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Abstract

This paper shows the attractive enumerative relations between matroids of low rank. It differs from
past work in that, rather than attempting to examine the numbers of non-isomorphic matroids as pro-
posed by Crapo [4], it looks directly at the number of matroids and then extends to their non-isomorphic
counterparts. We give the (heretofore unknown) numbers for matroids on at most eight elements. Fur-
thermore, we consider a random collection of r-sets of an n-set and examine the probability that these
satisfy the matroid basis exchange axioms. The asymptotic behavior of this probability shows interesting
characteristics. The r = 2 case corresponds to a problem in random graphs.

DIAS-STP-01-10

1 Introduction

The matroid enumeration problem has long been forgotten. Research seemed to grind to a halt in the
late ’70s once sufficiently tight asymptotic bounds had been found [10, 8]. In this paper we revive the
enumeration problem and see that by focusing on the number of matroids, rather than the number of
non-isomorphic matroids (as proposed by Crapo [4]), more appealing expressions are obtained. We show
how the numbers for rank-2 matroids are related to the Bell numbers and integer partitions, how numbers
for the rank-3 matroids are related to 2-partitions and how Knuth’s [8] lower bound for the number of
combinatorial geometries may be used to improve Doyen’s [5] lower bound on the number of 2-partitions.
The rank-3 matroids are also seen to be discretely self-similar which partly answers a query made by
Konvalina [7].

The probability that a random collection of k-sets forms the basis for a matroid is also examined.
For 2-sets, the problem can be viewed as a random graph being t-partite and an exact recursion for the
probability given. For k = 3 the same limiting behavior, as in the k = 2 case, is shown to hold but
under a different scaling. We refer the reader unfamiliar with any concepts to the introductory chapter
of Oxley [9].

1.1 Notation

Let Sn be a finite set of size n and Sd
n the collection of all d-element subsets of Sn. Let Mk

r (Sn) and Fk
r (Sn)

be the classes of rank-r matroids and non-isomorphic rank-r matroids on Sn, respectively, both with all
k-sets independent. We write mk

r (n) =
∣

∣Mk
r (Sn)

∣

∣ and fk
r (n) =

∣

∣Fk
r (Sn)

∣

∣. Define Mr(Sn) := M0
r(Sn)

and similarly for Fr, mr and fr. Let Πn (i) and Π⋆
n (i) be the set of all partitions and non-isomorphic

partitions, respectively, of the set Sn into i parts. Let Πn (i, j) := Πn (i) ∪ Πn (i + 1) ∪ · · · ∪ Πn (j)
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and Πn := Πn (1, n). Let pi(n) denote the number of partitions of the integer n into i parts and let
p(n) := p1(n) + . . . + pn(n). The number of matroids and non-isomorphic matroids on Sn are given by

m(n) =
∑

06r6n

m0
r(n) f(n) =

∑

06r6n

f0
r (n)

Let H = {H1, . . . , Hk} be a collection of distinct subsets of Sn. We say that H is a d-partition of Sn

if,

1. |Hi| > d for all 1 6 i 6 k,

2. H1 ∪ . . .Hk = Sn,

3. Every d−element subset of Sn is contained in a unique Hi ∈ H.

We see that the class of 1-partitions of Sn with k sets correspond to Πn (k). Let hd(n) be the number of
d-partitions of the set Sn and h⋆

d(n) the corresponding non-isomorphic number. It is well known that if
H is such a d-partition with k > 1, then H satisfies the hyperplane axioms for a matroid M on Sn with
rank d + 1. Such a matroid is called a paving matroid.

2 Enumeration

The approach to counting matroids is through structural properties of the lattice of flats. The main results
of this section are given in Theorems 3, 4 and an expression for the number of simple rank-r matroids
given in equation 5. Enumerating rank-r matroids on Sn involves finding m0

r(n) and f0
r (n). The number

of rank-0 and rank-1 matroids is trivial, m0
0(n) := 1, f0

0 (n) = 0, m0
1(n) = 2n − 1 and f0

1 (n) = n for all
n > 1. Clearly mr

r(n) = fr
r (n) = 1 for all 1 6 r 6 n. The primary recursive relations between the first

three classes of matroids are given in the Lemma 1. Note that the class M1
r(Sn) is the class of rank-r

matroids on Sn with no loops. Similarly, the class M2
r(Sn) is the class of rank-r matroids with neither

loops nor parallel elements (simple matroids). The class Mr−1
r (Sn) is the class of rank-r paving matroids

on Sn.

Lemma 1 For all 1 6 r 6 n,

m0
r(n) =

∑

r6i6n

(

n

i

)

m1
r(i) (1)

m1
r(n) =

∑

r6i6n

{n

i

}

m2
r(i). (2)

Proof: Any matroid M ∈ M0
r(Sn) can have at most n− r loops. If M has loops X ⊆ Sn, |X| = j, then

X may be chosen in
(

n
j

)

ways. The resulting matroid is M |Sn−X ∈ M1
r(Sn −X) which has no loops since

all 1-element subsets of Sn − X are independent. Hence

m0
r(n) =

n−r
∑

j=0

(

n

j

)

m1
r(n − j)

=
n
∑

i=r

(

n

i

)

m1
r(i),

and equation 1 follows.

For equation 2 the argument is more involved. Let M ∈ M1
r(Sn) have rank-1 flats X1, . . . , Xi (note

that i > r). There are no loops, so every element of Sn is contained in at least one rank-1 flat. If Xa and
Xb are two distinct rank-1 flats, then Xa ∩Xb := ∅. Hence the collection {Xj}16j6i is simply a partition
of Sn. Thus the natural bijection between the class of matroids in M1

2(Sn) with i rank-1 flats and Πn (i).
The collection X1, . . . , Xi may be chosen in

{

n
i

}

ways where
{

n
i

}

are the Stirling numbers of the second
kind.

Any flat of M is the union of some collection of the {Xj}16j6i. Otherwise, there is some flat F and
elements a, b ∈ Xj such that a ∈ F 6∋ b. As F,Xj are both flats, F ∩ Xj is also a flat. But this forces
∅ ⊂ F ∩ Xj ⊂ Xj (since b 6∈ F ) which is a contradiction since there are no non-trivial flats which are
properly contained in a rank-1 flat.



Choose any transversal Y = {x1, . . . , xi} of the family {Xj}16j6i. Notice that M |Y ∈ M2
r(Y ) since

r({xj , xk}) = 2 for all 1 6 j 6= k 6 i. Thus each matroid M ∈ M1
r(Sn) is uniquely expressible by its

collection of rank-1 flats and a simple rank-r matroid M |Y ∈ M2
r(Y ). The number of such matroids with

i rank-1 flats is given by
{

n
i

}

m2
r(i) and the resulting equation 2 by summing from i = r to n. ✷

Lemma 2 For all n > 3, m2
3(n) = h2(n) − 1.

Proof: For any matroid M ∈ M2
3(Sn), let F2 be the collection of rank-2 flats. Trivially we have

F1 = { {x} |x ∈ Sn } and so r({x, y}) = 2 for all distinct x, y ∈ Sn. Thus for each pair of elements
x, y ∈ Sn there is a rank-2 flat X ∈ F2 containing both.

To show this flat to be unique, suppose there is another Y ∈ F2 such that Y ⊇ {x, y}. Now 2 =
r(X) > r(X ∩ Y ) > r({x, y}) = 2. Thus there does not exist such a Y and X is unique. The only
condition upon F2 in representing such a matroid is that F2 6= {Sn} =: F3. Hence |F2| > 2. It follows
that there is a natural bijection between the class of 2-partitions (excluding the trivial one {Sn}) of Sn

and the class of simple rank-3 matroids on Sn. Hence m2
3(n) = h2(n) − 1. ✷

For any rank-3 matroid M ∈ M0
3(Sn), we see that by restricting it to any transversal Y of F0 ∪ F1,

the resulting matroid M |Y is self-similar in structure to M . This important fact allows us to enumerate
rank-3 matroids. These two lemmas now suffice to prove the following recursions for the m numbers:

Theorem 3 For all n > 2, 3, respectively,

m2(n) = b(n + 1) − 2n

m3(n) =
∑

36j6n

{

n + 1

j + 1

}

(h2(j) − 1) .

Proof: Applying r = 2 to equations 1 and 2 we have

m2(n) = m0
2(n)

=
∑

26i6n

(

n

i

)

m1
2(i)

=
∑

26i6n

(

n

i

)

∑

26j6i

{

i

j

}

m2
2(j)

=
∑

26i6n

(

n

i

)

∑

26j6i

{

i

j

}

1

=
∑

26i6n

(

n

i

)

(b(i) − 1)

=
∑

26i6n

(

n

i

)

b(i) −
∑

26i6n

(

n

i

)

= b(n + 1) − nb(1) − b(0) − (2n − n − 1)

= b(n + 1) − 2n.



Similarly, applying r = 3 to equations 1 and 2 and using lemma 2,

m3(n) = m0
3(n)

=
∑

36i6n

(

n

i

)

m1
3(i)

=
∑

36i6n

(

n

i

)

∑

36j6i

{

i

j

}

m2
3(j)

=
∑

36i6n

∑

36j6i

(

n

i

){

i

j

}

m2
3(j)

=
∑

36j6n

∑

j6i6n

(

n

i

){

i

j

}

m2
3(j)

=
∑

36j6n

m2
3(j)

∑

j6i6n

(

n

i

){

i

j

}

=
∑

36j6n

m2
3(j)

{

n + 1

j + 1

}

,

from Knuth [11] equation 6.15. The result follows from Lemma 2. ✷

Turning our attention to the non-isomorphic numbers, we see the class of non-isomorphic rank-2
matroids can easily be singled out due to the structural properties revealed in Lemma 1. For the rank-3
case, isomorphisms prove more difficult to exclude but we give a lower bound.

Theorem 4 For all n > 2, 3, respectively,

f2(n) = −n +
∑

16i6n

p(i) (3)

f3(n) >

n
∑

i=3

(h⋆
2(i) − 1)

n
∑

k=i

pi(k). (4)

Proof: Two matroids on ground sets of different cardinalities cannot be isomorphic, thus we may write
the class F0

r (Sn) as the disjoint union of the loopless classes

F0
r (Sn) =

⋃

r6i6n

F1
r (Si),

and hence

fr(n) =
∑

r6i6n

f1
r (i).

The class of matroids M1
2(Si) with j rank-1 flats corresponds precisely to the class of partitions of Si

into j sets, i.e. Πi (j). To rule out isomorphisms, we have the class of non-isomorphic partitions Π⋆
i (j)

through which we may view F1
2 (Si). The number of these is simply the number of partitions of the integer

i into j parts, pj(i). Thus

f1
2 (i) =

∑

j>2

pj(i)

= p(i) − 1,

and hence

f2(n) =
∑

26i6n

f1
2 (i)

=
∑

26i6n

p(i) − 1

= −n +
∑

16i6n

p(i).



For the inequality, we construct a sub-class of F1
3 (Si). Let π = {X1, . . . , Xj} ∈ Π⋆

i (j) and let M ∈ F2
3 (Sj).

Let us now replace each element xk ∈ Sj by the set Xk in the partition π, for all 1 6 k 6 j. Two matroids
in M1

3(Si) are isomorphic if and only if (1) the sequence of cardinalities of the rank-1 flats, when ordered,
are the same, (2) both matroids, after restriction to a transversal of its rank-1 flats, are isomorphic (i.e.
in M2

3(·)) and (3) the assignment of rank-1 flats to the two restricted matroids just mentioned are in
accordance. Essentially we are constructing matroids out of the non-isomorphic classes corresponding to
(1) and (2) but which are never affected by condition (3). Thus

f1
3 (n) >

i
∑

j=3

pj(i)f
2
3 (j)

and so

f3(n) >

n
∑

i=3

i
∑

j=3

pj(i)f
2
3 (j)

=
n
∑

i=3

f2
3 (i)

n
∑

k=i

pi(k)

=
n
∑

i=3

(h⋆
2(i) − 1)

n
∑

k=i

pi(k).

✷

This is the point at which difficulties arise for the non-isomorphic matroid enumeration problem. However,
the nice form of Theorem 3 gives future hope for the more general problem. It relies only upon knowledge of
the number of 2-partitions. We may actually write down an expression for the number of rank-r matroids
on Sn. For any collection of subsets λ of Sn, let us define Λ(λ) as the family of collections of sets µ satisfying
the following: If Y ∈ λ and A1, . . . , Am are the sets in µ containing Y , then {A1−Y,A2−Y, . . . , Am−Y }
is a partition of the set Sn − Y . Then the number of simple rank-r matroids on Sn is given by the sum:

m2
r(n) =

∑

λ1∈Λ(Sn)

∑

λ2∈Λ(λ1)

· · ·
∑

λr−1∈Λ(λr−2)

1. (5)

There is no known closed form expression for the number of 2-partitions of a finite set. Doyen [5]

proved upper and lower bounds of 2(
n

3) and 2n respectively. In the current setting, these bounds are very
much trivial as the number of 2-partitions is less than the number of rank-3 matroids which in turn is less

than 2(
n

3) (as can be seen by a simple argument involving the bases, i.e. m0
r(n) 6 2(n

r).) The lower bound
is weak, it can be seen by choosing a single X ⊂ Sn of cardinality > 3 (of which there are

(

n
|X|

)

) This X

together with all those 2-element sets not contained in X form a 2-partition. We now form a better lower
bound by slightly altering Knuth’s [8] argument.

Lemma 5 For all n > 3,

h2(n) > 2
1
12

(n−1)(n−2) and h⋆
2(n) >

1

n!
2

1
12

(n−1)(n−2).

Proof: Knuth’s argument applies in more generality to prove the existence of 2(n

d)/2n such (d − 1)-
partitions of Sn. Let H be the n × k matrix whose ith row is the binary representation of i for all
1 6 i 6 n and k := ⌊log2 n⌋ + 1. For any X ∈ Sd

n, let X be its binary representation. We define the
partition Uj of Sd

n by

Uj = {X ∈ Sd
n |XH = binary representation of j }.

for all 1 6 j 6 2k. Now notice that if X, Y ∈ Uj , then |X\Y | > 2 for otherwise (X + Y )H mod 2 = 0
and this cannot happen as every row of H is distinct. Thus for any X, Y ∈ Uj , |X ∩ Y | 6 1. Since the Uj

partition Sd
n there exists some Uj with at least

|Uj | >

(

n

d

)

/2k >

(

n

d

)

/2n



sets. This particular Uj (or any collection of subsets of it), along with all (d − 1)-sets not contained in

any member of Uj defines a (d− 1)-partition. Thus there are at least 2|Uj | > 2(n

d)/2n (d− 1)-partitions of
Sn. We may divide this expression by n! to rule out any isomorphisms. The lemma follows by choosing
d = 3. ✷

Figure 1 shows the (previously unknown) values of m2
r(n) for all 2 6 r 6 n 6 8. The numbers m0

r(n)
and m1

r(n) may be calculated from this table by using Theorem 3. Figure 2 shows the number of non-
isomorphic simple matroids, first given by Blackburn, Crapo and Higgs [6]. There is no direct way to
calculate the numbers f1

r (n) from such a table, that was first done by Acketa [2].

r n 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1
3 1 5 31 352 8389 433038
4 1 16 337 18700 7642631
5 1 42 2570 907647
6 1 99 16865
7 1 219
8 1

m2(n) 1 2 7 49 733 29760 9000402

Figure 1: The value of m2

r
(n) for 2 6 r 6 n 6 8.

r n 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1
3 1 2 4 9 23 68
4 1 3 11 49 617
5 1 4 22 217
6 1 5 40
7 1 6
8 1

f2(n) 1 2 4 9 26 101 950

Figure 2: The value of f2

r
(n) for 2 6 r 6 n 6 8.

We also point out that a simple application of Theorem 4, Lemma 5 and a basic inductive argument
reveals the inequality f2(n) < f3(n). This is a first step in showing the validity of Welsh’s conjecture that
the sequence {fr(n)}06r6n is unimodal.

3 Random Sets Representing Matroids

In this section we examine the probability that a random collection of subsets of Sn satisfy the basis
exchange axioms for a matroid. The bases of a rank-r matroid on Sn is a non-empty collection B ⊆ Sr

n

such that

X, Y ∈ B ⇒ ∀x ∈ X\Y , ∃y ∈ Y \X with X − {x} ∪ {y} ∈ B.

3.1 Asymptotic Behavior

Let Xr
n(p) be a random subset of Sr

n generated in the following Bernoulli fashion:

P (A ∈ Xr
n(p)) = p

= 1 −P (A 6∈ Xr
n(p)) ,

for all A ∈ Sr
n and let q := 1 − p throughout. Denote by ̺r

n (p) the probability that the pair (Sn, Xr
n(p))

is a matroid on Sn (where Xr
n(p) is the basis). An exact expression for ̺r

n (p) would require in-depth



knowledge about the exact structure of rank-r matroids. We shall see later that a nice recursion is
possible for the r = 2 case. By definition

̺r
n (p) :=

∑

M(Sn,B)∈M0
r(Sn)

p|B|q(
n

r)−|B|. (6)

We may describe the general characteristics of ̺r
n (p) through the use of inequalities. We see the same

limiting behavior to hold in both the r = 2, 3 cases except under different scalings.

Theorem 6 Let c, r > 0 be two fixed constants, r an integer; then

lim inf
n→∞

̺r
n

(

c
(

n
r

)

)

> ce−c,

lim inf
n→∞

̺r
n

(

1 −
c
(

n
r

)

)

> (1 + c)e−c.

Proof: From the class of rank-r matroids, let us focus upon M1(Sn,B1), M2(Sn,B2) and M3(Sn,B3) ∈
M0

r(Sn), where

B1 = {{x1, x2, . . . , xr}} ,

B2 = Sr
n\ {{x1, x2, . . . , xr}} ,

B3 = Sr
n,

are the bases for the matroids. The number of such matroids M1 in M0
r(Sn) is

(

n
r

)

and the probability

of any one of them arising is pq(
n

r)−1. Similarly, for M2, the number is
(

n
r

)

each with probability p(n

r)−1q

and for M3, the number is 1 with probability p(n

r). Thus we may lower bound ̺r
n (p) by

̺r
n (p) >

(

n

r

)

pq(
n

r)−1 +

(

n

r

)

p(n

r)−1q + p(n

r). (7)

Fixing c > 0 we have

̺r
n

(

c
(

n
r

)

)

>

(

n

r

)

c
(

n
r

)

(

1 −
c
(

n
r

)

)(n

r)−1

+

(

n

r

)

(

c
(

n
r

)

)(n

r)−1(

1 −
c
(

n
r

)

)

+

(

c
(

n
r

)

)(n

r)

.

Hence,

lim inf
n→∞

̺r
n

(

c
(

n
r

)

)

> lim inf
n→∞

(

n

r

)

c
(

n
r

)

(

1 −
c
(

n
r

)

)(n

r)−1

+ lim inf
n→∞

(

n

r

)

(

c
(

n
r

)

)(n

r)−1(

1 −
c
(

n
r

)

)

+ lim inf
n→∞

(

c
(

n
r

)

)(n

r)

= lim inf
n→∞

c

(

1 −
c
(

n
r

)

)(n

r)−1

+ lim inf
n→∞

(

n

r

)

(

c
(

n
r

)

)(n

r)−1(

1 −
c
(

n
r

)

)

+ lim inf
n→∞

(

c
(

n
r

)

)(n

r)

= lim inf
n→∞

c

(

1 −
c
(

n
r

)

)(n

r)−1

+ 0

= ce−c.

Similarly, for p = 1 − c

(n

r)
we have

̺r
n

(

1 −
c
(

n
r

)

)

>

(

n

r

)

(

1 −
c
(

n
r

)

)(

c
(

n
r

)

)(n

r)−1

+

(

n

r

)

(

1 −
c
(

n
r

)

)(n

r)−1(

c
(

n
r

)

)

+

(

1 −
c
(

n
r

)

)(n

r)

.



Hence,

lim inf
n→∞

̺r
n

(

1 −
c
(

n
r

)

)

> lim inf
n→∞

(

n

r

)

(

1 −
c
(

n
r

)

)(

c
(

n
r

)

)(n

r)−1

+ lim inf
n→∞

(

n

r

)

(

1 −
c
(

n
r

)

)(n

r)−1(

c
(

n
r

)

)

+ lim inf
n→∞

(

1 −
c
(

n
r

)

)(n

r)

= 0 + lim inf
n→∞

c

(

1 −
c
(

n
r

)

)(n

r)−1

+ lim inf
n→∞

(

1 −
c
(

n
r

)

)(n

r)

= ce−c + e−c

= (1 + c)e−c.

✷

Lemma 7 For 0 < p < 1,

̺r
n (p) 6 mr(n) max {p, q}(

n

r) .

Proof: For p 6 q we have p
q 6 1. From Expression 6,

̺r
n (p) :=

∑

M(Sn,B)∈M0
r(Sn)

p|B|q(
n

r)−|B|

6 |M0
r(Sn)| max

M(Sn,B)∈M0
r(Sn)

{

p|B|q(
n

r)−|B|
}

= mr(n)q(
n

r) max
M(Sn,B)∈M0

r(Sn)

{

(

p

q

)|B|
}

6 mr(n)q(
n

r) max
M(Sn,B)∈M0

r(Sn)

{

1|B|
}

= mr(n)q(
n

r).

For q 6 p, q
p 6 1 and hence

̺r
n (p) =

∑

M(Sn,B)∈M0
r(Sn)

p|B|q(
n

r)−|B|

6 |M0
r(Sn)| max

M(Sn,B)∈M0
r(Sn)

{

p|B|q(
n

r)−|B|
}

= mr(n)p(n

r) max
M(Sn,B)∈M0

r(Sn)

{

(

q

p

)(n

r)−|B|
}

6 mr(n)p(n

r) max
M(Sn,B)∈M0

r(Sn)

{

1(n

r)−|B|
}

= mr(n)p(n

r).

✷

The following lemma gives a rather coarse upper bound on the numbers mr(n) but is essential in
showing the limit approaches 0 for p fixed.

Lemma 8 For all n > 2, 3, respectively,

m2(n) 6 (n + 1)n+1

m3(n) 6

n
∏

i=3

ii.



Proof: From Theorem 3, we have that m2(n) = b(n+1)−2n for all n > 2. Notice that the Bell numbers
satisfy the inequality b(n) 6 nn for all n > 1 (proof by induction). Thus we have m2(n) 6 (n + 1)n+1.
We may represent any M ∈ M3(Sn) as n − 2 rank-2 matroids. Let B be the basis for M and define

Bi(M) = { {xj , xk} | {xj , xk, xi} ∈ B and 1 6 j < k < i}

for all 3 6 i 6 n. Each matroid M ′
i (Si−1,Bi(M)) ∈ M0

2(Si−1) and so we may upper bound |M0
3(Sn)| by

m3(n) <
n
∏

i=3

m0
2(i − 1).

The result now follows from direct application of the first inequality. ✷

We now show for fixed p 6= 0, 1, the values ̺2
n (p) and ̺3

n (p) converge to 0 for large n.

Theorem 9 For fixed p, 0 < p < 1, and r = 2, 3,

lim
n→∞

̺r
n (p) = 0.

Proof: For r = 2, ̺2
n (p) 6 m0

2(n) max{p, q}(
n

2) < (n + 1)n+1 max{p, q}(
n

2) which tends to 0 for n large.
From Lemma 7, let us assume that 0 < p 6

1
2 . Then,

̺3
n (p) 6 m3(n)q(

n

3)

6 q(
n

3)
n
∏

i=3

ii, from Lemma 8.

Now, as
(

n
3

)

=
(

n−1
2

)

+
(

n−2
2

)

+ . . . +
(

2
2

)

, we have

=
n
∏

i=3

iiq(
i−1

2 ) =: A(n).

Since A(n) is a sequence of positive real numbers, then if we can show that lim
n→∞

A(n + 1)

A(n)
exists and is

less than 1, then A(n) converges and lim
n→∞

A(n) = 0 (see Bartle & Sherbert [3] Theorem 3.2.11):

lim
n→∞

A(n + 1)

A(n)
= lim

n→∞
(n + 1)n+1q(

n

2)

= 0.

Since the sequence A(n) dominates ̺3
n (p), we have

lim sup
n→∞

̺3
n (p) 6 lim sup

n→∞
A(n) 6 lim

n→∞
A(n) = 0,

Because of non-negativity, the limit exists and is zero. For the case
1

2
6 q < 1 the same result clearly

holds. ✷

3.2 The Rank-2 Case and Random Graphs

A rank-2 matroid may be represented by a simple graph, with the vertices representing the elements
of the ground set and the edges representing the sets in the bases. This is what Acketa [1] termed a
“matroidic graph”. The condition on the graph for it to be matroidic is that it have at least one edge and
the collection of non-isolated vertices constitutes a complete k-partite graph for some k > 2. The set of
isolated vertices are the loops of the matroid. We give a recursion for the probability that the standard
random graph G(n, p) (with edge probability p) represents such a matroidic graph, i.e. a rank-2 matroid.

For any π ∈ Πn (i) where π = X1, . . . , Xi, let the weight of π be

w(π) :=
i
∑

j=1

(

|Xj |

2

)

.



We now have the precise expression:

̺2
n (p) =

n
∑

i=2

(

n

n − i

)

∑

π∈Πi(2,i)

p(i

2)−w(π)q(
n

2)−(i

2)+w(π) (8)

= q(
n

2)
n
∑

i=2

(

n

i

)(

1

z

)(i

2)
{

−z(i

2) +
∑

π∈Πi

zw(π)

}

,

where z := q/p.

Theorem 10 Let γ0(x) = 1, γ1(x) = 1 and for all n > 0 define

γn+1(x) :=
∑

06k6n

(

n

k

)

x−k(n+1−k)γk(x).

Then for all n > 2,

̺2
n (p) = q(

n

2)
∑

06i6n

(

n

i

)

{γi(z) − 1} .

Proof: Let γ0(x) = 1 and γ1(x) = 1. For all n > 2 define

γn(x) :=
1

x(n

2)

∑

π∈Πn

xw(π).

Then we see that

γn+1(x) =
1

x(n+1

2 )

∑

π∈Πn+1

xw(π)

=
1

x(n+1

2 )

n
∑

k=0

(

n

n − k

)

∑

π′∈Πk

xw(π′)+(1+n−k

2 )

=
1

x(n+1

2 )

n
∑

k=0

(

n

k

)

x(1+n−k

2 )
∑

π′∈Πk

xw(π′)

=
n
∑

k=0

(

n

k

)

x(1+n−k

2 )

x(n+1

2 )

x(k

2)

x(k

2)

∑

π′∈Πk

xw(π′)

=
n
∑

k=0

(

n

k

)

x(1+n−k

2 )+(k

2)−(n+1

2 )γk(x).

Now
(

1+n−k
2

)

+
(

k
2

)

−
(

n+1
2

)

= −k(n − k + 1) so the above expression becomes

γn+1(x) =
n
∑

k=0

(

n

k

)

x−k(n−k+1)γk(x).

From equation 8,

̺2
n (p) = q(

n

2)
n
∑

i=2

(

n

i

)(

1

z

)(i

2)
{

−z(i

2) +
∑

π∈Πi

zw(π)

}

= q(
n

2)
n
∑

i=2

(

n

i

)

{

−1 +

(

1

z

)(i

2) ∑

π∈Πi

zw(π)

}

= q(
n

2)
n
∑

i=2

(

n

i

)

{−1 + γi(z)} ,

and since γ0(x) = γ1(x) = 1,

̺2
n (p) = q(

n

2)
n
∑

i=0

(

n

i

)

{γi(z) − 1} .

✷

By definition, ̺n (0) = 0 and ̺n (1) = 1. Figure 3 shows ̺2
n (p) for small values of n and we see its

evolving nature with regard to Theorems 6 and 9.
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Figure 3: The graph of ̺2

n
(p) for small values of n.
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