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1 Abstract18

We recorded high-frequency (> 10 Hz) harmonic tremor with spectral gliding at Hekla19

volcano in Iceland. Particle motion plots indicated a shallow tremor source. We observed20

up to two overtones beneath our Nyquist frequency of 50 Hz and could resolve a source of21

closely spaced pulses of very short duration (0.03 - 0.1 s) on zoomed seismograms. Volcanic22

tremor with fundamental frequencies above 5 Hz, frequency gliding and/or repetitive23

sources similar to our observations were observed on different volcanoes around the world.24

However, this frequency content, duration and occurrence of volcano-related tremor was25

not observed in the last 35 years of seismic observations at Hekla. Detailed analysis reveals26

that this tremor was related to helicopters passing the volcano. This study relates the27

GPS track of a helicopter with seismic recordings of the helicopter at various distances.28

We show the effect the distance, number of rotor blades and velocity of the helicopter has29

on the observed up and down glidings at up to 40 km distance. We highlight similarities30

and differences between volcano-related and helicopter tremor in order to help avoid31

misinterpretations.32

2 Introduction33

When recording seismic tremor on volcanoes, it is crucial to distinguish between volcanic34

and other tremor sources. Possible sources not related to the volcano include but are35

not limited to ship propellers (Franek et al., 2014), animals such as whales (Pontoise36

and Hello, 2002), T waves (Talandier and Okal, 1996), icebergs (Müller et al., 2005; Ta-37

landier et al., 2002), subglacial water flows (Winberry et al., 2009; Röösli et al., 2014),38

lahars (Kumagai et al., 2009), ocean gravity waves and imperfectly designed recording39

units (Olofsson, 2010). Attempts to distinguish those sources focus on their fundamental40

frequency, strength and amount of overtones and the length and temporal changes of the41

tremor.42

Harmonic volcanic tremor is usually observed between 1 and 9 Hz with a fundamental43
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frequency around 1 Hz (McNutt, 1992; Soosalu et al., 2005; Gudmundsson et al., 1992)44

and integer harmonic overtones (Hotovec et al., 2013; Schlindwein et al., 1995; Hellweg,45

2000). However, harmonic tremor with fundamental frequencies above 5 Hz was observed46

at Fogo (Heleno et al., 2006), a mud volcano in the SW Barents Sea (Franek et al., 2014)47

and a fundamental frequency of 10 Hz with 3 overtones was detected at a submarine48

volcano in the Pacific (Dziak and Fox, 2002). Mt. Semeru volcano in Indonesia, Lascar49

volcano in Chile and Arenal volcano in Costa Rica are also exceptional due to overtones50

at more than 10 Hz (Schlindwein et al., 1995; Hellweg, 2000; Hagerty et al., 2000).51

Strong up and/or down gliding was recorded at Arenal Volcano, Costa Rica (Benoit and52

McNutt, 1997; Hagerty et al., 2000; Almendros et al., 2012); Mt. Veniaminof, Alaska (De53

Angelis and McNutt, 2007); Monserrat, West Indies (Jousset et al., 2003); and Redoubt54

volcano, Alaska (Hotovec et al., 2013). Fundamental frequencies for these gliding events55

were between 1.9 and 3.4 Hz (Benoit and McNutt, 1997), between 1 and 3 Hz (Hagerty56

et al., 2000), between 1 and 2 Hz (Almendros et al., 2012), between 0.5 and 2 Hz (De57

Angelis and McNutt, 2007), and between 1 and 4 Hz (Jousset et al., 2003). Redoubt58

volcano is an exception as gliding frequencies spanning the range from less than 1 Hz to59

30 Hz were observed. Up glidings typically started at a fundamental frequency of either60

1 or 5 Hz (Hotovec et al., 2013).61

Some source models explain volcanic tremor with and without frequency gliding with62

repeating pulses at uniformly increasing/decreasing or constant spacing (comb function),63

respectively (Schlindwein et al., 1995; Powell and Neuberg, 2003; Hotovec et al., 2013;64

Jousset et al., 2003). However, on volcanoes, the predominant models for tremor genera-65

tion are related to sub-surface fluid motion in conduits (e.g., Chouet (1986), Jousset et al.66

(2003), Jellinek and Bercovici (2011), Julian et al. (1994), Rust et al. (2008)).67

We demonstrate that some characteristics, in particular the repetitive source, fundamental68

frequencies and gliding lines of helicopter-generated tremor can be identical to those ob-69

served in volcanic tremor. In such cases, one could misinterpret the helicopter-generated70

tremor as volcanic tremor if special care is not taken. In the following, we provide a71

detailed analysis of helicopter-generated tremor and give guidelines for preventing misin-72

terpretations.73
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3 Tremor Observations at Hekla Volcano74

Hekla volcano lies at the connection between the South Iceland Seismic Zone and the75

Eastern Volcanic Zone (e.g., Einarsson (1991)). Volcanic tremor accompanied all recent76

eruptions in 1980/81, 1991 and 2000, commencing and ending sharply with the erup-77

tion (Grönvold et al., 1983; Gudmundsson et al., 1992; Soosalu et al., 2005). In 1980/8178

the harmonic tremor correlated well with the tephra production rate (Grönvold et al.,79

1983). In 1991, a tremor band from 1 to 3 Hz (maximum around 2.5 Hz), propagating80

as Rayleigh and Love waves at a speed of 500-1000 m/s, correlated with the force of the81

eruption (Gudmundsson et al., 1992). The volcanic tremor during the eruption in 200082

was similar to the 1991 tremor with one to three major peaks between 0.7 and 0.9 Hz.83

Subdominant peaks were detected between 0.5 and 1.5 Hz from time to time. In compar-84

ison to detected earthquakes, tremor was attenuated faster and could hardly be detected85

at stations at more than 65 km distance. This was attributed to a shallower source.86

This was also supported by particle motion studies which identified Rayleigh waves. The87

tremor amplitude was strongest at the beginning of the eruption and roughly correlated88

with plume height (Höskuldsson et al., 2007). At later stages, the tremor decreased as the89

explosive activity decreased. Importantly there are no reports of tremor outside periods90

of eruptive activity at Hekla.91

We were interested in the background seismicity on Hekla volcano and installed five tem-92

porary Güralp 6TD seismometers, operational between August 9 and October 10, 201293

(figure 1).94
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Figure 1: Location of temporary deployed seismometers on Hekla volcano. Elevation is a.s.l.

Apart from recently detected microseismicity (Eibl et al., 2014), it is usually described95

as aseismic in periods of quiescence (Soosalu and Einarsson, 2002; Soosalu et al., 2005;96

Grönvold et al., 1983).97

Nevertheless, we observed 42 seismic tremors on all five stations which are pulsating and98

have emergent onsets in the time domain (see figure 2c). The envelopes of the tremor are99

quite different from station to station, although within a 2 s long window, we can resolve100

repeating pulses on all stations.101

In the frequency domain, down gliding is observed with an inflection point and equally102
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spaced overtones up to the Nyquist frequency of 50 Hz. Depending on the fundamental103

frequency, 0-2 overtones are visible below the Nyquist frequency at integer multiples of104

the fundamental frequency. We observed three groups of glidings around three different105

fundamental frequencies. The most common gliding starts at 22-25 Hz and falls to 14-18106

Hz (figure 2a, overtone not shown). Another common gliding starts at 30-34 Hz and falls107

to 21-25 Hz (figure 2b), and a third group starts at 15-17 Hz falls to 11-14 Hz (figure 2c).108

No difference in the amplitudes between the fundamental frequency and higher harmonics109

was observed.110
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Figure 2: Spectrogram of the vertical components of all five Hekla stations on (a) August 25, 2012, at
12:11:00-12:18:00 filtered 15-23 Hz and (b) August 13, 2012, at 15:04:00-15:09:30 filtered 21-31 Hz. Colors
indicate the Power Spectral Density of the signal. (a) Strong change in slope, (b) Clear propagation in
time, (c) Seismogram and spectrogram of the vertical component on September 19, 2012, filtered 11-47
Hz showing slow gliding with a fundamental frequency around 13 Hz and 2 overtones.
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At neighboring stations, gliding patterns are similar but slopes are different. We mostly111

observed the fastest gliding at the station with the strongest signal. The seismic signal was112

usually lost shortly before and after the gliding. Some glidings, however, were preceded113

or followed by up to 15 min by a persistent non-gliding spectral pattern. Moreover, two114

tails could be observed in rare cases.115

4 Data Analysis116

4.1 Initial Tremor Analysis at Hekla117

Initially, we analysed the tremor assuming a volcanic source. Zooming in reveals a source118

consisting of short duration, repeating pulses (figure 3).119
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Figure 3: Seismogram of the tremor at (left) HEK01 and (right) HEK04 on August 25, 2012, from 12:15:08
to 12:15:10 filtered from 20 to 23 Hz.

In figure 2, we show 3 different signals, with fundamental frequencies around 13, 20 and 26120

Hz, respectively. Figure 3 shows the corresponding signals in the time domain for a part121

of figure 2a. By comparing the two figures, it can be seen that the fundamental frequency122

(as well as the separation between the fundamental frequency and higher harmonics) is123

equal to the reciprocal value of the time interval between successive pulses. Since the124

repeating period of individual pulses is longer than 1/𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 and individual pulses are125

shorter than 1/𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡, the higher harmonics are present all the way up to the Nyquist126

frequency, as in the case of the delta comb function.127

Particle motion plots indicate the retrograde elliptical motion of Rayleigh waves as further128

discussed in section 4.4. This suggested a likely shallow source which is consistent with129

tremor observations during eruptions at Hekla. However, previous tremor was always130

strongly linked to explosive activity during an eruption. We expect a shallow tremor131

source to be coincident with changes in deformation data, strain measurements or possibly132

gas measurements. A lack of correlation of our tremor observations with these observables133

made us suspicious of a volcanic origin. This tremor was also at higher frequency, observed134

only between 8:24 am and 11:22 pm and during a period of volcano quiescence. However,135

tremor has not been observed during a period of volcano quiescence in the previous 35136

years of instrumental recordings at Hekla. Comparing the time of the inflection points at137

all stations, it sometimes seemed that the source moved in time (see figure 2b), whereas138

in others, it did not (see figure 2a). Thus, we searched for recordings of this signal139
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at a permanent station from the Icelandic Meteorological Office network in Haukadalur140

(63.9685 N, 19.9647 W) 15 km west of Hekla. Surprisingly - still assuming a volcanic141

tremor source - this high-frequency tremor could be observed, but it was usually about 4142

min earlier than at the stations on Hekla. It transpired that the sources were helicopters143

in the vicinity of Hekla volcano.144

Our concern is that these signals could readily have been interpreted as exotic, volcano-145

related signals. Although experienced observatory staff would likely identify the signals146

as cultural noise, this is not necessarily the case for intrepreters in general. This might be147

especially true at volcanoes that are poorly monitored (in a seismo-acoustic sense). With148

a single station (or several stations in a unfavorable position with respect to the source of149

tremor), it may be difficult to distinguish the Doppler effect from temporal variations of150

a volcanic source. In section 4.3, we link the different features visible in the spectrograms151

to the GPS track of a helicopter that we acquired in December 2014. This experiment152

was carried out with permanent stations at a different location. The helicopter performed153

a flyby in the vicinity of two seismic arrays, deployed west of Vatnajökull glacier. We also154

compared the characteristics of these signals to those of volcanic tremor.155

4.2 Station Network and the Helicopter GPS Track156

A comparison of the seismic data and the GPS track of the helicopter was undertaken with157

two seven-station broadband arrays with an aperture of 1.6 km in Jökulheimar and Innri158

Eyrar, near Laki west of Vatnajökull glacier (figure 4b). The arrays include six Güralp159

6TD sensors and one Güralp 3ESPDC at the array center (JOK and IEY in figure 4b).160

We have the GPS track (figure 4a) of a four-bladed helicopter on December 19, 2014. The161

instrument is a Garmin 795 with an accuracy of at least 10 m and a sampling rate of 5162

Hz. In the ’smart sampling’, mode points were saved every 1-18 s in order to both save163

memory and record changes in the heading. The helicopter was less than 50 km away164

from Jökulheimar between approximately 11:00 and 12:15 UTC. The helicopter crossed165

the array in Jökulheimar at 11:53:30 flying westwards from Þórðarhyrna. According to166

the manufacturer, the rotor revolutions per minute (RPM) is fixed at 413 (6.883 Hz) for167

this helicopter model. The wind speed was 5 m/s from the north. From the GPS track,168

we calculated a speed of 210 km/h and a flight direction of 253.55∘ from north directly169

above the array. The helicopter crossed the array north of JOG and south of all the170

others closest to stations JOA, JOK and JOD at 960 m height a.s.l. (figure 4b), which171

corresponds to 220 to 280 m above the array.172
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Figure 4: (a) The GPS track of the helicopter is shown in red, where red stars are 3 min apart and mark
the helicopter location at the time ticks in figure 5. The flight direction is indicated with red arrows.
Volcanoes, glaciers and the arrays JO and IE are marked for orientation. (b) Location of seismometers
arranged as 7-element arrays in Jökulheimar and Innri Eyrar near Laki. Red track as in a. The insets show
(top) the arrays JO and IE with respect to the whole island and Grimsvötn marked with G, (middle) the
geometry of JO. Yellow dots mark the helicopter position at 11:53:14, 11:53:28 and 11:53:44 for reference
to the particle motion plots shown in figure 8 and (bottom) the geometry of IE. Elevation is a.s.l.

4.3 Spectral Gliding173

4.3.1 Linking Seismic Observations and Helicopter Position174

Figure 5 shows the seismic recording at JOA while the helicopter followed the track in175

figure 4a where the stars indicate the times labeled in figure 5. Together with the seis-176

mogram and spectrogram, we show the helicopters distance to station JOA, as well as its177

speed and azimuth. When calculating the distance, we included horizontal distance as178

well as the height difference. We detected the helicopter three times during this period,179

including 11:09:00 to 11:16:00, 11:24:30 to 11:33:30 and 11:46:00 to 11:54:00. First as a180

slow down gliding, second as a combination of up and down glidings that end in a steep181

down gliding and third as a very strong, steep down gliding which is preceded by a slow182

up gliding. Up and down glidings are a consequence of the distance between helicopter183

and seismometer, the velocity and azimuth as we will describe below.184

The seismometers in Jökulheimar record the helicopter for the first time at 29 km distance185

while it flew northeastwards towards Tungnafellsjökull (see figure 4a). In the following 7186

min, the distance between the helicopter and the seismometer first decreases to a min-187

imum of 25 km and then increases to 30 km. While the helicopter continued towards188

Tungnafellsjökull, we lost its seismic signal.189

The second recording starts after the helicopter changed direction close to Tungnafell-190

sjökull from northeast to south-southeast and approaches the seismometers again. The191

signal is detected when the helicopter is still 36 km away. The following 9 min are char-192

acterized by speeds between 210 and 233 km/h, azimuths between 140 and 180∘ and a193

distance decreasing from 36 to 16 km. Changes in these three parameters create a seismic194
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signal of multiple up and down glidings that span less than 5 Hz. When the helicopter195

changes direction from SSE to E close to Kerlingar (see figure 4a), the distance increases196

again and the signal is lost at 20 km distance.197

The third recording starts 2 min after the helicopter turned around near Þórðarhyrna198

at a distance of 29 km. From there, the speed and azimuth are about constant and the199

helicopter flies westwards crossing the array around 11:53:30. Fluctuations in speed and200

azimuth and a slow increase in speed show up as small fluctuations in the frequency before201

the final strong Doppler glide, when the helicopter flies directly over the array.202
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Figure 5: (top) Flight direction of the helicopter as azimuth measured clockwise from north (dotted line),
velocity of the helicopter (dashed line) and distance between the helicopter and station JOA (red solid
line). (middle) Instrument corrected and 23-35 Hz filtered seismogram of the vertical component at JOA
in Jökulheimar clipped at 3·10−7 m/s. (bottom) Spectrogram of the displayed seismogram showing the
gliding of the fundamental frequency.

4.3.2 Analysis of Doppler Gliding: Methodology203

It is possible to describe the frequency and velocity of a moving acoustic source relative204

to a fixed receiver using the following equations if the source is approaching the receiver205

directly (Feynman et al., 1963):206

𝑓𝑏ℎ =
𝑓𝑠

(1− 𝑣𝑠𝑟
𝑐
)

(4.1)

for the approach and207

𝑓𝑏𝑙 =
𝑓𝑠

(1 + 𝑣𝑠𝑟
𝑐
)

(4.2)

for the departure, where 𝑓𝑠 and 𝑣𝑠𝑟 are the acoustic source frequency and radial velocity208

of the helicopter, respectively, c is the sound speed of 340 m/s and 𝑓𝑏𝑙 and 𝑓𝑏ℎ are the209

lower and upper frequency observed. For an arbitrary flight direction, we can replace210

𝑣𝑠𝑟 with 𝑣𝑠 · 𝑐𝑜𝑠Φ, where 𝑣𝑠 is the velocity of the source and Φ is the angle between the211

receiver-source direction and the flight direction. Considering geometrical relationships212

between the receiver position and the helicopter’s trajectory, 𝑐𝑜𝑠Φ can be further replaced213
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with 𝑣𝑠·𝑡𝑛√
(𝑣𝑠·𝑡𝑛)2+ℎ2

, where h is the closest distance between source and receiver and 𝑡𝑛 is the214

time which is 0 at closest approach. The general representation of the curve is215

𝑓(𝑡) =
𝑐 · 𝑓𝑠

𝑐+ 𝑣2𝑠 ·(𝑡−𝑡0)√
𝑣2𝑠 ·(𝑡−𝑡0)2+ℎ2

(4.3)

where f(t) is the observed frequency with respect to UTC time t, and 𝑡0 is the time at216

which the helicopter is closest to the stations (at distance h).217

Analysis of typical Doppler gliding in the spectral domain allows us to deduce the heli-218

copter speed, blade rotation frequency and number of blades using equation 4.3. Process-219

ing steps include the removal of the seismic instrument response and band-pass filtering220

the signal to the frequency band of interest (e.g., 22-36 Hz). We then calculate spectra221

over 2.4 s long time windows with 98% overlap. We chose this time window as it resulted222

in a smooth curve and a good frequency resolution suitable for curve fitting. We pick the223

lowest (fundamental) peak in the amplitude spectrum and use the resulting time series224

for all 7 stations as basis for the following analysis.225

Fitting the curves with equation 4.3 gives us an estimate of 𝑡0, 𝑓𝑠, 𝑣𝑠 and h. We can226

compare 𝑣𝑠 directly with the helicopter properties and convert 𝑓𝑠 to RPM. The resulting227

RPM will be the product of the RPM of the helicopter multiplied by the number of blades.228

As a standard RPM is in the range 385-415 RPM (6.417-6.917 Hz), it is therefore possible229

to deduce the number of blades from the RPM we calculate. The other properties can230

be used to locate the helicopter and determine its flight direction as shown in Lo and231

Ferguson (2000). This is beyond the scope of this study.232

Additional information can be gained from the shape and length of the source pulses233

when analyzing the overtones of the signal. The spacing of the overtones corresponds to234

the time interval between repeating sources (Båth, 1974). The attenuation of overtones235

contains information about the shape of the amplitude spectrum of a single source pulse.236

Effectively, the recorded signal is the convolution of the source pulse (a pressure pulse237

produced by a single blade) with an infinite comb function (repetitive action generated238

by the rotation of the blades). For overtones to be visible, their frequency must overlap239

with the spectrum of the single pulse.240

4.3.3 Slope of the Doppler Gliding with Respect to Distance241

From 11:52:20-11:54:10, we recorded the helicopter on all seven stations in Jökulheimar242

and three out of five stations in Innri Eyrar (two stations were in acoustic shadow). The243

gliding slopes are steeper for stations closer to the helicopter flight path. In figure 6244

the slopes range between -0.72 Hz/s (JOA) and -0.24 Hz/s (JOF). Figure 6 shows the245

frequency that contains the highest power in the spectrum of a 2.4 s long time window246

that overlaps 98% with the next one and the root mean square (RMS) of the amplitude247

in the same time windows. Note that the time of closest approach is not the time of the248

highest amplitude (figure 6) and that amplitude distribution is not smooth. In fact JOK249

and JOD - the stations directly below the helicopter - have unusually low amplitudes (see250

figure 4b for the GPS track and figure 6 for the amplitudes). Using equation 4.3, we251

calculate a RPM of 418.8 ± 24.4 for a four-bladed helicopter that flew at 222 ± 9 km/h.252

The estimated error is based on the frequency resolution visible in figure 6 and converted253

to RPM and velocity. The results are consistent with a known RPM of 413 according to254

the manufacturers and a known speed of 209.66 km/s derived from the GPS track.255
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Figure 6: Spectral analysis of the vertical component of the stations in Jökulheimar. Spectra and RMS
were calculated in 2.4 s long time windows overlapping by 98%. (top) Most energetic frequency of the
spectrum of each 2.4 s long time window at all station of the JO array. (bottom) RMS of the 2.4 s long
time windows at all stations in the JO array.

For the stations at greater distances, we expect slow or no visible gliding as in figure 2c.256

This is due to very small changes in the relative source-receiver distance. In Innri Eyrar257

(figure 7), we observed in fact a weak signal that glided slowly downwards between 11:41:00258

and 11:56:00. However, the general frequency gliding was overlain by frequency fluctuation259

of up to ± 1 Hz.260

We note that the array in Innri Eyrar recorded the helicopter at 40 km distance at 11:41:00,261

whereas the array at Jökulheimar at less than 35 km distance did not. In Jökulheimar, it262

was recorded 5 min later at only 29 km distance. This might be due to the wind direction263

from the north (5 m/s). However, only the stations in Innri Eyrar on the northwestern264

side of the hill recorded it (except for IED, where the noise level was too high). The265

stations a few hundred meters further southeast were sheltered from the pressure wave266

by the hill or a cliff (see figure 4).267
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Figure 7: Same as figure 5 but for station IEY in Innri Eyrar. The white box mark the helicopter signal.

4.4 Particle Motion Analysis268

The main rotor’s blades create an acoustic signal. These repeating pressure pulses travel269

through the air and decay in amplitude. Due to a strong attenuation of high frequencies270

in the ground, we conclude that the recorded waves are excited close to the seismometer.271

The average noise level (RMS) on the analyzed day in the shown frequency band was272

3.6·10−9 m/s at IE and 5.9·10−9 m/s at JO. Although in the spectrograms we were able to273

visually identify signals with a signal-to-noise ratio down to 1.05 (see figure 7), quantitative274

analysis of the signal undertaken, e.g., in figure 6, was carried out with a signal-to-noise275

ratio of 13.8. This sensitivity is high due to a low noise level on that day, e.g., due to low276

wind speeds.277

When zooming into the seismogram, we can resolve the pulses created by the rotor blades.278

We show four 1 s or 0.5 s long particle motion plots from JOB (figure 8a-d) in the time279

window 11:53:13 to 11:53:32.5. We observe a longer and a shorter period oscillation. At280

all stations, the longer period oscillation is an elliptical-retrograde wave, propagating in281

the vertical plane (N-Z and E-Z subplots in figure 8). This plane is oriented NW-SE282

when the helicopter approaches the stations from the east (N-E subplot in figure 8a and283

b). It changes to N-S at the time of closest approach (figure 8c) when the helicopter is284

south of JOB and changes to NE-SW when it departs towards the west (figure 8d). This285

implies that the helicopter creates Rayleigh waves through atmospheric coupling to the286

ground (Bass et al., 1980). The shorter period oscillation has a period of 0.04 s in this287

time window and correspond to the individual pulses from the rotor blades.288
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(c) 11:53:27-11:53:28
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(d) 11:53:32-11:53:32.5

Figure 8: (a-d) Particle motion plots (velocity in m/s, filtered 22-36 Hz) for station JOB at (a) 11:53:13-
11:53:14, (b) 11:53:20-11:53:21, (c) 11:53:27-11:53:28 and (d) 11:53:32-11:53:32.5. The corresponding
position of the helicopter at panels a and c is marked with a yellow dot in figure 4b. The black star and
triangle mark the first and second time sample, respectively. Note the different scale in panel b.
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5 Summary of Results and Discussion289

In general, helicopters in Iceland have a main rotor with two, three or four blades. These290

blades turn at a rate of 385 to 415 RPM (6.417-6.917 Hz) and create repeating pressure291

pulses. These pulses are created when a blade passes through a tip vortex shed by a292

previous blade, as further discussed in, e.g., Malovrh and Gandhi (2005) and Hardin and293

Lamkin (1987). The tail rotors often turn at 2100-2500 RPMs (35-41.7 Hz) with two294

blades usually not creating much noise on cruise flights as they do not create much lift295

at that stage. At maximum speed of 200-300 km/h the rotor RPM does not vary by296

more than 1-2%. The frequency at which pressure pulses emanate from the helicopter is297

the RPM times the number of blades. It equates to 12.8-13.8, 19.25-20.75 and 25.6-27.7298

Hz for a two, three or four-bladed helicopter, respectively (recordings were published in299

Damarla and Ufford (2008); Damarla (2010)).300

We recorded the regularly repeating pressure pulses generated by helicopter rotor blades301

with seismometers. As the source moved and passed our stationary recorder, we observed302

Doppler gliding in the frequency domain with inflection points around the above men-303

tioned frequencies. All harmonics are visible at the same amplitude, e.g., figure 2c, which304

led us to the conclusion that the frequency content of the single pulse is approximately305

flat between the fundamental and Nyquist frequencies. For the four-bladed helicopter306

observed in this work, the spacing between those pulses was between 0.029 s and 0.042 s.307

A seismic recording of a helicopter with a spacing of about 0.08 s can be seen in Damarla308

and Ufford (2008). Particle motion plots indicate that the long period ground oscillation309

is a retrograde Rayleigh wave.310

We observed that a seismometer a few hundred meters away recorded a higher amplitude311

than a seismometer directly below the helicopter. We have access to another flyover where312

the helicopter was a few hundred meters south of all stations in Jökulheimar and where313

we observed the amplitude decaying with increasing distance to the source as expected.314

Interestingly, we also observed that the amplitude of the signal was not strongest when315

the helicopter was closest to the seismometer (compare times of inflection points and max-316

imum amplitudes in figure 6). Radiated pressure waves from the helicopter are shadowed317

immediately below the aircraft. A contributing factor to this effect is the acoustic-to-318

seismic coupling itself. At a certain angle, Rayleigh waves may be created more efficiently,319

especially if the angle allows for constructive interference of surface waves (Bass et al.,320

1980). HOwever, interference can also occur if the signal is reflected from a topographic321

feature. This has to be kept in mind for amplitude and phase/ travel time studies and322

might change or destroy gliding patterns.323

In general, we observed that the distance alone is not the only factor that influences324

whether the signal is recorded. We often found or lost track of the helicopter at approx-325

imately 29 km distance for recordings in Jökulheimar. However, when coming from the326

north - which was the wind direction on that day - we recorded it even when 35 km away.327

In contrast we lost the signal at 19 km distance when the helicopter flew eastwards, north328

of the Kerlingar mountains. This is supported by recordings of the helicopter at 40 km329

distance at the Innri Eyrar array, which was located downwind on that day. This suggests330

that both wind direction and topography play an important role. This would also explain,331

why we observed tails prior to the gliding or following the gliding but only in rare cases332

both prior to and following the gliding.333

We also want to note that up- or down drafts on windward or leeward slopes might affect334

the observed frequencies. They can lead to sudden height changes but also to an increase/335

decrease in power to compensate for the draft. As the topography in our example is rather336
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smooth and the wind was weak, up- and downdrafts played a minor role in creating the337

observed frequency changes. This is confirmed by the observation that there is no corre-338

lation between height changes and frequency glidings.339

We observed ground velocities on the order of 3.6 nm/s at 40 km distance (see figure 7) on340

a day with a low noise level and low wind speed. We inspected all our recordings in 2014341

and found a maximum duration of 40 min for a helicopter-generated signal. Assuming a342

passing helicopter at a speed of 180-240 km/h, it would travel 120-160 km during that343

time. This implies that the pressure wave created by the helicopter blades is large enough344

to be recorded by seismometers at least 60 km downwind, assuming that it was closest to345

the stations after 20 min and travelling in a straight line.346

In cases where the helicopter did not fly directly above the seismometer we observed slow347

Doppler glides, spectral lines at the frequency of the source, up glidings or a random348

combination of up and down glidings. Up glidings can be the consequence of a helicopter349

that is first flying away from the seismometer but then turning and flying towards it.350

This was shown in Damarla (2010), where a helicopter followed a track approaching and351

departing a sensor multiple times. A pattern of complex up and down glidings is probably352

the consequence of a combination of distance, altitude, velocity, azimuth and RPM of the353

helicopter. Slight variations in those parameters are normal but might be larger if the354

helicopter is on a sight-seeing tour or rescue mission.355

Spectral analysis of a standard Doppler glide enabled us to deduce the speed, the number356

of rotor blades and RPM of the helicopter. We estimated a RPM of 418.8 ± 24.4 for357

a four-bladed helicopter that flew at 222 ± 9 km/h. This is in good agreement with a358

RPM fixed at 413 according to the manufacturer and a speed of 209.66 km/s, which we359

calculated from the GPS track. In the GPS track, we determined three occasions where360

the distance between the stations and the helicopter first decreased and then increased.361

During all those times we recorded Doppler glides at different speeds, amplitudes and362

start and end frequencies. The amplitudes are higher and gliding occurs faster if the363

helicopter is closer, which is in agreement with our expectations. The upper and lower364

frequency will be influenced by the velocity but if the source is too far away the signal will365

be too weak which makes it difficult to determine the exact higher and lower frequency366

of the gliding. An additional difficulty when determining the upper and lower frequency367

are rapid speed changes of the helicopter, visible, e.g., during the second gliding.368

We can conclude that the shapes of helicopter tremors depend significantly on the dis-369

tance and uniformity of velocity, flight direction and RPM of the source. Fundamental370

frequencies tend to be around 13, 20 and 28 Hz but can reach as low as 10 Hz.371

Redoubt volcano is the perfect example for very similar volcano-related, harmonic tremor.372

Frequency up gliding was observed from less than 1 up to 30 Hz or 5 to 30 Hz prior to373

explosions, down gliding interrupted by small up glidings had fundamental frequencies374

above 5 Hz (Hotovec et al., 2013). Other strong up and down glidings (Benoit and Mc-375

Nutt, 1997; Hagerty et al., 2000; Almendros et al., 2012; De Angelis and McNutt, 2007;376

Jousset et al., 2003) and fundamental frequencies of more than 5 Hz were observed on377

various volcanoes (Heleno et al., 2006; Franek et al., 2014; Dziak and Fox, 2002). The378

latter can be similar to a helicopter passing a seismometer at a greater distance where no379

gliding but only the frequency of the rotor blades is observed.380

Suggested models for volcanic tremor are repeating equally spaced pulses (Schlindwein381

et al., 1995; Powell and Neuberg, 2003; Hotovec et al., 2013; Jousset et al., 2003) and382

resonances of various sources (Franek et al., 2014; Dziak and Fox, 2002; Benoit and Mc-383

Nutt, 1997; De Angelis and McNutt, 2007; Schlindwein et al., 1995; Hellweg, 2000). If384

frequency gliding is observed, then it is attributed to a change in the source geometry in385
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the case of a resonating source, or a change in the spacing between pulses of a repeating386

source. This is in contrast to helicopter tremor where the observed change in frequency387

is merely an effect caused by the movement of the source relative to the receiver, not a388

change in the frequency of the source.389

In order to distinguish helicopter tremor from a volcanic source, we suggest that a variety390

of observables be compared. The fundamental frequency of harmonic tremor would be391

around 13 Hz for a two-bladed helicopter and higher for helicopters with more blades or a392

RPM above 400. These frequencies are higher than observed at most volcanoes. Another393

characteristic is the duration of the signal. The longest helicopter signal we observed394

was 40 min long. Continuous volcanic tremor can persist on the order of hours to days.395

Particle motion plots that indicate Rayleigh waves whose orientation changes in time are396

typical for a helicopter but are rather unlikely for a volcanic source. Seismic amplitudes397

can reveal helicopter tremor as well. A first increasing, then decreasing seismic amplitude398

that is strongest near the inflection point of a down gliding will indicate a helicopter as399

source. Furthermore, we observed a strong link between the slope of the down gliding400

and the recorded signal amplitude for helicopters.401

It is advisable to check the historical behaviour of a volcano and other observations, e.g.,402

visual recordings of a volcano, its degassing behaviour or deformation measurements in-403

cluding GPS or satellites in order to check for correlations that support a volcanic source.404

In the case of Hekla volcano, the observed tremor signals in this study show no causal405

relationship with volcanic activity. We conclude that by analyzing the physical properties406

of the tremor in the time as well as the spectral domain and by comparing recordings from407

different disciplines or even microphone recordings it is possible to distinguish volcanic408

and helicopter tremor.409
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