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I. INTRODUCTION

It has been known for some time [1, 2] that there exist pairs of supergravity theories with identical bosonic sectors,
both in terms of content and couplings, but distinct degrees of supersymmetry N+ > N−. The canonical example
in D = 4 dimensions is given by N+ = 6 supergravity and the magic N− = 2 supergravity coupled to 15 vector
multiplets, which despite their distinct supersymmetric completions have the same bosonic Lagrangian with scalar
coset SO⋆(12)/U(6). All such ‘twin’ supergravities, which we will denote by (N+,N−), were classified in [3, 4].

A so far unrelated idea is that of gravity as ‘the square of gauge theory’. Schematically1,

Aµ ⊗ Ãν = gµν ⊕Bµν ⊕ ϕ. (1)

Here, Aµ and Ãν are the gauge potentials of two distinct Yang-Mills theories, which we will refer to as left (no tilde)

and right (tilde), respectively. They can have arbitrary and independent non-Abelian gauge groups G and G̃. Beyond
the identification of asymptotic on-mass-shell states, this formal identity can be motivated by the Kawai-Lewellen-Tye
(KLT) relations, which connect tree-level amplitudes of closed strings to sums of products of open string amplitudes [7].
More recently, invoking Bern-Carrasco-Johansson (BCJ) colour-kinematic duality [8] it has been conjectured [9, 10]
that the on-mass-shell momentum-space scattering amplitudes for gravity are the “double-copy” of gluon scattering
amplitudes in Yang-Mills theory to all orders in perturbation theory. These relations have since been generalised to a
large class of (super)gravity theories, including a variety of matter couplings and even pure gravity [11–19]. For reviews
see [20, 21]. The double-copy prescription has proven itself a tremendously effective computational tool, pushing the
boundaries of what can be achieved in perturbative quantum gravity and in the process revealing numerous surprises
[22–30]. There is now a growing literature [5, 6, 31–76] expanding upon, and refining our understanding of, these
remarkable relations, which has benefitted from a diverse array of complementary approaches: scattering equations
[34–42], kinematic algebras [43–47], string theory [48–58], twistor theory [59–64], on-shell and off-shell symmetries
[5, 6, 65–70], minimal physical assumptions [71] and even non-perturbative classical solutions [72–76].

In the present paper we look at twin supergravities in this context, studying the relationship between the two
Yang-Mills factors generating the twin supergravity theories. In [66, 68, 70] all possible products of two super Yang-
Mills theories, with no additional matter couplings, in dimensions 3 ≤ D ≤ 10 were considered yielding a pyramid of
supergravity theories and their corresponding scalar manifolds. See Table IV. Remarkably, all theories appearing in
the pyramid, with the exception of the maximal “spine” indicated in red, have a twin with fewer supersymmetries.

It is demonstrated here that such twin supergravity theories are related in a controlled manner through their
Yang-Mills factors. Each twin pair (N+,N−) can be regarded as a pair of complementary consistent truncations of a
single (N = N+ +N−)-extended parent supergravity theory [3], which is given by the product of a left N -extended

Yang-Mills theory with a right Ñ -extended Yang-Mills theory, where N = N + Ñ and without loss of generality we
consider N ≥ Ñ . The twins relations are mediated by the Yang-Mills factors as depicted schematically here:

Parent supergravity
GN+Ñ ⊕MN+Ñ

Yang-Mills factors

��

VN ⊗ ṼÑ

tt **

[VN ′ ⊕C
ρ
N ′ ]⊗ ṼÑ

��

oo
twin relation

// [VN ′ ⊕C
ρ
N ′ ]⊗ [ṼÑ ′ ⊕ C̃

ρ̃

Ñ ′
]

��

N+ big twin supergravity
GN+

⊕MN+

N− little twin supergravity
GN−

⊕MN−

(2)

Here, GN ,VN ,CN and MN denote N -extended gravity, vector, spinor and generic (not necessarily irreducible)

matter multiplets, respectively. The left VN and right ṼÑ multiplets of the parent supergravity are decomposed

into N ′ < N and Ñ ′ < Ñ multiplets, VN ′ ⊕ C
ρ
N ′ ⊕ · · · and ṼÑ ′ ⊕ C̃

ρ̃

Ñ ′
⊕ · · · , and the resulting adjoint spinor

1 The precise meaning of this product and the issue of the gauge indices is discussed in [5, 6] and given in (23).
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multiplets are replaced by fundamental2 multiplets as indicated by the superscript ρ. This procedure generates new
theories from old. In particular, the matter coupled N− twins in D = 3, 5, 6 and the N− = 1 twins in D = 4 have
not, as far as we are aware, been obtained previously using the double-copy construction, adding to the growing
list of double-copy constructible theories. The twin theories in D = 3, 4, 5, 6 and their left/right (super) Yang-Mills
factorisations as determined by the above prescription are given in Table V, Table VI, Table VII and Table VIII. The
use of fundamental matter multiplets in the double-copy construction leads us to introduce a bi-fundamental scalar
that couples to the well-known bi-adjoint scalar field. It is also shown that certain matter coupled supergravities
admit more than one factorisation into left and right super Yang-Mills-matter theories.

The remaining sections are organised as follows. In section II we review the classification of all twin supergravities.
In section III we demonstrate how the pyramid twins are related via Yang-Mills squared. We outline the general
procedure and discuss the bi-fundamental scalar theory before presenting a detailed example in section III A. In
section III B we summarise the pyramid of twins and make some additional comments on the D = 6 and D = 3
cases. The triplets are considered section III C. In section III D we treat the isolated twin pair not appearing in the
pyramid and the generalisation of the D = 4, (2, 1) twin pair to a sequence of D = 4, (2, 1) twin pairs. We conclude
in section IV with a summary and future directions.

II. TWIN SUPERGRAVITY THEORIES

Twin supergravities are theories that have identical bosonic Lagrangians, but different supersymmetric completions.
Twin pairs are denoted by (N+,N−) with N+ > N−. Such theories appear in D = 3, 4, 5, 6. In D = 3 where all
vectors dualise to scalars, matching of the scalar cosets is a sufficient condition for twinness. However, this criterion
is necessary but not sufficient in D = 4, 5, 6.

Here we summarise the classification of twin supergravities provided in [3, 4]. The classification is done in D = 3
and relies on listing the scalar manifolds of theories with different N and then checking whether any of them match.
The scalar manifolds of D = 3 supergravities are given in Table I where we distinguish between the theories with
Kähler and Quaternionic manifolds, the matter-coupled theories and the unique pure supergravity theories. All scalar

N Mscalar(3)

1 Riemannian

2 Kähler

3 Quaternionic

4 Quaternionic × Quaternionic

5 USp(1,n)
U(1)×USp(n)

6 SU(4,n)
SU(4)×SU(n)×U(1)

8 SO(8,n)
SO(8)×SO(n)

9
F4(−20)

SO(9)

10
E6(−14)

SO(10)×SO(2)

12
E7(−5)

SO(12)×SO(3)

16
E8(8)

SO(16)

TABLE I. The scalar manifolds of D = 3 supergravity theories with N supercharges.

manifolds in Table I are Riemannian and therefore all theories could be thought as N = 1 theories. Such twins are

2 We use fundamental here loosely to refer to gauge group representations other than the adjoint.
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in this sense trivial. There are, however, a number that are particularly natural from the perspective of Yang-Mills
squared, which we will therefore include in our analysis. Furthermore, all N = 3 theories can be interpreted as N = 4
with a trivial second quaternionic factor and thus are omitted in the analysis that follows. In D = 3, where all vectors
are dual to scalars, two theories that have the same scalar manifold are twins. To carry out the classification one needs
to check whether any of the scalar manifolds for N ≥ 5 are Kähler, quaternionic or both. A list of the possible Kähler
and Quaternionic manifolds is provided in appendix A. A matching of the scalar manifolds gives the classification
provided in [3].

(N+,N−) Mscalar Dmax

(4, 2) SU(2,p)
SU(2)×U(p)

×
SU(2,q)

SU(2)×U(q)
4

(6, 2) SU(4,p)
SU(4)×U(p)

4∗

(8, 2) SO(8,2)
SO(8)×SO(2)

4

(10, 2)
E6(−14)

SO(10)×SO(2)
4

(5, 4) USp(2,1)
USp(2)×U(1)

3

(8, 4) SO(8,4)
SO(8)×SO(4)

6

(12, 4)
E7(−5)

SO(12)×SO(3)
6

TABLE II. The twin supergravity theories in D = 3. Dmax is the highest dimension to which these theories can be uplifted.
∗ The (6,2) sequence admits an uplift to D=4 only for p = 2, since for all other values of p it oxidises to N = 3, D = 4 theories
whose kinetic vector matrix in non-holomorphic, which cannot be twins to N = 1. This refines the treatment in [3].

The classification provided in Table II differs from the one in [3] in the (4, 2) entry where the authors give only
one of the two factors. Since the product of two Kähler manifolds is Kähler the second factor is allowed. As the
authors mention, it is clear from Table II that the theory with scalar manifold SU(4, 2)/ SU(4) × SU(2) × U(1) has
three supersymmetric completions and we refer to it as the triplet (6, 4, 2). More generally, triplets will be denoted
(N+,N

+
− ,N−

− ), where N+ is the big sibling of both N±
− . The two cases, (N+,N

+
− ) and (N+,N

−
− ), are conventional

twin pairs in the sense that they follow the same pattern as the pure twins, as described in section III C.

All twin pairs in higher dimensions can be obtained by oxidation of the D = 3 ones [3]. We now oxidise the theories
from D = 3→ 4 (halves N ), D = 4→ 5 (preserves N ) and D = 5→ 6 (halves N ) to obtain the twin pairs together
with their scalar manifolds in the higher dimensional theories. We do so to demonstrate the crucial point that although

all twin pairs can be obtained from oxidation, not all oxidised pairs form twins. Matching bosonic content and scalar
manifolds is a necessary but not sufficient condition in D > 3. A simple example illustrating this point in D = 4
is given by the scalar manifold SU(3, 3)/[U(3) × SU(3)], which occurs three times: (i) in N = 1, (ii) in N = 3 and
(iii) in N = 2. These theories have 64, 64, 80 degrees of freedom respectively and thus clearly the latter cannot form
a twin pair with either of the other two. The N = 3 theory is coupled to three vector multiplets and the kinetic
vector multiplet is non-holomorphic. Since all N = 1 supergravities in D = 4 must have a holomorphic kinetic vector
matrix, the first two theories cannot form a twin pair either.

A second example in D = 4 that serves to highlight the various subtleties is given by the coset SU(1, 1)/U(1). For
N > 2 the scalar manifold SU(1, 1)/U(1) occurs three times:

1. N = 4 pure supergravity [80]: the U-duality group is U(4) ≃ SO(6)× SU(1, 1), with scalar manifold,

SU(1, 1)/U(1)× SO(6)/ SO(6) ∼= SU(1, 1)/U(1). (3)

As such, this is the n = 0 element of the sequence SU(1, 1)/U(1)× SO(6, n)/ [SO(6)× SO(n)], where n denotes
the number of vector multiplets coupled to the N = 4 gravity multiplet. The Abelian 2-form field strengths
and their duals sit in the (6,2) of SO(6)× SU(1, 1). The pair (SO(6)× SU(1, 1), (6,2)) defines a “group of type
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E7” [81] of a very particular character [82]: while in the bare charges basis, the invariant is quartic, it becomes
a perfect square in the dressed (supersymmetry) charges basis3.

2. N = 2 supergravity minimally coupled to a single vector multiplet (i.e. the N = 2 axion-dilaton model) [83]:
the U-duality group is U(1, 1) with scalar manifold,

CP
1 ∼= SU(1, 1)/U(1)×U(1)/U(1) ∼= SU(1, 1)/U(1). (4)

As such, this is the n = 1 element of the sequence CP
n ∼= U(1, n)/ [U(1)×U(n)], where n denotes the number

of vector multiplets minimally coupled to the N = 2 gravity multiplet. The Abelian 2-form field strengths
and their duals sit in the 21 + 2−1 of U(1, 1). The global U(1) factor is a relic of the compact symmetry of
the Maxwell theory of the lone graviphoton to which the electromagnetic sector reduces if the vector multiplet
is truncated. Note that the axion-dilaton model is a consistent truncation of the N = 4 pure supergravity
considered at point 1. In the bosonic sector this amounts to removing four graviphotons out of six; in this way,
the N = 2 axion-dilaton model is obtained in a symplectic frame in which the holomorphic prepotential reads
F = −iX0X1, as opposed to the manifestly SU(1, 1)-symmetric Fubini-Study symplectic frame for which,

F = −
i

2

[(
X0
)2
−
(
X1
)2
]

. (5)

The two frames are related by a global USp (4,R) transformation [84]. The pair (U(1, 1),21 + 2−1) defines a
degenerate group of type E7 [85].

3. N = 2 supergravity coupled to a single vector multiplet via a cubic pre-potential (often referred to as the T 3

model and most simply obtained by dimensionally reducing minimal D = 5 supergravity): the U-duality group
is SU(1, 1), with no additional global compact factors present. The Abelian 2-form field strengths and their
duals sit in the 4 of SU(1, 1). The manifold SU(1, 1)/U(1) is an isolated case in the classification of symmetric
special Kähler spaces [86, 87]. Indeed, under dimensional reduction to D = 3, this is mapped to the exceptional
quaternionic manifold G2(2)/ SO(4). The pair (SU(1, 1),4) provides the simplest example of a group of type E7.

Although all share the same scalar coset none are twin. Firstly, the N = 4 theory has 32 degrees of freedom, while
the two N = 2 theories each have 16. Secondly, despite having the same bosonic (and fermionic) content and scalar
manifolds the two N = 2 theories have distinct couplings in the bosonic sector since the Abelian field strengths and
their duals transform in two distinct representations of SU(1, 1), the 2+ 2 and 4, respectively.

Similarly, for N = 1 supergravity the scalar coset SU(1, 1)/U(1) considered above also appears in at least three
examples. These belong to five families of N = 1 supergravity theories with scalar manifolds compatible with non-
trivial electromagnetic duality as given in [77]:

1. USp(2n,R)/U(n) coupled to n vector multiplets, with duality group Sp(n,R).

2. U(1, n)/U(n) coupled to n+ 1 vector multiplets, with duality group U(1, n) ⊂ Sp(n+ 1,R).

3. SU(1, 1)/U(1) coupled to n vector multiplets, with duality group SL(2,R)× SO(n) ⊂ Sp(n,R)

4. SO(2, n)/ SO(2)× SO(n) coupled to r vector multiplets in the r-dimensional spinor representation of SO(1, n−
1) ⊂ SO(2, n), with duality group Spin(2, n) ⊂ Sp(r,R)

5. U(n, n)/U(n)×U(n) coupled to 2n vector multiplets.

The scalar coset SU(1, 1)/U(1) occurs for: (i) classes 1 and 4 coupled to a single vector multiplet with U-duality group
Sp(1,R) ∼= SU(1, 1), (ii) classes 2 and 5 coupled to two vector multiplets with U-duality group U(1, 1) ⊂ Sp(4,R) and
(iii) class 3 coupled to n vector multiplets with U-duality group SL(2,R)× SO(n). Note, case (ii) has an additional
U(1) under which the scalars are neutral. The complex scalar of case (iii) does not exhibit an attractor behaviour for
spherically symmetric stationary black hole solutions [77].

These N = 1 theories with SU(1, 1)/U(1) coset do constitute twins of pure N = 4 supergravity and the N = 2
axion-dilaton model, but not the T 3 model as its kinetic vector matrix is not holomorphic, see for example (2.8)
and (2.9) of [88]. In particular, case (iii) with n = 6 is twinned with pure N = 4 supergravity. Dimensional
reduction to D = 3, accompanied by the dualisation of all vectors, maps the scalar D = 4 coset SU(1, 1)/U(1) to

3 The only other known example of a group of type E7 sharing this property is the pair (SU(5, 1),20) of N = 5, D = 4 supergravity [82].
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(N+,N−)(4) Mscalar(4) (N+,N−)(5) Mscalar(5) (N+,N−)(6) Mscalar(6)

(2, 1) U(1,p−1)
U(1)×U(p−1)

×
SU(2,q)

SU(2)×U(q)

(3, 1) U(3,1)
U(1)×U(3)

(4, 1) SU(1,1)
U(1)

(5, 1) SU(5,1)
U(5)

(4, 2) SU(1,1)
U(1)

×
SO(6,2)
U(4)

(4, 2) SO(1, 1)× SO(5,1)
USp(2)

((1, 1), (0, 1)) O(1,1)×Sp(1)2

U(1)2

((2, 0), (0, 1)) SU⋆(4)
USp(2)

(6, 2) SO⋆(12)
U(6)

(6, 2) SU⋆(6)
USp(3)

((2, 1), (0, 1)) SU⋆(4)×Sp(1)
USp(2)×U(1)

TABLE III. The twin supergravities theories in D = 4, 5, 6.

SO(8, 2)/[SO(8) × SO(2)]. Similarly, case (ii) is twinned with the N = 2 axion-dilaton model, but in this case the
coset SU(1, 1)/U(1) is mapped to the quaternionic Kähler manifold SU(2, 2)/[SU(2)× SU(2)×U(1)] in D = 3.

The classification of twin supergravity theories is provided in Table III. First we oxidise the twin pairs to D = 4.
At this point one would expect to get an infinite sequence of (3, 1) pairs with scalar manifold U(3, p − 1)/U(1) ×
U(3)×U(p− 1). The N = 3 theory is coupled to p−1 vector multiplets. The kinetic vector matrix of matter-coupled
N = 3, D = 4 supergravity has been computed in Appendix C of [89], as well as more recently in [82] (cfr. Section 4
and in particular (4.10) and (4.14) therein). As following from [82, 89] this matrix is always non-holomorphic, except
in the case of one vector multiplet4. Thus the only (3, 1) pair is the one belonging to the triplet (3, 2, 1) with scalar
coset U(3, 1)/U(3) × U(1) × U(1), again illustrating the point that for D > 3 matching bosonic content and scalar
cosets is not sufficient. Oxidising the twin pairs to D = 5 is straightforward. Each twin pair oxidises to a unique pair
of D = 5 twin supergravities. Finally, we oxidise to D = 6. One needs to be careful as both theories in the (4, 2)
pair admit two different oxidations. The N− = 2 theory can be interpreted as part of the sequence L(P, 0) (with
P = 4)5 or as part of the sequence L(q, 0) (with q = 4)6 [87, 90, 91]. In the former case it uplifts to chiral (0, 1) theory
coupled to 1 tensors and 4 vector multiplets, with U-duality group O(1, 1)× SO(4). In the latter case it uplifts again
to (0, 1) but now coupled to 5 tensor multiplets and U-duality group SU⋆(4). The N+ = 4 partner can uplift to either
a (2, 0) or a (1, 1) theory [92]. The former is coupled to 1 tensor multiplet while the latter is “pure" supergravity. The
respective U-duality groups are O(1, 1)× SO(4) and SU⋆(4). This explains the two slots appearing in the last column
of Table III.

III. TWINS FROM SUPER YANG-MILLS SQUARED

In this section we describe the Yang-Mills squared origin of the twin supergravities. We begin by considering the
pyramid of supergravity theories given in Table IV. It is generated by the product of a left and right super Yang-Mills
multiplet in 3 ≤ D ≤ 10,

VN ⊗ ṼÑ = GN+Ñ ⊕MN+Ñ , (6)

where V, Ṽ are in the adjoint representation of G and G̃. See [66, 68, 70] for details. When a point in the pyramid
GN+Ñ ⊕MN+Ñ admits a twin we will denote the pair by

GN+
⊕MN+

←→
twins

GN−
⊕MN−

, (7)

4 We would like to thank Alessandra Gnecchi for useful correspondence concerning this point.
5 This theory is anomaly-free only when coupled to 248 hyper multiplets.
6 This theory is anomaly-free only when coupled to 128 hyper multiplets.
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or simply (N+,N−). In Table IV we have summarised the twin pairs (N+,N−) appearing in the pyramid. Note, since
there are no twins for D > 6 we have truncated the pyramid at D = 6. We see that all theories obtained via (6),
excluding the maximal supergravities living on the spine for D > 3, have a twin.

Not only do all the non-maximal supergravity theories obtained as the square of pure super Yang-Mills admit a twin,
the two theories are related in a controlled manner through their double-copy constructions. First note that (N+,N−)
can be regarded as a pair of complementary consistent truncations of a single N -extended parent supergravity theory
given by,

VN ⊗ ṼÑ = GN+Ñ ⊕MN+Ñ , where N = N + Ñ = N+ +N−. (8)

This follows from simple symmetry requirements. The N+ R-symmetry is necessarily a subgroup of the parent N

R-symmetry7. On the other hand, for the N− twin the same group is repurposed as matter isotropy group and we
have to further include the N− R-symmetry in the parent R-symmetry implying that the minimal N is given by
N+ +N−.

Let us now summarise the twin double-copy procedure for (N+,N−):

1. Decompose VN = VN ′ ⊕CN ′ where N+ = N ′ + Ñ .

2. Replace the adjoint spinor multiplet by a fundamental spinor multiplet, CN ′ → C
ρ
N ′ , carrying a representation

ρ of the left gauge group and thus reducing the degree of supersymmetry to N ′ < N .

3. The double-copy construction

[VN ′ ⊕C
ρ
N ′ ]⊗ ṼÑ = VN ′ ⊗ ṼÑ , (9)

yields the N+ = N ′ + Ñ twin as a truncation of the parent supergravity through its Yang-Mills factors by

discarding the states that would have arisen from CN ′ ⊗ ṼÑ , in particular N −N ′ of the gravitini.

4. Decompose

ṼÑ = ṼÑ ′ ⊕ C̃Ñ ′ ⊕ · · · (10)

where N− = N ′ + Ñ ′. Note that typically Ñ ′ = 0 so that ṼÑ decomposes as

ṼÑ = Ã⊕ χ̃⊕ φ̃, (11)

where we regard χ as an N = 0 spinor multiplet C0.

5. Replace all adjoint spinor multiplets by fundamental spinor multiplets, C̃Ñ ′ → C̃
ρ̃

Ñ ′
carrying a representation

ρ̃ of the right gauge group G̃ and thus reducing the degree of supersymmetry to Ñ ′ < Ñ .

6. The double-copy construction

[VN ′ ⊕C
ρ
N ′ ]⊗ [ṼÑ ′ ⊕ C̃

ρ̃

Ñ ′
⊕ · · · ] = [VN ′ ⊗ ṼÑ ′ ]⊕ [Cρ

N ′ ⊗ C̃
ρ̃

Ñ ′
]⊕ [VN ′ ⊗ · · · ], (12)

yields the N− = N ′ + Ñ ′ twin as a truncation of the parent supergravity through its Yang-Mills factors. Note,

by using C̃
ρ̃

Ñ ′
we discard Ñ − Ñ ′ out of the N ′ + Ñ gravitini of the N+ twin that would have arisen from

VN ′ ⊗ C̃Ñ , as well as a subset of the spinor states. They are replaced by the spinors arising from C
ρ
N ′ ⊗ C̃

ρ̃

Ñ ′
.

In summary the two twin theories with N+ = N ′ + Ñ and N− = N ′ + Ñ ′ are related through,

[VN ′ ⊕C
ρ
N ′ ]⊗ ṼÑ ←→ [VN ′ ⊕C

ρ
N ′ ]⊗ [ṼÑ ′ ⊕C

ρ̃

Ñ ′
⊕ · · · ]. (13)

The resulting twin theories in D = 3, 4, 5, 6 are given in Table V, Table VI, Table VII and Table VIII. The D = 4, (6, 2)
example is given in full detail in section III A, where some of the subtleties of the above sketch are addressed. In
particular:

7 When N ≤ 4 there can be an additional isotropy group, which complicates the argument but does not change the conclusion.
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a) Multiplets carrying the adjoint (fundamental) representation of the left gauge group only double-copy with
multiplets carrying the adjoint (fundamental) representation of the right gauge group, leading to a sum of

squares. For example:

[VN ⊕C
ρ
N ]⊗ [ṼÑ ⊕ C̃

ρ̃

Ñ
] = [VN ⊗ ṼÑ ]⊕ [Cρ

N ⊗ C̃
ρ̃

Ñ
]. (14)

This reflects the BCJ double-copy structure with fundamental matter [15]. As a consequence, although the
degrees of freedom of the Yang-Mills theory are not preserved, the twin supergravity theories generated always
have the same number of degrees of freedom as they must.

b) In verifying the double-copy relations one must account not only for the content of each theory, but also their
symmetries. In particular, for supergravity coupled to matter multiplets one has to trace the Yang-Mills origin
of both the R-symmetry and the isotropy group of the matter multiplets. This point is illustrated by the D = 4
R,C,H,O magic supergravities. Their field content is reproduced by the simple product,

V2 ⊗ [Ã⊕ nφ̃]. (15)

for n = 5, 8, 14, 26. However, the symmetries generated are those of the generic Jordan sequence SL(2,R) ×
SO(2, n) and not the magic sequence USp(3,R), SU(3, 3), SO⋆(12), E7(−25) [68]. The magic supergravities were
double-copy constructed in [18] using a right multiplet given by dimensionally reducing N = 0 Yang-Mills
coupled to fundamental fermions in D = 7, 8, 10, 15. In the present construction the R-symmetry is always
straight-forwardly generated by the left and right R-symmetries, but the isotropy group is more subtle. In
particular it can place restrictions on the properties of the left and right gauge group representations, ρ and
ρ̃. For example, the D = 6,N− = 2 theory requires ρ to be a real representations of G so as to generate an
enhanced flavour symmetry which in turn generates a part of the matter isotropy group.

Before moving on to the D = 4, (6, 2) example, let us briefly return to the “sum of squares rule” noted the above.
Adjoint and fundamental representations do not mix in the double-copy prescription:

[VN ⊕C
ρ
N ]⊗ [ṼÑ ⊕ C̃

ρ̃

Ñ
] = [VN ⊗ ṼÑ ]⊕

✿
∅

[VN ⊗ C̃
ρ̃

Ñ
] ⊕

✿
∅

[Cρ
N ⊗ ṼÑ ] ⊕ [Cρ

N ⊗ C̃
ρ̃

Ñ
]

= [VN ⊗ ṼÑ ]⊕ [Cρ
N ⊗ C̃

ρ̃

Ñ
].

(16)

This is implied by supersymmetry as the cross-terms V ⊗ C̃
ρ̃ would introduce too many gravitini.

It also follows, with and without supersymmetry, from the structure of colour-kinematic duality for Yang-Mills
coupled to fundamental8 matter and hence the associated double-copy relations, as described in [15]. For adjoint
fields colour-kinematic duality is mediated by the Jacobi identity. Of course, the Jacobi identities are just the
commutation relations in the adjoint representation, which immediately suggests the appropriate generalisation of
colour-kinematic duality to non-adjoint matter [15]. Colour-kinematic duality for fundamental fields is mediated by
the commutation relations. In summary, we have

[fa]c
d[f b]d

e − [f b]c
d[fa]d

e = fab
d[f

d]c
e versus [T a]i

j [T b]j
k − [T b]i

j [T a]j
k = ifab

d[T
d]i

k, (17)

where [fa]c
d = f cad, a = 1, 2, . . . dimG are the structure constants and [T a]i

j , i, j = 1, 2, . . . dim ρ(G) are the
generators in the appropriate matter-field representations. Since the colour-kinematic duality applies to triples of
graphs with colour factors satisfying either the Jacobi or commutator identities, the fundamental matter multiplets
only double-copy amongst themselves and, hence, the product of Cρ

N with ṼÑ is trivial.
To be more concrete consider an n-point, L-loop Yang-Mills-matter amplitude, which can be written in terms of

trivalent graphs,

A(1)
L
n = iLgn−2+2L

∑

i

∫ L∏

l=1

dDpl
(2π)DSi

nici
∏

ai
p2ai

. (18)

The sum is over all n-point L-loop graphs i with only trivalent vertices. For Yang-Mills coupled to fundamental
matter there are two possible classes of trivalent vertex: gluon-gluon-gluon (a, b, c) dressed with a structure constant

8 Note, the colour-kinematic duality for abelian orbifolds of D = 4,N = 4 super Yang-Mills theory with matter fields in a bi-fundamental
representation was studied in [93].
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fabc or gluon-fund-antifund (a, i, ̄) dressed with a generator [T a]i
j . The colour factor of graph i is denoted ci. They

are composed of gauge group structure constants fabc and generators [T a]i
j and can be read-off the graph. The

kinematic factor of graph i is denoted ni. It is a polynomial of Lorentz-invariant contractions of polarisation vectors
and momenta and includes any other quantum numbers, which must be specified. The p2ai

are the propagators for
each graph i. Si is the dimension of the automorphism group of graph i. The set of n-point trivalent graphs can
always be organised into triples i, j, k such that the colour factors will obey

ci + cj + ck = 0, (19)

due to either the Jacobi or commutation relations (17).
For adjoint-valued fields (without fundamental matter) it was proposed in [8] that one can arrange the diagrams to

display a remarkable colour-kinematic duality:

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 (20)

and if ci → −ci under the interchange of two legs then ni → −ni. A reorganisation admitting this surprising
relationship between colour and kinematic data was shown to exist for all n-point tree-level amplitudes in [9]. The
colour-kinematic duality is conjectured to hold, with highly non-trivial evidence [23, 29], at any loop level. This
colour-kinematic duality has been extended to include fundamental matter multiplets using commutation relations in
place of the Jacobi identity [15].

Assuming one has found a colour-kinematic duality respecting representation of the n-point L-loop (super) Yang-
Mills-matter amplitude, mediated by both the Jacobi and commutation relations, the equivalent n-point L-loop
(super)gravity amplitude A(2)

L
n is obtained by simply replacing each colour factor, ci, with a second kinematic factor,

ñi [8–10, 15]:

A(1)
L
n = iLgn−2+2L

∑

i

∫ L∏

l=1

dDpl
(2π)DSi

nici
∏

ai
p2ai

−→ iL
(κ

2

)n−2+2L∑

i

∫ L∏

l=1

dDpl
(2π)DSi

niñi
∏

ai
p2ai

= A(2)
L
n . (21)

For pure (super) Yang-Mills at tree-level it was shown in [34] that one can also proceed in the other direction by
replacing the kinematic factor ni by a second colour factor c̃i to obtain a spin-0 amplitude A(0)

L
n with two independent

colour numerators. The result is the n-point tree-level amplitude of a massless bi-adjoint scalar field with cubic
interaction,

Lbi-adj = −
1

2
∂µΦaã∂

µΦaã +
λ

6
fabcf̃ãb̃c̃Φ

aãΦbb̃Φcc̃, (22)

where fabc and f̃ãb̃c̃ are the structure constants of two independent gauge groups G and G̃. This has been referred to
as the zeroth-copy of Yang-Mills [72]. In this sense the Φ3 theory captures the colour structure of the left and right
Yang-Mills factors as well as their propagators, which are common to the equivalent gravitational, gauge and scalar
amplitudes.

This bi-adjoint scalar field in fact plays a ubiquitous role in various ‘gravity = gauge ⊗ gauge’ constructions [5, 34,
72, 79]. In the context of amplitudes its appearence is perhaps most clearly expressed in terms of the Cachazo-He-Yuan
(CHY) formulae [34]. Remarkably, the spectator field plays a directly analogous role in the double-construction of
classical black hole solutions [72–75]. Finally, it was shown to be a crucial element of the linearised off-shell dictionary,
presented in [5], describing gravitational fields in terms of a convolutive tensor product of left and right Yang-Mills
fields,

Aa
µ ◦ Φaã ◦ Ã

ã
ν = gµν +Bµν . (23)

Here ◦ denotes a convolutive inner tensor product with respect to the Poincaré group,

[f ◦ g](x) =

∫

dDyf(y)g(x− y). (24)

In this context the “spectator” scalar field ensures that the symmetries of the (super) Yang-Mills factors are correctly
mapped to those of (super)gravity. The convolution reflects the fact that the amplitude relations are multiplicative
in momentum space. It turns out to be essential for reproducing the local symmetries of (super)gravity from those
of the two (super) Yang-Mills factors to linear order. The spectator field allows for arbitrary and independent G

and G̃ at the level of spacetime fields. Note, the bi-adjoint scalar field also appears by close analogy in the double-
copy construction of classical black hole solutions [72–75], although the precise relationship between the two pictures
remains an intriguing open question.
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FIG. 1. Tree-level Feynman diagrams for the 4-point gluon-gluon-quark-antiquark interaction.

Now, just as the generalised colour-kinematic duality for adjoint and fundamental multiplets can be used to generate
(super)gravity amplitudes with matter couplings, we can once again also proceed in the other direction (at tree-level
at least) to generate would-be spin-0 amplitudes. One can then look for the minimal scalar field theory that would
produce these amplitudes. The result corresponds to the bi-adjoint scalar theory, but this time coupled to a bi-
fundamental scalar field Φĩi with a cubic interaction term originating from the adj-fund-antifund vertices:

Lbi-adj-fund = −
1

2
∂µΦab̃∂

µΦab̃ −
1

2
∂µΦĩi∂

µΦĩi +
g

6

(

fabcf̃ãb̃c̃Φ
aãΦbb̃Φcc̃ + i[T a]i

j [T̃ ã ]̃i
j̃ΦaãΦ

ĩiΦjj̃

)

. (25)

The defining example is given by the tree-level 4-point gluon-gluon-quark-antiquark interaction. The colour factors
of the three Feynman diagrams, given in Figure 1, obey the commutation relation (17). As no gluon 4-point contact
term is involved the BCJ representation of the kinematic numerators should, and does, follow directly from the
Feynman rules. Using the labelling (1, εµ1 (k1), a), (2, ε

ν
2(k2), b) for the two gluons and (3, v(k3), i), (4, ū(k4),

j) for the
quark-antiquark pair the three Feynman diagrams yield the colour-kinematic numerators:

c1 × n1 = −i[T a]i
k[T b]k

j × ūεµ1γµγ
ρ (k4 + k1)ρ γνε

ν
2v

c2 × n2 = −i[T b]i
k[T a]k

j × ūεν2γνγ
ρ (k4 + k2)ρ γµε

µ
1v

c3 × n3 = fabc[Tc]i
j × ūεµ1 (ηµρ(k1 − p)ν + ηρν(p− k2)µ + ηµν(k2 − k1)ρ) ε

ν
2γ

ρv

(26)

where we take all momenta k1, . . . k4 to be out-going and p = k3 + k4. Clearly c1 − c2 = c3 and going on-shell we
find n1 − n2 = n3. The corresponding 4-point amplitude with two bi-adjoint and bi-fundamental scalar legs is then
given by replacing ns with a copy c̃s, which need not carry the same gauge group, as given by double-line Feynman
diagrams in Figure 2:

c1 × c̃1 = −i[T a]i
k[T b]k

j × [T̃ ã ]̃i
k̃[T̃ b̃]k̃

j̃

c2 × c̃2 = −i[T b]i
k[T a]k

j × [T̃ b̃ ]̃i
k̃[T̃ ã]k̃

j̃

c3 × c̃3 = fabc[Tc]i
j × f̃ ãb̃c̃[T̃c̃ ]̃i

j̃

(27)

As for the double-copy, the denominators are the same for both amplitudes. Note, given a Feynman diagram
representation, such as we have here, the dictionary is quite intuitive. For each vertex, shorn of external states, the
replacement rules are simply

γµ
α
β → [T̃ ã ]̃i

j̃ (28)

and

ηµ1µ2(k1 − k2)µ3 + ηµ2µ3(k2 − k3)µ1 + ηµ3µ1(k3 − k1)µ2 → f̃ ã1ã2ã3 . (29)

All contractions of gauge group indices amongst vertices are dictated by the contractions of the corresponding kine-
matic indices by propagators. Note, we can accommodate a broader class of double-copy constructions by also
including a fundamental-antifundamental scalar Φi

ĩ, allowing for distinct colour structures in the two factors mir-
roring the product of distinct kinematic structures in the double-copy for gravitational amplitudes. This will be
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FIG. 2. Double-line tree-level Feynman diagrams for the 4-point (bi-adj.)-(bi-adj.)-(bi-fund.)-(bi-fund.) interaction for the
scalar theory in (25). The curly (straight) double-lines represent the bi-adjoint (bi-fundamental) representation of the global

G× G̃ symmetry. Each diagram is the double-copy of the corresponding gluon-quark diagram shawn of its kinematic data.

developed in future work. The scalar field theory can also be further generalised to accommodate structural features
such as quark flavours. A 5-point example, following [15], illustrating this point is given in appendix B.

Most importantly for the present work is that the bi-fundamental scalar is consistent with spacetime field dictionary
of [5]. In particular, we can generalise (23) to include fundamental fields in the left and right multiplets by introducing
a block-diagonal spectator field Φ with bi-adjoint and bi-fundamental sectors,

Φ =

(

Φab̃ 0

0 Φij̃

)

. (30)

The Lorentz covariant position-space dictionary then correctly captures the sum-of-squares rule:

[VN ⊕C
ρ
N ] ⋆ [ṼÑ ⊕ C̃

ρ̃

Ñ
] = [VN ⊕C

ρ
N ] ◦ Φ ◦ [ṼÑ ⊕ C̃

ρ̃

Ñ
] = V

a
N ◦ Φaã ◦ Ṽ

ã

Ñ
⊕C

i
N ◦ Φĩi ◦ C̃

ĩ

Ñ
. (31)

Crucially, the symmetries of the Yang-Mills-matter factors are correctly mapped to the global and local (super)gravity
symmetries via ⋆ and Φ. This allows us to establish the corresponding supergravity theory through the structure of
the Yang-Mills symmetries alone, assuming that the gravitational scalar fields parametrise symmetric spaces.

A. Example: the D = 4, (6, 2) twin theories

To make this procedure concrete let us consider in detail the prototypical example: D = 4,N+ = 6 pure supergravity
and its twin, the magic D = 4,N− = 2 supergravity coupled to 15 vector multiplets.

The D = 4,N = 6 supergravity theory is unique and determined by supersymmetry. The multiplet consists of

G6 = {gµν , 16Aµ, 30φ; 6Ψµ, 26χ}. (32)

The R-symmetry algebra is u(6) under which the on-shell helicity states transform as:

so(2) u(6)

| 2 10 〉

Q | 3
2 61 〉

∧2Q | 1 152 〉

∧3Q | 1
2 203 〉

∧4Q | 0 154 〉

∧5Q | − 1
2 65 〉

∧6Q | −1 16 〉

so(2) u(6)

| 1 1−6 〉

Q | 1
2 6−5 〉

∧2Q | 0 15−4 〉

∧3Q | − 1
2 20−3 〉

∧4Q | −1 15−2 〉

∧5Q | − 3
2 6−1 〉

∧6Q | −2 10 〉

(33)

The non-compact global symmetry of the equations of motion is SO⋆(12). The 15+15 scalars parametrise the coset
manifold SO⋆(12)/U(6),

so⋆(12) ⊃ u(1)⊕ su(6);
66 → [1+ 35]0 + 15−4 + 154.

(34)
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The 16 Maxwell field strengths and their duals transform as the 32 of SO⋆(12),

so⋆(12) ⊃ u(1)⊕ su(6);
32 → 16 + 1−6 + 152 + 15−2.

(35)

The parent theory is N+ +N− = 8 supergravity with on-shell helicity states,

so(2) su(8)

| 2 1 〉

Q | 3
2 8 〉

∧2Q | 1 28 〉

∧3Q | 1
2 56 〉

∧4Q | 0 70 〉

∧5Q | − 1
2 56 〉

∧6Q | −1 28 〉

∧7Q | − 3
2 8 〉

∧8Q | −2 1 〉

(36)

As a truncation the N+ = 6 theory is obtained by decomposing with respect to su(8) ⊃ su(6) × su(2) × u(1) and
discarding the non-trivial su(2) representations,

8 → (1,2)-3 + (6,1)1

28 → (1,1)-6 + (6,2)-2 + (15,1)2

56 → (6,1)-5 + (15,2)-1 + (20,1)3

70 → (15,1)-4 +
(
15,1

)

4
+ (20,2)0

56 → (6̄,1)5 +
(
15,2

)

1
+ (20,1)-3

28 → (1,1)6 + (6̄,2)2 +
(
15,1

)

-2

8 → (1,2)3 + (6̄,1)-1

(37)

From the perspective of Yang-Mills squared we have the unique product,

V4 ⊗ Ṽ4 = G8 (38)

and the N+ = 6 multiplet is the product of N = 2 and N = 4 vector multiplets. The above truncation from N = 8 is
effected by decomposing one of the N = 4 vector multiplets (we choose the left) into an N = 2 vector-multiplet plus
hyper-multiplet,

so(2) su(4)

| 1 1 〉

Q | 1
2 4 〉

∧2Q | 0 6 〉

∧3Q | − 1
2 4 〉

∧4Q | −1 1 〉

−→

so(2) u(2)⊕ su(2)

| 1 (1,1)0 〉

Q | 1
2 (2,1)1 〉

∧2Q | 0 (1,1)2 〉

| 0 (1,1)−2 〉

Q | − 1
2 (2,1)−1 〉

∧2Q | −1 (1,1)0 〉

⊕

so(2) u(2)⊕ su(2)

| 1
2 (1,2)−1 〉

Q | 0 (2,2)0 〉

∧2Q | − 1
2 (1,2)1 〉

(39)

where su(4)R ⊃ u(2)R ⊕ su(2) ⊕ u(1). Rather than truncate H2 we replace it with another hyper-multiplet in a
fundamental representation ρ of the gauge group,

V4 ⊗ Ṽ4 = G8 −→ [V2 ⊕H
ρ
2]⊗ Ṽ4 = G6, (40)
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as indicated by the superscript. This reduces the left supersymmetry from N = 4 to N ′ = 2. To preserve the
su(2) ⊕ su(2) symmetry ρ must be a real representation. The second su(2) factor is an enhanced flavour symmetry
that is only present for real representations of the gauge group. This is a special case of the enhanced sp(n) or so(n)
flavour symmetry enjoyed by n hypermultiplets in a real or pseudo-real gauge group representation, respectively. As
H

ρ
2 does not ‘talk’ to the right adjoint valued multiplet Ṽ4, from the perspective of squaring it is effectively truncated.

Since V2 is a singlet under the su(2) flavour it plays no role here either; this reflects the fact that N = 6 supergravity
does not admit matter couplings and there is no corresponding isotropy group. The u(6) of R-symmetry is, roughly
speaking, generated by the left and right u(2) and su(4) R-symmetries. Explicitly, we have

N ′ = 2\Ñ = 4 |1;1〉 | 12 ;4〉 |0;6〉 | 1̄2 ;4〉 |1̄;1〉

|1; (1,1)0〉 |2; (1,1,1)00〉 | 32 ; (1,1,4)0 1
2
〉 |1; (1,1,6)01〉 | 12 ; (1,1,4)0 3

2
〉 |0; (1,1,1)02〉

| 12 ; (2,1)1〉 | 32 ; (2,1,1)1 1̄
2
〉 |1; (2,1,4)10〉 | 12 ; (2,1,6)1 1

2
〉 |0; (2,1,4)11〉 | 1̄2 ; (2,1,1)1 3

2
〉

| 12 ; (1,2)1̄〉ρ

|0; (1,1)2〉 |1; (1,1,1)21̄〉 | 12 ; (1,1,4)2 1̄
2
〉 |0; (1,1,6)20〉 | 1̄2 ; (1,1,4)2 1

2
〉 |1̄; (1,1,1)21〉

|0; (2,2)0〉ρ

|0; (1,1)2̄〉 |1; (1,1,1)2̄1̄〉 | 12 ; (1,1,4)2̄ 1̄
2
〉 |0; (1,1,6)2̄0〉 | 1̄2 ; (1,1,4)2̄ 1

2
〉 |1̄; (1,1,1)2̄〉

| 12 ; (1,1,2)1〉ρ

| 1̄2 ; (2,1)1̄〉 | 12 ; (2,1,1)1̄ 3̄
2
〉 |0; (2,1,4)1̄1̄〉 | 1̄2 ; (2,1,6)1̄ 1̄

2
〉 |1̄; (2,1,4)1̄0〉 | 3̄2 ; (2,1,1)1̄ 1

2
〉

|1̄; (1,1)0〉 |0; (1,1,1)02̄〉 | 1̄2 ; (1,1,4)0 3̄
2
〉 |1̄; (1,1,6)01̄〉 | 3̄2 ; (1,1,4)0 1̄

2
〉 |2̄; (1,1,1)00〉

(41)

where for notational clarity we have used λ̄ ≡ −λ to denote negative helicities. In the above we have included the
effectively trivial states belonging to the fundamental hypermultiplet (as indicated by the ρ subscript) to illustrate how
the truncation of the N = 8 theory is effected. Here the leftN = 2 super Yang-Mills states carry so(2)l⊕u(2)L⊕su(2)L
spacetime little group, R-symmetry and flavour representations and the right NR = 4 states carry so(2)r ⊕ su(4)R
spacetime little group and R-symmetry representations. The N = 6 supergravity states carry so(2)st ⊕ [u(2)L ⊕
su(2)L] ⊕ [su(4)R] ⊕ u(1) representations, where the spacetime helicity group so(2)st and the additional u(1) factor
are given by the sum and difference of the so(2)l and so(2)r generators, respectively. The charges carried by the extra
u(1) are given by the second subscript. Following [70] the [u(2)L] ⊕ [su(4)R] ⊕ u(1) generators are completed to the
N = 6 R-symmetry algebras u(6). All states are trivial under su(2)L, which drops out of the equations.

Before the states can be assembled into the corresponding irreducible N = 6 multiplet we have to take a linear
combination of the u(1)L and u(1) generators,

(
h1

h2

)

=

(
2 −1
2 2

)(
hL

h

)

. (42)

We then reproduce the states as given in (33), as can be seen by comparing (41) with the following decompositions:

su(6) ⊃ su(2)⊕ su(4)⊕ u(1)

6 → (2,1)−2 + (1,4)1

15 → (1,1)−4 + (2,4)−1 + (1,6)2

20 → (1,4)−3 + (1, 4̄)3 + (2,6)0

15 → (1,1)4 + (2, 4̄)1 + (1,6)−2

6 → (2,1)2 + (1, 4̄, )−1

(43)

Its little twin theory is the magic N = 2 supergravity coupled to 15 vector multiplets based on the Jordan algebra
of 3× 3 Hermitian quaternionic matrices J3(H), with content:

G2 ⊕ 15V2 = {gµν , Aµ; 2Ψµ} ⊕ 15{Aµ, 2φ; 2χ}. (44)
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The R-symmetry algebra is u(2)R and the isotropy algebra is su(6) under which the on-shell helicity states transform
as:

so(2) u(2)R ⊕ su(6)

| 2 (1,1)0 〉

Q | 3
2 (2,1)1 〉

∧2Q | 1 (1,1)2 〉

| −1 (1,1)−2 〉

Q | − 3
2 (2,1)−1 〉

∧2Q | −2 (1,1)0 〉

⊕

so(2) u(2)R ⊕ su(6)

| 1 (1,15)0 〉

Q | 1
2 (2,15)1 〉

∧2Q | 0 (1,15)2 〉

| 0 (1,15)−2 〉

Q | − 1
2 (2,15)−1 〉

∧2Q | −1 (1,15)0 〉

(45)

The 30 scalars parametrise the coset manifold

SU(2)

SU(2)
×

SO⋆(12)

U(6)
∼=

SO⋆(12)

U(6)
, (46)

where the U(1) of the R-symmetry has been “gauged” such that

so⋆(12) ⊃ u(1)⊕ su(6);
66 → [1+ 35]0 + 15−4 + 154.

(47)

The non-compact global symmetry of the equations of motion is SO⋆(12), under which the 16 Maxwell field strengths
and their duals comprise the 32 spinor representation,

so⋆(12) ⊃ u(1)⊕ su(6);
32 → 16 + 1−6 + 152 + 15−2.

(48)

As described in the original treatment of the magic supergravities [90, 94, 95], the 15 potentials and their duals can
be regarded as elements of the Jordan algebra of 3× 3 Hermitian matrices defined over the quaternions, J3(H), and
its dual with respect to the bilinear Jordan trace form, J3(H)∗ ∼= J3(H). Combined with the graviphoton and its
dual these can be assembled into a 32-dimensional Freudenthal triple system and the pair (SO⋆(12),32) constitutes
a group of type E7.

To generate the magic N− = 2 theory we similarly decompose the right Ñ = 4 multiplet into Ñ ′ = 0 multiplets,

V4 = {Ã, φ̃[αβ]; χ̃
ρ̃
α} (49)

where α, β = 1, . . . 4 are indices of the fundamental of the R-symmetry remnant su(4). Here we have replaced the
adjoint-valued χ̃α by a fundamental-valued spinor χ̃ρ̃

α reducing the degree of supersymmetry. We then have the twin
truncations of the parent N = 8 theory:

N = 8 Parent supergravity
G8

Yang-Mills factors

��

V4 ⊗ Ṽ4

tt ++

[V2 ⊕H
ρ
2]⊗ Ṽ4

��

oo
twin relation

// [V2 ⊕H
ρ
2]⊗ [Ã⊕ χ̃ρ̃

α ⊕ φ̃[αβ]]

��

V2 ⊗ Ṽ4

��

[V2 ⊗ (Ã⊕ φ̃[αβ])]⊕ [Hρ
2 ⊗ χ̃ρ̃

α]

��

N+ = 6 supergravity
G6

N− = 2 magic supergravity
G2 ⊕V2 ⊕ 2V2α ⊕V2[αβ]

(50)
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Explicitly, we have the complementary truncation, cf. (41), of N = 8 supergravity in terms of the left and right
helicity states:

N ′ = 2\Ñ ′ = 0 |1;1〉 | 12 ;4〉ρ̃ |0;6〉 | 1̄2 ;4〉ρ̃ |1̄;1〉

|1; (1,1)0〉 |2; (1,1,1)00〉 |1; (1,1,6)01〉 |0; (1,1,1)02〉

| 12 ; (2,1)1〉 | 32 ; (2,1,1)1 1̄
2
〉 | 12 ; (2,1,6)1 1

2
〉 | 1̄2 ; (2,1,1)1 3

2
〉

|0; (1,1)2〉 |1; (1,1,1)21̄〉 |0; (1,1,6)20〉 |1̄; (1,1,1)21〉

|0; (1,1)2̄〉 |1; (1,1,1)2̄1̄〉 |0; (1,1,6)2̄0〉 |1̄; (1,1,1)2̄1〉

| 1̄2 ; (2,1)1̄〉 | 12 ; (2,1,1)1̄ 3̄
2
〉 | 1̄2 ; (2,1,6)1̄ 1̄

2
〉 | 3̄2 ; (2,1,1)1̄ 1

2
〉

|1̄; (1,1)0〉 |0; (1,1,1)02̄〉 |1̄; (1,1,6)01̄〉 |2̄; (1,1,1)00〉

| 12 ; (1,2)1̄〉ρ |1; (1,2,4)10〉 |0; (1,2,4)11〉

|0; (2,2)0〉ρ | 12 ; (2,2,4)2̄ 1̄
2
〉 | 1̄2 ; (2,2,4)2̄ 1

2
〉

| 1̄2 ; (1,2)1〉ρ |0; (1,2,4)1̄1̄〉 |1̄; (1,2,4)1̄0〉

(51)

Here the left N ′ = 2 multiplet states carry so(2)l spacetime little group and u(2)L ⊕ su(2)L R-symmetry plus

enhanced flavour representations. The right Ñ ′ = 0 multiplet states carry so(2)r spacetime little group and su(4)R
representations, where the su(4)R can be regarded as the remnant of the Ñ = 4 R-symmetry. TheN− = 2 supergravity
and vector multiplet states carry so(2)st ⊕ u(2)L ⊕ [su(2)L ⊕ su(4)R] ⊕ u(1) representations, where the spacetime
helicity group so(2)st and the additional u(1) are given by the sum and difference of the so(2)l and so(2)r generators,
respectively. The charges carried by the extra u(1) are given by the second subscript.

The u(2)L R-symmetry of the of the left multiplet carries over as the R-symmetry of the gravity plus vector
multiplets. The additional u(1) and enhanced flavour su(2)L together with the su(4)R R-symmetry remnant of the
right multiplet are enhanced to provide the su(6) isotropy group. As for the N+ = 6 twin we must take the same linear
combination of u(1) generators to organise the states into su(6) representations. Note, the R-symmetry representations
simply go along for the ride. Using

su(6) ⊃ su(2)⊕ su(4)⊕ u(1)

15 → (1,1)−4 + (2,4)−1 + (1,6)2

15 → (1,1)4 + (2, 4̄)1 + (1,6)−2

(52)

we find that the spectrum of (45) is reproduced.
This summarises the origin of the D = 4, (6, 2) twins from the perspective of Yang-Mills squared. It should be

noted that the magic supergravity described here was previously double-copy constructed in [18] as the the product
of an N = 2 vector multiplet and N = 0 vector potential coupled to six adjoint scalars and 8 pseudo-real fermions in
the (2,8) of su(2)⊕ su(4).

B. Summary: the pyramid twins in D = 3, 4, 5, 6

The remaining examples in D = 3, 4, 5 follow precisely the same pattern and we accordingly omit the details. The
results are summarised in Table IV, Table V, Table VI and Table VII. At this stage some comments are in order.
First, the twin relation generates new double-copy constructions from old. For example, as far as we are aware,
the D = 4,N− = 1 twins have not appeared as double-copies previously. In particular, for N = 1 and Ñ = 1 we
obtain N+ = 2 supergravity minimally coupled to a single hypermultiplet with scalar coset U(1, 2)/U(2), which was
double-copy constructed in [18], but its twin, N− = 1 supergravity minimally coupled to a single vector multiplet and
two chiral multiplets, has not yet appeared and remains to be tested at loop level. There is in fact a two parameter
family of (2, 1) twins coupled to vector and hyper multiplets [4], which do not belong to the pyramid, but can be
double-copy
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D = 6

SO(5,5)
SO(5)×SO(5)

(2, 2)
//

yy

SU⋆(4)
USp(2)

((2, 1), (0, 1))

yy

��

SU⋆(4)
USp(2)

((2, 1), (0, 1))
//

��

O(1,1)×Sp(1)2

U(1)2

((1, 1), (0, 1))

��

D = 5

E6(6)

USp(4)

(8)
//

yy

SU⋆(6)
USp(3)

(6, 2)

yy

��

SU⋆(6)
USp(3)

(6, 2)
//

��

SO(1,1)×SO(5,1)
USp(2)

(4, 2)

��

D = 4

E7(7)

SU(8)

(8)
//

yy

SO⋆(12)
U(6)

(6, 2)
//

yy

SU(5,1)
U(5)

(5, 1)

zz

��

SO⋆(12)
U(6)

(6, 2)
//

zz

SU(1,1)×SO(6,2)
U(1)×U(4)

(4, 2)
//

yy

SU(3,1)
U(3)

(3, 2, 1)

yy
SU(5,1)
U(5)

(5, 1)
//

��

SU(3,1)
U(3)

(3, 2, 1)
//

SU(2,1)
U(2)

(2, 1)

��

D = 3

E8(8)

SO(16)

(16)
//

yy

E7(−5)

SO(3)×SO(12)

(12, 4)
//

yy

E6(−14)

U(1)×SO(10)

(10, 2)
//

zz

F4(−20)

SO(9)

(9, 1)

{{
E7(−5)

SO(3)×SO(12)

(12, 4)
//

zz

SO(8,4)
SO(8)×SO(4)

(8, 4)
//

yy

SU(4,2)
U(4)×SU(2)

(6, 4, 2)
//

yy

USp(2,1)
USp(2)×SU(2)

(5, 1)

zz
E6(−14)

U(1)×SO(10)

(10, 2)
//

{{

SU(4,2)
U(4)×SU(2)

(6, 4, 2)
//

zz

SU(2,1)2

U(2)2

(4, 2)
//

yy

SU(2,1)
U(2)

(3, 1)

yyF4(−20)

SO(9)

(9, 1)
//

USp(2,1)
USp(2)×SU(2)

(5, 1)
//

SU(2,1)
U(2)

(3, 1)
//

SL(2,R)
SO(2)

(2, 1)

TABLE IV. Pyramid of twin supergravities generated by the product of left and right super Yang-Mills theories in D = 3, 4, 5, 6.
Each level is related by dimensional reduction as indicated by the vertical arrows. The horizontal arrows indicate consistent
truncations effected by truncating the left or right Yang-Mills multiplets. The twins and triplets are indicated by (N+,N−)
and (N+,N

+
− ,N−

− ), respectively, together with their common scalar manifolds. All such supergravity theories have a twin
related by their left/right factors except for the maximal cases along the “exceptional spine” highlighted in red. Consequently,
for D > 6 there are no twin theories and this portion of the pyramid is omitted. Note, D = 3 is the exception to the exceptions
in that maximal N = 16 supergravity does have a ‘trivial’ N = 1 twin, but it is not obtained from our double-copy procedure
and so is excluded.
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TABLE V. The twin supergravities in D = 3. Here we give the left and right (super) Yang-Mills products yielding the twin (N+,N−) supergravities.

Left Yang-Mills-matter Right Yang-Mills-matter Twin supergravities

N ′ Content Symmetry Ñ (′) Content Symmetry N± Content Symmetry Coset

4 V4 ⊕C
ρ
4 so(4)R ⊕ so(3)f

8 V8
so(7)

12 G12 so(12)R ⊕ so(3) E7(−5)

SO(12)×SO(3)0 Ã(1)⊕ χ̃ρ̃(8)⊕ φ̃(7) 4 G4 ⊕ 16V4 so(4)R ⊕ so(12)Isotropy ⊕ so(3)

4 V4 ⊕C
ρ
4 so(4)R ⊕ so(3)f

4 V4
so(4)

8 G8 ⊕ 4V8 so(8)R ⊕ so(4)Isotropy SO(8,4)
SO(8)×SO(4)0 Ã(1,1)⊕ χ̃ρ̃(2,2)⊕ φ̃(3,1) 4 G4 ⊕ 8V4 so(4)R ⊕ so(8)Isotropy ⊕ so(4)

2 V2 ⊕C
ρ
2 so(2)r ⊕ so(2)f

8 V8
so(7)

10 G10 so(10)R ⊕ so(2) E6(−14)

SO(10)×U(1)0 Ã(1)⊕ χ̃ρ̃(8)⊕ φ̃(7) 2 G2 ⊕V2 ⊕ 10V2 ⊕ 5C2 so(2)R ⊕ so(10)Isotropy ⊕ so(2)

2 V2 ⊕C
ρ
2 so(2)r ⊕ so(2)f

4 V4
so(4)

6 G6 ⊕ 2V6 so(6)R ⊕ so(3)⊕ so(2)Isotropy SU(4,2)
SU(4)×U(2)0 Ã(1,1)⊕ χ̃ρ̃(2,2)⊕ φ̃(3,1) 2 G2 ⊕V2 ⊕ 4V2 ⊕ 3C2 so(2)R ⊕ [su(4)⊕ u(2)]Isotropy

2 V2 ⊕C
ρ
2 so(2)r ⊕ so(2)f

2 V2
so(2)

4 G4 ⊕V4 ⊕C4 so(4)R ⊕ so(2)⊕ so(2)Isotropy SU(2,1)
U(2)

×
SU(2,1)
U(2)0 Ã⊕ 2χ̃ρ̃ ⊕ φ 2 G2 ⊕V2 ⊕V2 ⊕ 2C2 so(2)R ⊕ [u(2)⊕ u(2)]Isotropy

1 V1 ⊕C
ρ
1 ∅

8 V8
so(7)

9 G9 so(9)R F4(−20)

SO(9)0 Ã(1)⊕ χ̃ρ̃(8)⊕ φ̃(7) 1 G1 ⊕ 16V1 so(9)Isotropy

1 V1 ⊕C
ρ
1 ∅

4 V4
so(4)

5 G5 ⊕V5 so(5)R ⊕ so(3) USp(2,1)
USp(2)×SU(2)0 Ã(1,1)⊕ χ̃ρ̃(2,2)⊕ φ̃(3,1) 1 G1 ⊕ 8V1 so(5)Isotropy ⊕ so(3)

1 V1 ⊕C
ρ
1 ∅

2 V2
so(2)

3 G3 ⊕V3 so(3)R ⊕ so(2) SU(2,1)
U(2)0 Ã⊕ 2χ̃ρ̃ ⊕ φ 1 G1 ⊕ 4V1 so(2)⊕ so(3)Isotropy

1 V1 ⊕C
ρ
1 ∅

1 V1
∅

2 G2 ⊕V2 so(2)R SL(2,R)
SO(2)0 Ã⊕ χ̃ρ̃ 1 G1 ⊕ 2V1 so(2)Isotropy
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TABLE VI. The twin supergravities in D = 4. Here we give the left and right (super) Yang-Mills products yielding the twin (N+,N−) supergravities. In the first
column we summarise the left Yang-Mills-matter theories and their global symmetries, where VN and CN are in the adjoint and ρ representations of the left gauge
group G respectively. In the second column we summarise the right Yang-Mills-matter theories before and after (10) has been applied. Again, for both cases their

global symmetries are given and for the Ñ = 0 theories we have indicated the representation carried by each field (omitting all u(1) charges). Note, the fermions of

the Ñ = 0 theories are always in the ρ̃ representation of the right gauge group G̃, while the vectors and scalars remain in the adjoint. In the final column we have
tabulated the resulting pairs of twin supergravity theories and their common scalar coset manifolds. Note, the final row can be generalised to an infinite sequence of
N+ = 2 self-mirror minimally coupled supergravity theories and their N− = 1 twins, as discussed in section III D.

Left Yang-Mills-matter Right Yang-Mills-matter Twin supergravities

N ′ Content Symmetry Ñ (′) Content Symmetry N± Content Symmetry Coset

2 V2 ⊕H
ρ
2 u(2)R ⊕ su(2)f

4 V4 su(4)R 6 G6 u(6)R SO⋆(12)
U(6)0 Ã(1)⊕ χ̃ρ̃(4)⊕ φ̃(6) su(4) 2 G2 ⊕V2(15) u(2)R ⊕ u(6)Isotropy

2 V2 ⊕H
ρ
2 u(2)R ⊕ su(2)f

2 V2 u(2)R 4 G4 ⊕ 2V4 u(4)R ⊕ so(2)Isotropy SL(2,R)×SO(6,2)
SO(2)×U(4)0 Ã(1)⊕ χ̃ρ̃(2)⊕ 2φ̃(1) u(2) 2 G2 ⊕V2(1)⊕V2(6) u(2)R ⊕ u(4)Isotropy

1 V1 ⊕C
ρ
1 u(1)R ⊕ u(1)f

4 V4 su(4)R 5 G5 u(5)R SU(5,1)
U(5)0 Ã(1)⊕ χ̃ρ̃(4)⊕ φ̃(6) su(4) 1 G1 ⊕V1(10)⊕C1(5) u(1)R ⊕ u(5)Isotropy

1 V1 ⊕C
ρ
1 u(1)R ⊕ u(1)f

2 V2 u(2)R 3 G3 ⊕V3 u(3)R ⊕ u(1) U(3,1)
U(3)×U(1)1 Ã(1)⊕ χ̃ρ̃(2)⊕ 2φ̃(1) u(2) 1 G1 ⊕V1(1)⊕V1(3)⊕C1(3) u(1)R ⊕ u(3)Isotropy

1 V1 ⊕C
ρ
1 u(1)R ⊕ u(1)f

1 V1 u(1)R 2 G2 ⊕H2 u(2)R ⊕ u(1) U(2,1)
U(2)×U(1)0 Ã⊕ χ̃ρ̃ u(1) 1 G1 ⊕V1(1)⊕C1(2) u(1)R ⊕ u(2)Isotropy
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TABLE VII. The twin supergravities in D = 5. Here we give the left and right (super) Yang-Mills products yielding the twin (N+,N−) supergravities.

Left Yang-Mills-matter Right Yang-Mills-matter Twin supergravities

N ′ Content Symmetry Ñ (′) Content Symmetry N± Content Symmetry Coset

2 V2 ⊕H
ρ
2 sp(1)R ⊕ sp(1)f

4 Ṽ4 sp(2)R 6 G6 sp(3)R SU∗(6)
USp(3)0 Ã(1)⊕ χ̃ρ̃(4)⊕ φ̃(5) sp(2) 2 G2 ⊕V2(14) sp(1)R ⊕ sp(3)Isotropy

2 V2 ⊕H
ρ
2 sp(1)R ⊕ sp(1)f

2 Ṽ2 sp(1)R 4 G4 ⊕V4 sp(2)R O(5,1)×O(1,1)
USp(2)0 Ã(1)⊕ χ̃ρ̃(2)⊕ φ̃(1) sp(1) 2 G2 ⊕V2(1)⊕V2(5) sp(1)R ⊕ sp(2)Isotropy

TABLE VIII. The twin supergravities in D = 6. The N+ twin is generated as a truncation of the parent as for D = 3, 4, 5. The N− twin requires an additional
chirality flip of the left Yang-Mills-matter multiplet.

Left Yang-Mills-matter Right Yang-Mills-matter Twin supergravities

N ′ Content Symmetry Ñ (′) Content Symmetry N± Content Symmetry Coset

(1, 0) V1,0 ⊕H
ρ
1,0 sp(1)R ⊕ sp(1)f (1, 1) Ṽ1,1 sp(1)R ⊕ sp(1)R (2, 1) G2,1 sp(2)R ⊕ sp(1)R SU⋆(4)×Sp(1)

USp(2)×U(1)(0, 1) V0,1 ⊕H
ρ
0,1 sp(1)f ⊕ sp(1)R (0, 0) Ã(1)⊕ χ̃

ρ
−(2)⊕ χ̃

ρ
+(2)⊕ φ̃(4) sp(1)R (0, 1) G0,1 ⊕V0,1(4+ 4)⊕T0,1(5) sp(1)R ⊕ sp(2)Isotropy

(1, 0) V1,0 ⊕H
ρ
1,0 sp(1)R ⊕ sp(1)f (1, 0) Ṽ1,0 sp(1)R (2, 0) G2,0 ⊕T2,0 sp(2)R SU∗(4)

USp(2)(0, 1) V0,1 ⊕H
ρ
0,1 sp(1)f ⊕ sp(1)R (0, 0) Ã(1)⊕ χ̃

ρ
−(2) sp(1) (0, 1) G0,1 ⊕T0,1(5) sp(1)R ⊕ sp(2)Isotropy

(1, 0) V1,0 ⊕H
ρ
1,0 sp(1)R ⊕ sp(1)f (0, 1) Ṽ0,1 sp(1)R (1, 1) G1,1 sp(1)R ⊕ sp(1)R O(1,1)×Sp(1)2

U(1)2(0, 1) V0,1 ⊕H
ρ
0,1 sp(1)f ⊕ sp(1)R (0, 0) Ã(1)⊕ χ̃

ρ̃
+(2) sp(1) (0, 1) G0,1 ⊕V0,1(4)⊕T0,1(1) sp(1)R ⊕ sp(1)Isotropy
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constructed as discussed in section III D. Note, the associated sequence of special Kähler symmetric scalar manifolds
appearing in the N+ = 2 theories can also be coupled to N− = 1, D = 4 supergravity because their kinetic vector
matrices are holomorphic [77].

Second, our approach applied to the prototypical D = 4, (6, 2) twin pair gives an alternative double-copy construc-
tion of the quaternionic magic D = 4,N = 2 supergravity, which was previously obtained in [18] using a different pair
of Yang-Mills-matter factors. This serves to highlight a general feature of the double-copy construction for matter-
coupled supergravities: the factorisation into left and right (super) Yang-Mills multiplets is not necessarily unique.
The D = 4, (4, 2) twin pair is a clear example. The N+ = 4 supergravity comes coupled to two vector multiplets and

follows from the product of two, N = Ñ = 2, super Yang-Mills multiplets. As a truncation of the parent N = 6
theory it is schematically given by,

[V4]⊗ [Ṽ2] = G6 −→ [V2 ⊕C
ρ
2]⊗ [Ṽ2] = G4 ⊕ 2V4. (53)

Its twin N− = 2 supergravity is coupled to seven vector multiplets and follows from the same principle applied to Ṽ2,

[V2 ⊕C
ρ
2]⊗ [Ṽ2] −→ [V2 ⊕C

ρ
2]⊗ [Ã⊕ χ̃ρ̃

a ⊕ φ̃] = [V2 ⊗ Ã]⊕ [Cρ
2 ⊗ χ̃ρ̃

a]⊕ [V2 ⊕ φ̃]

= [G2 ⊕V2]⊕ [2V2a]⊕ [2V2],
(54)

where a = 1, 2 is an su(2) index, the remnant Ñ = 2 R-symmetry, and φ̃ is a complex scalar. The common scalar
coset is given by SL(2,R)×SO(6, 2)/U(1)×U(4). The U(4) is the R-symmetry of the N+ = 4 theory and the matter
isotropy group of the N− = 2 theory, rotating the six vector multiplets with a matter⊗matter origin. Both theories,
however, admit an alternative construction [68],

G4 ⊕ 2V4 = V4 ⊗ [Ã⊕ 2φ̃] and G2 ⊕ 7V2 = V2 ⊗ [Ã⊕ 6φ̃], (55)

where the n scalar fields of the right multiplets are required to transform in the vector representation of SO(n). It
turns out there is a plethora of non-unique decompositions of this type. The full classification of all supergravities
admitting more than one Yang-Mills factorisations will be given in [78].

The D = 6 case, given in Table VIII, is a little more subtle. In particular, we must take to account the possible
chiralities, N = (n,m). The big twin is obtained as a truncation of its parent following the prescription laid out
above. To obtain the little twin, however, the decomposition of the right Yang-Mills multiplet must be accompanied
by a flip of the chirality of the left Yang-Mills-matter multiplet:

Parent V(n,m) ⊗ Ṽ(ñ,m̃) = G(n+ñ,m+m̃) ⊕M(n+ñ,m+m̃)

Big twin V(n′,m′) ⊕H
ρ

(n′,m′) ⊗ Ṽ(ñ,m̃) = G(n+,m+) ⊕M(n+,m+)

Little twin V(m′,n′) ⊕H
ρ

(m′,n′)
︸ ︷︷ ︸

Chirality flipped

⊗ Ṽ(ñ′,m̃′) ⊕ C̃
ρ

(ñ′,m̃′) ⊕ · · · = G(n−,m−) ⊕M(n−,m−)

(56)

For example, the (N+,N−) = ((2, 1), (0, 1)) is given by

Parent V(1,1) ⊗ Ṽ(1,1) = G(2,2)

Big twin V(1,0) ⊕H
ρ

(1,0) ⊗ Ṽ(1,1) = G(2,1)

Little twin V(0,1) ⊕H
ρ

(0,1) ⊗ Ã⊕ 2(χ̃ρ
−, χ̃

ρ
+)⊕ 4φ̃ = G(0,1) ⊕ 8V(0,1) ⊕ 5V(0,1)

(57)

All three cases are presented in Table VIII.
Note, the (N+,N−) = ((2, 1), (0, 1)) example can also be generated by using tensor multiplets T(n,m), at least at

the level of free on-shell states:

Parent T(0,2) ⊗ T̃(2,0) = G(2,2)

Big twin T(0,1) ⊕H
ρ

(0,1) ⊗ T̃(2,0) = G(2,1)

Little twin T(0,1) ⊕H
ρ

(0,1) ⊗ B̃ ⊕ 4χ̃ρ
+ ⊕ 5φ̃ = G(0,1) ⊕ 8V(0,1) ⊕ 5T(0,1)

(58)

The D = 6, G(2,2) multiplet is the unique maximally supersymmetric gravity multiplet that admits two factorisations,

G(2,2) = T(2,0) ⊗ T̃(0,2), G(2,2) = V(1,1) ⊗ Ṽ(1,1). (59)
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Although the D = 6, (2, 0) theories are intrinsically ‘strongly coupled’ and do not admit any conventional Lagrangian
description, the existence of well-defined asymptotic states facilitates a direct analysis of the S-matrix [96]. The
tree-level amplitudes may be defined as the purely pole part of the S-matrix, although strong coupling implies that
they cannot be interpreted as the leading term in any perturbative expansion. In the conformal phase there are no
non-vanishing tree-level amplitudes for the self-dual tensor that respect the (2, 0) super-Poincaré invariance [96, 97],
leaving the double-copy origin of the G(2,2) amplitudes mysterious from this perspective. One approach is to consider

M5-branes on R1,4 × S1 with self-dual strings (M2-branes ending on the M5-branes) wrapping the S1 to give a tower
of massive Kaluza-Klein modes in five dimensions. Then there is a non-trivial three-point amplitude for the self-dual
tensor, which squares to give an amplitude of the D = 6, (4, 0) theory on R1,4 × S1 [97]. In the massless limit the
self-dual tensor amplitude reduces to that of D = 5,N = 4 super Yang-Mills so that its square correctly produces the
corresponding D = 5,N = 8 supergravity amplitude [97]. This is consistent with the observation that in the linear
approximation the (4, 0) theory dimensionally reduced on a circle is D = 5,N = 8 supergravity [98, 99]. Alternatively,
the product of the (2, 0) and (0, 2) amplitudes gives that of D = 6,N = 8 supergravity on R1,4 × S1, as suggested by
(59), which also gives the D = 5,N = 8 supergravity amplitude in the massless limit.

Finally, a comment on D = 3,N = 1 theories is needed. As noted in [3] and section II all N+ > 1 theories (assuming
all vectors have been dualised to scalars) in D = 3 have an N− = 1 twin. This follows from the fact that D = 3,N = 1
supergravity can be coupled to scalars parametrising any Riemannian manifold and all admissible scalar cosets for
N > 1 are Riemannian. For this reason such twins are typically regarded as trivial. However, for the pyramid of
twins, Table IV, they are natural in the sense that they follow from the same double-copy construction described.
Note however, the D = 3, (16, 1) twin pair is not obtained in this manner and, as such, it should be regarded as
belonging to the excluded maximal spine. It is also excluded on the basis that the D = 3, (16, 1) twins do not have a
parent supergravity.

C. The triplets

In four dimensions there is a (N+,N
+
− ,N−

− ) = (3, 2, 1) triplet of supergravity theories, which descends to a (6, 4, 2)

triplet in D = 3. The notation N±
− is used to indicate that N+ is the big sibling of both N±

− , while N−
− is the little

sibling of N+
− . The common scalar manifold is

SU(3, 1)

SU(3)×U(1)
. (60)

We find that the two sub-twins (N+,N
+
− ) and (N+,N

−
− ) follow from the same considerations as above, as the

N+ = 3 theory belongs to the pyramid. Specifically, for the (3, 2) pair we have an N = 5 parent,

Parent V4 ⊗ Ṽ1 = G5

Big twin V2 ⊕H
ρ
2 ⊗ Ṽ1 = G3 ⊕V3

Little twin V2 ⊕H
ρ
2 ⊗ Ã⊕ χ̃ρ = G2 ⊕ 3V2

(61)

The left and right symmetries of the big twin factors are

so(2)l ⊕ u(2)R ⊕ su(2)f and so(2)r ⊕ u(1)R, (62)

where u(2)R is the left N ′ = 2 R-symmetry and su(2)f is a remnant of the N = 4 R-symmetry feeding into the N = 5
parent. They sit inside the N = 3 algebra as

[u(2)R ⊕ u(1)R]⊕ u(1) ⊂ u(3)R ⊕ u(1)Isotropy, (63)

where the additional u(1) is given by the difference of the so(2)l and so(2)r generators as usual. Note, the su(2)f acts
trivially on all gravitational states as it only acts non-trivially on the H

ρ
2 multiplet, which plays no role here.

Similarly, the left and right symmetries of the little twin factors are

so(2)l ⊕ u(2)R ⊕ su(2)f and so(2)r ⊕ u(1)f , (64)

where the right u(1)f is now a remnant of the right Ñ = 1 R-symmetry. They sit inside the N = 2 algebra as

u(2)R ⊕ [su(2)f ⊕ u(1)f ]⊕ u(1) ⊂ u(2)R ⊕ [su(3)⊕ u(1)]Isotropy (65)
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where again the additional u(1) is given by the difference of the so(2)l and so(2)r generators. In this case both the
su(2)f and u(1)f act non-trivially on the gravitational states in the H

ρ
2 ⊗ χ̃ρ sector, while the left R-symmetry u(2)R

goes along for the ride to become the gravitational R-symmetry.
For the (3, 1) pair we have an N = 4 parent,

Parent V2 ⊗ Ṽ2 = G4 ⊕ 2V4

Big twin V1 ⊕C
ρ
1 ⊗ Ṽ2 = G3 ⊕V3

Little twin V1 ⊕C
ρ
1 ⊗ Ã⊕ 2χ̃ρ ⊕ 2φ = G1 ⊕ 4V1 ⊕ 3C1

(66)

In this case, the left and right symmetries of the big twin factors are

so(2)l ⊕ u(1)R ⊕ u(1)f and so(2)r ⊕ u(2)R, (67)

where the right u(1)f is a remnant of the left N = 2 R-symmetry. They sit inside the N = 3 algebra as

[u(2)R ⊕ u(1)R]⊕ u(1) ⊂ u(3)R ⊕ u(1)Isotropy (68)

where as before the additional u(1) is given by the difference of the so(2)l and so(2)r generators. Again, all gravitational
states are uncharged under the u(1)f as it only acts non-trivially on C

ρ
1.

The left and right symmetries of the little twin factors are

so(2)l ⊕ u(1)R ⊕ u(1)f and so(2)r ⊕ u(2)f , (69)

where the right u(2)f is a remnant of the right Ñ = 2 R-symmetry. They sit inside the N = 1 algebra as

u(1)R ⊕ [u(2)f ⊕ u(1)f ]⊕ u(1) ⊂ u(1)R ⊕ [u(3)⊕ u(1)]Isotropy (70)

The extra u(1) is given by the difference of the so(2)l and so(2)r generators as in the other cases. In this case both
the u(2)f and u(1)f act non-trivially on the gravitational states in the C

ρ
1 ⊗ 2χ̃ρ sector, while the left R-symmetry

u(1)R becomes the gravitational R-symmetry. Note, there is an additional global u(1), which acts trivially on the
scalars [84].

Finally, for the (2, 1) pair we have an N = 3 parent that is not simply the product of pure N = 2 and N = 1
Yang-Mills,

Parent V2 ⊕H
ρ
2 ⊗ Ṽ1 ⊕ C̃

ρ̃
1 = G3 ⊕ 3V3

Big twin V2 ⊗ Ã⊕ 2χ̃ρ̃ ⊕ 2φ̃ = G2 ⊕ 3V2

Little twin V1 ⊕C
ρ
1 ⊗ Ã⊕ 2χ̃ρ ⊕ 2φ = G1 ⊕ 4V1 ⊕ 3C1

(71)

Note, to obtain the N+
− = 2 twin we both decompose the right and truncate the left H

ρ
2 multiplet. Importantly,

the N = 3 symmetry generated by V2 ⊗ Ṽ1 alone is not enough to accommodate the required N+
− = 2 R-symmetry

plus isotropy, hence the need group theoretically for the two additional V3. Of course, they are also required for the
correct content.

Despite the fact that all three triplets (3, 2, 1) are truncations of either the N = 5 or N = 4 parent, symmetry
considerations imply that in terms of Yang-Mills-matter factorisations considered here the (3, 1) and (3, 2) twins can
only be accommodated by the N = 4 and N = 5 parents respectively.

We note that the squaring approach provides a finer graining of the triplet than that of supergravity. From a
supergravity perspective, the three sub twin pairs are truly degenerate in the triplet: treating (3, 2, 1) as a triplet or
as three pairs is equivalent. However, from the point of view of the double copy, the triplet degeneracy is partially
resolved: not only do the N = 2 and N = 3 theories admit two different factorisations each, but these are in a 1− 1
correspondence with the sub-twin pair that they belong to. Thus, different factorisations uniquely lead to different
sub pairs, and therefore different parents. As an example, given the N = 2 theory along with its factorisation in (61),
one can determine that it belongs to the sub pair (3, 2), while the factorisation in (71) can only sit in the (2, 1) sub
pair; this distinction cannot be actuated in supergravity. So far, only one factorisation of the N = 1 has been found,
such that the triplet is not yet fully resolved into three distinct sub pairs. We refer the reader to [78] regarding the
possibility of an alternative factorisation of the N = 1 theory.

Dimensionally reducing to D = 3 we obtain a (6, 4, 2) triplet with common scalar coset (with vectors dualised to
scalars),

SU(4, 2)

U(4)× SU(2)
. (72)
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D. Other twins

There is an isolated pair of twin supergravities that do not belong to the pyramid since the N+ twin is not a product
of two pure super Yang-Mills theories: the D = 4, (4, 1) pair consisting of pure N+ = 4 supergravity and N− = 1
supergravity coupled to nV = 6 vector multiplets and a single chiral multiplet as discussed in section II. Recall, both
have U-duality group SL(2,R) × SO(6) and the common scalar manifold is SU(1, 1)/U(1). Note however, the pure
N+ = 4 theory can be considered as part of the pyramid if the N = 0 vector multiplet is included in the factors,

V4 ⊗ Ã = G4, with [so(2)l ⊕ su(4)]⊕ [so(2)r]→ so(2)st ⊕ u(4), (73)

where the spacetime helicity group so(2)st and the additional u(1) are given by the sum and difference of the so(2)l
and so(2)r generators, respectively. The simplest approach9 is to take N = 5 supergravity as the parent:

Parent V4 ⊗ Ṽ1 = G5

Big twin V4 ⊗ Ã⊕ χ̃ρ̃ = G4

Little twin A⊕ 4χρ ⊕ 6φ ⊗ Ṽ1 = G1 ⊕ 6V1 ⊕C1

(74)

where, departing from the pyramid twins, we decompose either the left or right multiplet, but not both. As usual the
R-symmetry of the N+ = 4 theory becomes the isotropy group of the N− = 1 theory.

Finally, we recall that the D = 4, (2, 1) twin pair appearing in the pyramid admits a generalisation to a two integer
parameter sequence of (2, 1) twins, as pointed out in [4]. The N+ = 2 sequence is given by N = 2 supergravity
minimally coupled to nV vector multiplets and nH hyper multiplets. The N− = 1 sequence is given by N = 1
supergravity coupled to nV + 1 vector multiplets and nC = nV + 2nH chiral multiplets. The common scalar coset
is U(1, nV ) × SU(2, nH)/[U(1) × U(nV ) × U(2) × SU(nH)]. Arbitrary nV , nH requires a sequence of N = 3 parent
supergravities coupled to n = nV + nH vector multiplets. The N± scalar cosets then embed into the parent N = 3
scalar coset,

U(1, nV )×U(2, nH)

U(1)×U(nV )×U(2)×U(nH)
⊂

U(3, n)

U(3)×U(n)
. (75)

With two supersymmetric factors this is achieved by including fundamental matter from the outset,

[V2 ⊕C
ρ
2]⊗ [Ṽ1 ⊕mC̃

ρ
1] = G3 ⊕ nV3, (76)

where n = m+ 1 and

[so(2)l ⊕ u(2)R]⊕ [so(2)r ⊕ u(1)R ⊕ u(m)]→ so(2)st ⊕ [u(3)R ⊕ u(n)]. (77)

To obtain the N+ = 2 twin sequence as a truncation of the N = 3 parent sequence we decompose the right multiplet,

Ṽ1 ⊕mC̃
ρ
1 −→ Ã⊕ χ̃⊕mχ̃ρ̃ ⊕mφ̃ρ̃, (78)

where φ̃ is complex. We then further truncate nH + 1 = n − (nV − 1) of the spinors and nV − 1 = n − (nH + 1) of
the scalars so that we break to u(nV − 1)⊕ u(nH) ⊂ u(m), leaving

[V2 ⊕C
ρ
2]⊗ [Ã⊕ (nV − 1)χ̃ρ̃ ⊕ nH φ̃ρ̃] = G2 ⊕ nV V2 ⊕ nHH2 (79)

with symmetries

[so(2)l ⊕ u(2)R]⊕ [so(2)r ⊕ u(1)⊕ u(nV − 1)⊕ u(nH)]→ so(2)st ⊕ [u(2)R ⊕ u(1)⊕ u(nV )⊕ u(nH)] (80)

in agreement with (75).
To obtain the N− = 1 twin sequence as a truncation of the N = 3 parent sequence we decompose both the left and

right multiplets,

V2 ⊕C
ρ
2 −→ V1 ⊕C1 ⊕C

ρ
1,

Ṽ1 ⊕mC̃
ρ
1 −→ Ã⊕ χ̃⊕mχ̃ρ̃ ⊕mφ̃ρ̃,

(81)

9 This is by no means unique, there is for example an N = 4 parent. We leave the reader to explore the possibilities.
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where φ̃ is complex. Again, we then further truncate both the left and right. On the left we only keep C̃
ρ
1, while

on the right we remove nH − 1 = n − (nV + 1) of the spinors and nV = n − nH of the scalars so that we break to
u(1)⊕ u(nV )⊕ u(nH − 1) ⊂ u(m), where one of the right χ̃ is a u(nV ) singlet. This yields

[V1 ⊕C
ρ
1]⊗ [Ã⊕ χ̃ρ̃ ⊕ nV χ̃

ρ̃ ⊕ (nH − 1)φ̃ρ̃] = G1 ⊕ (nV + 1)V1 ⊕ (2nH + nV )C1 (82)

with symmetries

[so(2)l ⊕ u(1)R]⊕ [so(2)r ⊕ u(1)⊕ u(nV )⊕ u(nH − 1)]→ so(2)st ⊕ [u(1)R ⊕ u(2)⊕ u(nV )⊕ u(nH)] (83)

in agreement with (75). Note, in (80) and (83) nV and nH are interchanged precisely because V2 ⊗ Ã = G2 ⊕V2

generates an extra vector multiplet whereas V1 ⊗ Ã = G1 ⊕C1 generates an extra chiral multiplet.

IV. CONCLUSIONS

We have shown that all non-maximal supergravities theories in 3 ≤ D ≤ 6 that are the product of two super
Yang-Mills multiplets have a twin supergravity. Moreover, it has been shown that the parent supergravity and its
twins are all related through their Yang-Mills factorisations in a uniform manner. As far as we are aware the matter
coupled N− twins generated this way have not been double-copy constructed previously, so that we add to the already
substantial list of supergravities admitting a Yang-Mills factorisation.

In the course of studying the twin pyramid it has become clear that the factorisation of matter coupled supergravity
theories is not necessarily unique. Note, it had already been previously observed that supergravities can admit
factorisations into alternative multiplets, for example D = 3,N = 16 supergravity is the square of both N = 8 Yang-
Mills theory and Bagger-Lambert-Gustavsson Chern-Simons theory [14]. In future work [78] we will give a complete
classification, using symmetry generating constraints, of all alternative factorisations and double-copy constructible
theories under the assumption that the (super)gravity scalar manifold is symmetric.

Considering the off-shell symmetries of the double-copy including fundamental matter multiplets led us to introduce
a bi-fundamental scalar field that couples to a bi-adjoint scalar field through a cubic interaction. Interestingly, it
seems that bi-adjoint/fundamental scalar theory yields the zeroth-copy of Yang-Mills-matter amplitudes at tree-level,
suggesting a generalisation of the spin 2,1,0 CHY formulae of [34] to include non-adjoint fields.
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Appendix A: Irreducible Riemannian globally symmetric Kähler and Quaternionic Manifolds

Kahler manifolds:

SU(p, q)

SU(p)× SU(q)×U(1)
,

SO(p, 2)

SO(p)×U(1)
,

Sp(p,R)

SU(p)×U(1)
(A1)

SO∗(2p)

SU(p)×U(1)
,

E6(−14)

SO(10)×U(1)
,

E7(−25)

E6 ×U(1)

Quaternionic manifolds:
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SU(p, 2)

SU(p)× SU(2)×U(1)
,

SO(p, 4)

SO(p)× SO(4)
,

USp(p, 1)

USp(p)×U(1)
(A2)

G2

SU(2)× SU(2)
,

F4(4)

USp(3)×U(1)
,

E6(2)

SU(6)× SU(2)

E7(−5)

SO(12)× SU(2)
,

E8(−24)

E7 × SU(2)

Appendix B: Bi-adjoint coupled to bi-fundamental scalar theory: a 5-point example

In section III we discussed how, starting with amplitudes for adjoint and fundamental fields, one can take the
so-called “zeroth-copy” and generate amplitudes for a bi-adjoint scalar theory coupled to a bi-fundamental scalar.
Here we give a 5-point example with two quark flavours, the double-copy of which was treated in [15]. This nicely
illustrates the point that the bi-adjoint/fundamental scalar theory can be embellished to capture flavour groups and
other structural features appearing in the gauge theory. We start with the scattering amplitude of two quark-antiquark
pairs, with distinct flavours, with a single gluon. The two flavours reduces the Feynman diagrams to the five presented
in Figure 3.

FIG. 3. Tree-level Feynman diagrams for the 5-point quark-antiquark-quark’-antiquark’-gluon interaction.

We use the labelling (1, ū1(k1),
i ) and (2, v2(k2),j ) for one of the quark-antiquark pairs, then (3, ū3(k3),

k ) and
(4, v4(k4),l ) for the other (possessing a different flavour) and finally (5, εµ5 (k5), a) for the gluon. The colour and
kinematic factors for these diagrams are then

c1 × n1 = −i [T a] m
i [T b] j

m[T b] l
k × ū3γ

νv4 ū1ε
µ
5γµγ

ρ(k1 + k5)ργνv2

c2 × n2 = −i [T b] m
i [T a] j

m[T b] l
k × ū3γ

νv4 ū1γνγ
ρ(−k2 − k5)ρε

µ
5γµv2

c3 × n3 = −i [T a] m
k [T b] l

m[T b] j
i × ū3γµε

µ
5γ

ρ(k3 + k5)ργ
νv4 ū1γνv2

c4 × n4 = −i [T b] m
k [T a] l

m[T b] j
i × ū3γ

νγρ(−k4 − k5)ρε
µ
5γµv4 ū1γνv2

c5 × n5 = fabc[T b] j
i [T c] l

k × ū3γ
νv4 [ηµρ(k5 − q)ν + ηρν(q − p)µ + ηνµ(p− k5)ρ]ε

µ
5 ū1γ

ρv2

(B1)

where, for the last diagram, q = k1 + k2 and p = k3 + k4. We know that these numerators automatically satisfy BCJ
relations, so we can proceed as in the 4-point example and replace the kinematic factors with a second set of colour
factors,

c1 × c̃1 = −i [T a] m
i [T b] j

m[T b] l
k × [T̃ ã] m̃

ĩ
[T̃ b̃] j̃

m̃[T̃ b̃] l̃

k̃

c2 × c̃2 = −i [T b] m
i [T a] j

m[T b] l
k × [T̃ b̃] m̃

ĩ
[T̃ ã] j̃

m̃[T̃ b̃] l̃

k̃

c3 × c̃3 = −i [T a] m
k [T b] l

m[T b] j
i × [T̃ ã] m̃

k̃
[T̃ b̃] l̃

m̃[T̃ b̃] j̃

ĩ

c4 × c̃4 = −i [T b] m
k [T a] l

m[T b] j
i × [T̃ b̃] m̃

k̃
[T̃ ã] l̃

m̃[T̃ b̃] j̃

ĩ

c5 × c̃5 = fabc[T b] j
i [T c] l

k × f̃ ãb̃c̃[T̃ b̃] j̃

ĩ
[T̃ c̃] l̃

k̃

(B2)

and we see that these reproduce the amplitude for a bi-adjoint scalar theory coupled to a pair of bi-fundamental
scalars, with a non-trivial flavour group (see Figure 4). The cubic interactions for this theory are described by the
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FIG. 4. Double-line tree-level Feynman diagrams for the 5-point (bi-fund.)-(bi-fund.)-(bi-fund’.)-(bi-fund’.)-(bi-adj.) interaction
for the scalar theory in (B3). The curly (straight) double-lines represent the bi-adjoint (bi-fundamental) representation of the

global G × G̃ symmetry. Each diagram is the double-copy of the corresponding gluon-quark diagram shawn of its kinematic
data.

Lagrangian

Lbi-adj-fund = −
1

2
∂µΦab̃∂

µΦab̃ −
1

2
∂µΦ

α
ĩi
∂µΦĩi

α +
g

6

(

fabcf̃ãb̃c̃Φ
aãΦbb̃Φcc̃ + i[T a]i

j [T̃ ã ]̃i
j̃ΦaãΦ

ĩi
αΦ

α
jj̃

)

, (B3)

where α denotes the representation of the flavour group, which the scalars have inherited from the original theory.
We note that the replacement rules postulated in (28) and (29) still hold since the Feynman diagrams are already
BCJ-duality respecting (i.e. there are no four-point contact terms in this example).
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