the correlator
〈

Tr
(

X1(0)X1(t)
)〉

for N = 30, β = 10 and lattice

spacing a = 0.25. The fitting curve is given by equation (3.22) with parameters A ≈ 7.50 ± 0.2 and

m ≈ (1.90± .01)λ1/3 . On the right: A plot of the eigenvalue distribution of one of the scalars for the

same parameters. The fitting curve represent a Wigner-semicircle of radius Rλ ≈ 1.01 .

captures the gap ∆m = E1 − E0 of the theory. To calculate the gap in the discrete theory,

we periodically identify the time direction with period β:
〈

Tr
(

X1(0)X1(t)
)〉

= A (e−mt + e−m(β−t)) , (3.22)

Note that although formally β is the same parameter that we have at finite temperature,

since we set the holonomy to zero here its meaning is just a periodic time as opposed to

inverse temperature. Our result for the correlator for N = 30, β = 10 and lattice spacing

a = 0.25 is presented on the left in figure 4. The fitting curve is given by equation (3.22)

with parameters A ≈ 7.50± 0.2 and m ≈ (1.90± .01)λ1/3 . On the right we have presented a

plot of the eigenvalue distribution of one of the matrices for the same parameters. The fitting

curve represents a Wigner semicircle of radius Rλ ≈ 1.01. The fact that theory is gapped and

that the eigenvalue distribution is a semicircle suggests that that at low temperate the model

has an effective action:

Seff = N

∞
∫

−∞

dtTr

(

1

2
Ẋ2 +

1

2
m2X2

)

(3.23)

for each of the matrices Xi. It is well known [18] that for the action (3.23) the eigenvalue

distribution of X is given by a Wigner semicircle of radius:

Rλ =

√

2

m
≈ 1.03, (3.24)

where we have substituted m ≈ 1.90. This agrees nicely (within errors) with the result for

Rλ ≈ 1.01 obtained by fitting the actual distribution.

3.5 1/D expansion

Adapting the techniques developed in [17] to the time dependent case that we are considering

we can obtain a theoretical estimate of the radius at low temperature. Let us consider again
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the action of the bosonic model (3.1):

Sb = N

∫ β

0
dt tr

{

1

2
(DtX

i)2 − 1

4
[Xi, Xj ]2

}

, (3.25)

where we have rescaled so that β = λ1/3

T (effectively we set g = N−1/2). The commutator

square term can be written as:

Tr[Xi, Xj ]2 = Tr
(

[ta, tc][tb, td]
)

Xi
aX

i
bX

j
cX

j
d = λabcdXi

aX
i
bX

j
cX

j
d , (3.26)

where ta are SU(N) generators normalised to Tr tatb = δab and the tensor λabcd is given by:

λabcd =
1

2
Tr
(

[ta, tc][tb, td] + [ta, td][tb, tc]
)

, (3.27)

It is convenient also to define the inverse kernel of λabcd satisfying:

µabcd λ
cdef = δeaδ

f
b , λabcd µcdef = δae δ

b
f . (3.28)

We will also use the identities:

λabcd δcd = −2N δab , µabcd δ
cd = − 1

2N
δab . (3.29)

The action (3.25) can then be written as:

Sb = N

∫ β

0
dtTr

(

1

2
(DtX

i)2
)

− N

4
λabcd

∫ β

0
dtXi

aX
i
bX

j
cX

j
d . (3.30)

Our next step is to add to the action the term6:

∆S =
N

4
µabcd

β
∫

0

dt
(

kab + λabefXi
eX

i
f

)(

kcd + λcdghXi
gX

i
h

)

, (3.31)

the action S′
b = Sb +∆S then becomes:

S′
b =

N

2

∫ β

0
dt
{

Tr(DtX
i)2 + kabXi

aX
i
b

}

+
N

4
µabcd

β
∫

0

dt kabkcd . (3.32)

Next we define:

k ij,lm ≡ taij k
ab tblm , (3.33)

From the definition of kij,lm it follows that it is traceless with respect to the first and the

second pair of indices and we can invert: kab = taij kji,ml t
b
lm. Substituting in the action (3.32),

Fourier transforming (via X =
∑

n e
i 2πn

β
t
X̃n) and assuming kab is time independent we obtain:

S′
b =

N

2

∞
∑

n=−∞
X̃−n, ij

(

(

2π n+ θi − θj
β

)2

Pjl,ml + kjl,ml

)

X̃n, lm +
β N

4
µabcd k

abkcd , (3.34)

6Note that we can always add this term since
∫

Dk e−∆S = const
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where we have defined the projector on traceless matrices:

Pij,lm = taij t
a
lm = δimδjl −

1

N
δijδlm (3.35)

and assumed that k is constant. Defining also the double index matrix :

W (n)ij,lm ≡
(

2π n+ θi − θj
β

)2

Pjl,ml + kjl,ml , (3.36)

we can integrate out the X’s:

∫

DX Dk e−S′

b ∝
∫

Dk
∏

n

Det−p/2 (P.W (n).P ) e−
β N
4
µabcd k

abkcd . (3.37)

The effective action for the field k then becomes:

Seff [k] =
p

2

∑

n

Tr log (P.W (n).P ) +
β N

4
µabcd k

abkcd . (3.38)

We now notice that the first term in the expression for the matrix W (3.36) commutes with

the projector P . It is natural then to consider an ansatz for k which also have that property.

Thus we consider:

kij,lm ≡ kij Pij,lm = Pij,lm klm (3.39)

The last equality is possible only if all diagonal components of kij are the same (namely

kii = kjj for all i, j) we also choose kij to be symmetric. Then:

W (n)ij,lm = ∆ij(n)Pij,lm = Pij,lm∆lm(n) , (3.40)

∆ij(n) ≡
(

2π n+ θi − θj
β

)2

+ kij ,

and we have for all powers r that (P.W (n).P )rij,lm = Pij,lm (∆ij(n))
r. Therefore,

Seff [k] =
p

2

∑

n

∑

ij

Pij,ji log(∆(n)ij) +
β N

4
µabcd k

abkcd . (3.41)

The corresponding saddle point equation S′
eff [k] = 0 becomes:

p

2

∑

n

Pij,ji
(

2π n+θi−θj
β

)2
+ kij

+
β N

2
µabcd k

abtcijt
d
ji = 0 . (3.42)

We can now sum the series to obtain:

p
√

kij

sinh(β
√

kij)

cosh(β
√

kij)− cos(θi − θj)
Pij,ji + 2Nµabcd k

abtcijt
d
ji = 0 . (3.43)
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In principle we can solve for kij in terms of θi−θj , but we will restrict ourselves to extract the

low temperature dependence. The first term in equation (3.43) has the following expansion:

sinh(β
√

kij)

cosh(β
√

kij)− cos(θi − θj)
= 1 + 2 cos(θi − θj) e

−β
√
kij +O(e−2β

√
kij ) (3.44)

One can see that the effect of the holonomy is exponentially suppressed at low temperature,

To leading order we can then consider a symmetric ansatz kij = k0, which also implies

kab = k0 δ
ab. We obtain:

p√
k0
Pij,ji − k0 Pij,ji = 0 ∴ k0 = p2/3 . (3.45)

Substituting into the action (3.32) to leading order we obtain:

Sb = N

∞
∫

−∞

dtTr

(

1

2
Ẋ2 +

p2/3

2
X2

)

(3.46)

and the corresponding radius of the eigenvalue distribution is:

R0 =

(

8

p

)1/6

≈ 0.98 . (3.47)

This result agrees within a few percent with Rλ ≈ 1.01 obtained by fitting the distribution

in figure 4.

The exponential suppression of the holonomy corrections to the low temperature saddle

point for kab suggest that a lot of the physics of the model (at least at low temperature) can

be captured by the action:

Sb = N

β
∫

0

dtTr

(

1

2
(DtX)2 +

p2/3

2
X2

)

, (3.48)

where we restored the gauge field in the covariant derivatives. Surprisingly this model knows

all about the phase transition of the full model. In figure 5 we have presented our results for

the energy and the Polyakov loop. Note that in this approximation the scaled energy E/N2 is

equal to the extent of space 〈R2〉. The plots are for N = 32 and lattice spacing a ≈ 0.05. One

can see that both the energy and the Polyakov loop exhibit the same behaviour as for the full

model. There again appear to be two distinct transitions with the higher temperature one

taking place at T ≈ .95 and again appearing to be second order. It is slightly shifted towards

high temperatures relative to the critical temperature for the full model. If instead of mass

m = p1/3λ1/3 we use the value m ≃ (1.90 ± .01)λ1/3 the phase transition is shifted in the

opposite direction (just bellow T = 0.9). This indicates that if one fits the mass parameter

one can improve even further the agreement of the gauged gaussian model and the full one.

The dashed curve in the second plot is the theoretical prediction for the high-temperature
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Figure 5. On the left: A plot of the energy of the gauged gaussian model for N = 32 lattice spacing

a ≈ 0.05. The red curve represents Wigner semicircle. On the right: A plot of the expectation value

of the Polyakov loop for N = 32 lattice spacing a ≈ 0.05. The second order phase transition takes

place at T ≈ 0.95. The energy and temperature in the plots are in units of λ1/3.
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Figure 6. A zoomed in plot of the energy versus the temperature. The dashed curve represents a fit

to equation (3.49) with T0 ≈ 0.896.

behaviour of the Polyakov loop, again one can observe a very good agreement. The high

temperature behaviour of the energy on the other side disagrees with the corresponding

behaviour of the full model. This is not surprising since we derived the effective action at low

temperature and the dominant behaviour at high temperature is dominated by the highest

power of the potential which has been changed from quartic to quadratic. One can also see

that at low temperature the energy remains constant.

In figure 6 we have presented a plot of the energy versus the temperature zoomed in near

the phase transition. The dashed curve represents a fit with:

E − ǫ0 = C(T − T0)
2 (3.49)

with parameter T0 ≈ 0.896. This indicates that the third order phase transition that the full

model exhibits [13] is also captured by the gauged gaussian model.
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Figure 7. On the left: A plot of the eigenvalue distribution for N = 30, T = .2 and lattice spacing

a = .25. The red curve represents Wigner semicircle. On the right: A plot of the eigenvalue distribution

for N = 30, T = 5.0 and lattice spacing a = .05. Again the red curve represents Wigner semicircle.

One can perform the large p analysis (see [17]) in the high temperature limit where the

model now has p+1 matrices (the holonomy becomes the additional matrix) and predict that

the model in this limit again becomes Gaussian but now the field kab includes the holonomy

and the saddle becomes kab =
√
p+ 1δab which again predicts a Gaussian matrix models

with a high temperature effective action Seff =
√
p+1
2 Tr((Xi)2) and consequently a Wigner

semicircle distribution for the eigenvalues os Xi.

We conclude this section by presenting results for the eigenvalue distribution of the gauged

gaussian model at finite temperature. In figure 7 we presented plots of the distribution for

T = 0.2, N = 30 (left) and T = 5.0, N = 30 (right). The red dashed curves shows a Wigner

semicircle. One can see that the shape of the eigenvalue distribution does not change with

temperature.

4 The supersymmetric model on the lattice

In this section we consider the full supersymmetric BFSS model on the lattice. The model has

been simulated using non-lattice approach in [19] and using lattice discretisation in [20] and

[22]. The main goal of these studies has been to compare the low temperature regime of the

model to the holographically dual black hole geometry. The authors of refs. [19] and [22] also

compared the high temperature resume of the model with the high temperature expansion

performed in [14]. Our goal is to reproduce some of these studies and calibrate our code.

A naive discretisation of the action (2.4) would results in a fermion doubling. This can

be avoided [20] if the charge conjugation matrix taken to be C9 = 18 ⊗ σ1.
7 Constructing

a basis for which C9 is of this form is relatively straightforward. For example one can tensor

7It is analogous to using staggered fermions, which in one dimension complete removes the doublers.
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up the Majorana basis in seven euclidean dimensions γ̃aE :

γa = −γ̃aE ⊗ σ3 , for a = 1, . . . , 7 ,

γ8 = 18 ⊗ σ2 ,

γ9 = 18 ⊗ σ1 , (4.1)

and verify that indeed C9 is of the desired form (it also satisfies C9 = γ9). We next proceed

in discretising the action (2.4). Since the bosonic part of the action is identical to the one

considered in section 3 , we will consider only the fermionic part of the action:

Sf =
1

2g2

∫

dτ tr
{

ψαC9αβ Dτψ
β − ψα(C9γ

i)αβ [X
i, ψβ ]

}

. (4.2)

We begin by splitting the fermions into two eight component fermions: ψ = (ψ1, ψ2) and

defining the forward and backward derivatives D±:

(D−W )n = (Wn − Un,n−1Wn−1Un−1,n)/a ,

(D+W )n = (Un,n+1Wn+1Un+1,n −Wn)/a . (4.3)

One can show that the discretised kinetic term then becomes:

Skin
f =

1

2g2

∫

dτ tr
(

ψαC9αβ Dτψ
β
)

=
a

2g2

Λ−1
∑

n=0

tr
{

ψT1,n(D−ψ2)n + ψT2,n(D+ψ1)n
}

= (4.4)

=
1

g2
tr

{

−
Λ−1
∑

n=0

ψT2,nψ1,n +
Λ−2
∑

n=0

ψT2,nUn,n+1ψ1,n+1Un+1,n ± ψT2,Λ−1UΛ−1,0ψ1,0U0,Λ−1

}

,

where the plus/minus sign in the last term corresponds to periodic/anti-periodic boundary

conditions for the fermions.8 Using the gauge from the previous subsection when the holonomy

is concentrated on a singe link we can write Skin
f as:

Skin
f =

1

g2
tr

{

−
Λ−1
∑

n=0

ψT2,nψ1,n +
Λ−2
∑

n=0

ψT2,nψ1,n+1 ± ψT2,Λ−1Dψ1,0D
†
}

. (4.5)

Since all fields transform in the adjoint of SU(N) instead of dealing with matrices we can

use the corresponding real components: Xa = tr(taX) and ψa = tr(taψ), where ta are the

standard basis of SU(N) (introduced earlier) normalised as tr tatb = δab. Skin
f can then be

written as:

Skin
f =

1

g2

N2−1
∑

a,b=0

Λ−1
∑

m,n=0

8
∑

α=1

ψα+8
m,aK

ab
mnψ

α
n ,b , (4.6)

Kab
mn = (δm+1,n − δm,n)δ

ab ± δm,Λ−1δn,0 d
ab (4.7)

dab = tr
(

taD tbD†
)

. (4.8)

8Namely the conditions ψ−1 = ±ψΛ−1 and ψΛ = ±ψ0.
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where the plus/minus sign corresponds to periodic/ant-periodic boundary conditions. The

kinetic term can also be written as:

Skin
f =

N2−1
∑

a,b=0

Λ−1
∑

m,n=0

16
∑

α,β=1

ψαm ,aMkin
mn,αβ,ab ψ

β
n ,b (4.9)

Mkin
mn,αβ,ab =

1

2g2

(

08 −Kba
nm

Kab
mn 08

)

αβ

. (4.10)

Discretising the potential part of the action is straightforward. One obtains:

Spot
f =

N2−1
∑

a,b=0

Λ−1
∑

m,n=0

16
∑

α,β=1

ψαm ,aMpot
mn,αβ,ab ψ

β
n ,b (4.11)

Mpot
mn,αβ,ab =

1

2g2
a ifabc (C9γ

i)αβ X
c,i
n δn+m,0 . (4.12)

Finally, defining:

Mmn,αβ,ab =
1

2g2

(

08 −Kba
nm

Kab
mn 08

)

αβ

+
1

2g2
a ifabc (C9γ

i)αβ X
c,i
n δn+m,0 . (4.13)

We can write:

Sf = ψTMψ . (4.14)

4.1 The Pfaffian phase is not a problem!

Integrating out the Fermions, the partition function of the model can be written as:

Z ∝
∫

DX Dψ e−S[X,ψ] ∝
∫

DX Pf(M) e−Sbos[X] (4.15)

Observe that M is the sum of an anti-hermitian kinetic term and a hermitian potential and

M†(X) = −M(−X). Also because the Bosonic action is symmetric in X the Pfaffian in the

partition function can be replaced by |Pf(M)| cos(ΘPf ). Now as long as −π
2 < ΘPf <

π
2 the

cosine is positive and the effective action defines a true probability distribution given by

Seff = Sbos[X]− ln |Pf(M)| − ln cos(ΘPf ) (4.16)

In figure 8 we have presented plot of the phase of the pfaffian of the fermionic matrix for

N = 3 and four lattice points.9 One can see that cosine remains positive. We believe that the

drop of cos θ at very low temperatures is a lattice effect and is not present in the continuum

limit.

9Note that to control the flat directions at low temperature we have added a small mass for the bosonic

field.
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Figure 8. A plot of the phase of the pfaffian of the fermionic matrix for N = 3 and Λ = 4. One can

see that the phase remains small for all temperature, but drops at ver low temperatures. We believe

that this is a lattice effect and is not present in the continuum limit. The flat directions are controlled

with a small mass regulator at low temperature.

4.2 RHMC and fermionic forces

The next step is to apply the RHMC method [26] to the model. To this end we need the so

called fermionic forces. Let us summarise briefly the philosophy.

As we have shown above the model does not suffer from a severe sign problem and so we

ignore the phase of the Pfaffian and use that:

|Pf(M)| = det(M†M)1/4 , (4.17)

to write

Z ∝
∫

DX Dξ†Dξ e−Sbos[X]−Sps.f , (4.18)

where

Sps.f ≡ ξ† (M†M)−1/4ξ . (4.19)

Here ξ is a 16(N2
c −1)Λ dimensional vector consisting of the pseudo-fermionic fields. The idea

of the RHMC is to approximate the rational exponent of the matrix M†M with a partial

sum:

(M†M)δ = α0 +

#
∑

i=1

αi (M†M+ βi)
−1 , (4.20)

where the parameters α0, αi, βi and # depend on the rational exponent δ, the spectral range of

the matrix M†M and the desired accuracy. We will need two rational exponents. To update

the pseudo fermions we use that the field η ≡ (M†M)−1/8ξ has a gaussian distribution

and solve for ξ = (M†M)1/8 η using a multi-shift solver. Therefore, δ = 1/8 is one of the

– 18 –



rational exponents that we need. To calculate the fermionic forces and the contribution to

the hamiltonian we need to invert (M†M)−1/4 and the second exponent is δ = −1/4.

Let us elaborate on the computation of the fermionic forces. We have two type of forces:

gradients with respect to Xn ij and gradients with respect to the phases of the links θi.

Using the partial expansion (4.20), one can easily derive expression for the derivatives of the

fermionic action:

∂Sps.f
∂u

= −
#
∑

i=1

αi ξ
†(M†M+ βi)

−1 ∂(M†M)

∂u
(M†M+ βi)

−1ξ

= −
#
∑

i=1

αi h
†
i

∂(M†M)

∂u
hi , (4.21)

where hi satisfy (M†M+ βi)hi = ξi and are obtained from the multi-solver.

4.3 Simulation results

In this subsection we provide our results from the Monte Carlo simulation of the model. We

focus on the same observables that we analysed for the bosonic model in section 3.3. The

definitions of the extent of space 〈R2〉 and the expectation value of the Polyakov loop P

remain the same. The expression for the internal energy is [20]10:

E

N2
= − 3T

N2

(

〈Sbos〉 −
9

2
Λ (N2 − 1)

)

, (4.22)

We have simulated the following configurations. For temperatures T > 2 we have used N = 8

and Λ = 8. For the region 1 ≤ T ≤ 2 we have used N = 8 and two or three different sizes

of the lattice (for each point) in the range 8 ≤ Λ ≤ 16 (For T = 1 we also went to Λ = 32).

For temperatures lower than one we have used N = 10, 12, 14 and two lattice sizes per point

Λ = 8, 16. For all temperatures the Polyakov loop is largely independent on the lattice

spacing. The extent of space also experience very weak lattice effects. However, this is not

the case for the internal energy and even for temperatures as high as T = 2 lattice effects can

be a factor. In figure 9 w present our results for the energy at T = .9, 1.0 for different lattice

spacing. One can see that the lattice effects die out linearly, which allows us to extrapolate

the energy to zero lattice spacing. Our results for the internal energy are summarised in

figure 10. The dashed curve at high temperatures is the theoretical curve obtained in the

high temperature expansion. The dashed curve at low temperature represents the prediction

of AdS/CFT.11 The model becomes unstable for small matrix sizes N , an effect which has

10Note that this expression is also valid for the bosonic model. The result can be obtained by rescaling the

fields such that the kinetic term is temperature independent and removes any temperature dependence from

the measure (the Van Vleck Morette determinant generically depends on temperature). Then differentiating

with respect to temperature and using the Ward identities associated with the total number of degrees of

freedom yields this result.

11We have used the α′ corrected expression 1

N2

E

λ1/3 = 7.41
(

T

λ1/3

) 14

5

− 5.58
(

T

λ1/3

) 23

5

obtained in [21].

– 19 –



0.00 0.02 0.04 0.06 0.08 0.10 0.12

3.0

3.5

4.0

1êL

E

N = 10, T = .9, E = 3.19 ± 0.20

0.00 0.02 0.04 0.06 0.08 0.10 0.12

3.0

3.5

4.0

4.5

1êL

E

N = 10, T = 1.0, E = 3.63 ± 0.2

Figure 9. Scaling of the internal energy with the lattice spacing for temperatures T = 0.9, 1.0 and

N = 10. One can see that the lattice effects dies our linearly, which allows extrapolation of the zero

lattice spacing result.
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Figure 10. Results for the internal energy for 8 ≤ N ≤ 14 and 8 ≤ Λ ≤ 16. The dashed curve at high

temperature correspond to the theoretical results of [14], while the low temperature curve represent

the prediction for the internal energy from the AdS/CFT correspondence.

been related to Hawking radiation in the dual gravitational theory[23, 24]. To compare with

the AdS/CFT predictions one needs to consider large matrices. Simulations with large matrix

sizes is computationally expensive and as a result our low temperature data is still preliminary.

However, even at this point we have excellent overall agreement with the studies of [19] and

[22].

Finally, in figure 11 we present our results for the Polyakov loop and the extent of space.
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Figure 11. Plots of the expectation value of the Polyakov loop 〈|P |〉 and the extent of space 〈R2〉
as functions of temperature. The dashed curves represent the predictions of the high temperature

expansion.

Again the dashed curve represents the high temperature theoretical result obtained in [14].

One can see the excellent agreement at high temperatures. Our result for these observables

agree with the previous studies preformed in [19], [20], [21] and [22].

5 Discussion

In this paper we have analysed both the purely Bosonic and the supersymmetric BFSS models.

These are “Hoppe” regulated membranes and one would expect that in the large N limit when

the regulator is removed that they describe the full quantum dynamics of these membranes.

Surprisingly we found that the bosonic model, for sufficiently large embedding dimension

reduces to a system of p-massive free bosons with the mass given by m ∼ p1/3. For p = 9

we performed detailed simulations of the model evaluating both the fall off of the correlation

function and the eigenvalue distribution of the Xi fit with a Wigner semi-circle both of which

give a consistent mass m ≃ (1.90 ± .01)λ1/3. This is a fundamental non-perturbative result

and gives the mass gap in the full Hamiltonian of the model.

The correspondence of the full and gauged Gaussian model is excellent for a wide range of

temperature. Somewhat surprisingly the phase transition region of the full model is faithfully

reproduced by the effective model. Since the finite temperature version of the model is also

the high temperature limit of 1 + 1 dimensional maximally supersymmetric Yang-Mills [15]

compactified on a circle, we have established that this latter model should also reduce to a

system of free massive scalars.

We then study the full supersymmetric BFSS model using a rational hybrid monte carlo

simulation with Fourier acceleration to evaluate observables of the model. After describing

our lattice discretisation of the model we investigated the phase of the Pfaffian obtained on

integrating out the Fermions. The Pfaffian is generically complex, however, its phase is in

fact not a problem for simulations. What enters simulations is the cosine of this phase and

in the regularisation used in our work this phase is in fact restricted to a region where the
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cosine is positive once the lattice spacing is sufficiently small. Direct measurements confirm

that the phase is indeed small.

Though our results for this part of the paper do not yet go beyond those of [19] or cover as

low a temperature as those of [22] they are more precise than those of Catterall and Wiseman

[20] who use a similar lattice simulation. We have taken several lattice spacings and then

performed an extrapolation to the limit of zero lattice spacing. We find good agreement

with earlier results and excellent agreement with the predictions of AdS/CFT once 1/α′

corrections are included. Our results appear to approach the predictions of AdS/CFT a

little more closely than those of [19] but the difference is broadly within the errors. The

principal difficulty in simulating the model at lower temperatures is due to critical slowing

down and though Fourier acceleration helped for T ≃ 0.5, simulations becomes increasingly

more difficult at lower temperatures. An additional difficulty is the instability due to flat

directions, which require increasingly larger matrix sizes as the temperature is reduced.

One of the principal aims of this work was to check the claims of previous work and

in particular those on the absence of a complex phase problem. We were also interested in

calibrating our code as we extend it to include systems with D4-branes. The extension to

such systems will allow us to perform more extensive tests of the AdS/CFT correspondence.

Acknowledgements: We wish to thank S. Catterall, M. Panero and M. Hanada for

helpful comments.
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