DIAS Access to
Institutional Repository

Title	Enumerating Low Rank Matroids and their Asymptotic Probability of Occurrence
Creators	Dukes, W.M.B.
Date	2000
Citation	Dukes, W.M.B. (2000) Enumerating Low Rank Matroids and their Asymptotic Probability of Occurrence. (Preprint)
URL	https://dair.dias.ie/id/eprint/439/
DOI	DIAS-STP-01-10

Enumerating Low Rank Matroids and Their Asymptotic Probability of Occurrence

W.M.B. Dukes*
Dublin Institute for Advanced Studies
10 Burlington Rd.
Dublin 4
Ireland

December, 2000

Abstract

This paper shows the attractive enumerative relations between matroids of low rank. It differs from past work in that, rather than attempting to examine the numbers of non-isomorphic matroids as proposed by Crapo [4], it looks directly at the number of matroids and then extends to their non-isomorphic counterparts. We give the (heretofore unknown) numbers for matroids on at most eight elements. Furthermore, we consider a random collection of r-sets of an n-set and examine the probability that these satisfy the matroid basis exchange axioms. The asymptotic behavior of this probability shows interesting characteristics. The $r=2$ case corresponds to a problem in random graphs.

1 Introduction

The matroid enumeration problem has long been forgotten. Research seemed to grind to a halt in the late ' 70 s once sufficiently tight asymptotic bounds had been found $[10,8]$. In this paper we revive the enumeration problem and see that by focusing on the number of matroids, rather than the number of non-isomorphic matroids (as proposed by Crapo [4]), more appealing expressions are obtained. We show how the numbers for rank-2 matroids are related to the Bell numbers and integer partitions, how numbers for the rank-3 matroids are related to 2-partitions and how Knuth's [8] lower bound for the number of combinatorial geometries may be used to improve Doyen's [5] lower bound on the number of 2-partitions. The rank-3 matroids are also seen to be discretely self-similar which partly answers a query made by Konvalina [7].

The probability that a random collection of k-sets forms the basis for a matroid is also examined. For 2 -sets, the problem can be viewed as a random graph being t-partite and an exact recursion for the probability given. For $k=3$ the same limiting behavior, as in the $k=2$ case, is shown to hold but under a different scaling. We refer the reader unfamiliar with any concepts to the introductory chapter of Oxley [9].

1.1 Notation

Let S_{n} be a finite set of size n and S_{n}^{d} the collection of all d-element subsets of S_{n}. Let $\mathcal{M}_{r}^{k}\left(S_{n}\right)$ and $\mathcal{F}_{r}^{k}\left(S_{n}\right)$ be the classes of rank- r matroids and non-isomorphic rank- r matroids on S_{n}, respectively, both with all k-sets independent. We write $m_{r}^{k}(n)=\left|\mathcal{M}_{r}^{k}\left(S_{n}\right)\right|$ and $f_{r}^{k}(n)=\left|\mathcal{F}_{r}^{k}\left(S_{n}\right)\right|$. Define $\mathcal{M}_{r}\left(S_{n}\right):=\mathcal{M}_{r}^{0}\left(S_{n}\right)$ and similarly for \mathcal{F}_{r}, m_{r} and f_{r}. Let $\Pi_{n}(i)$ and $\Pi_{n}^{\star}(i)$ be the set of all partitions and non-isomorphic partitions, respectively, of the set S_{n} into i parts. Let $\Pi_{n}(i, j):=\Pi_{n}(i) \cup \Pi_{n}(i+1) \cup \cdots \cup \Pi_{n}(j)$

[^0]and $\Pi_{n}:=\Pi_{n}(1, n)$. Let $p_{i}(n)$ denote the number of partitions of the integer n into i parts and let $p(n):=p_{1}(n)+\ldots+p_{n}(n)$. The number of matroids and non-isomorphic matroids on S_{n} are given by
$$
m(n)=\sum_{0 \leqslant r \leqslant n} m_{r}^{0}(n) \quad f(n)=\sum_{0 \leqslant r \leqslant n} f_{r}^{0}(n)
$$

Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ be a collection of distinct subsets of S_{n}. We say that \mathcal{H} is a d-partition of S_{n} if,

1. $\left|H_{i}\right| \geqslant d$ for all $1 \leqslant i \leqslant k$,
2. $H_{1} \cup \ldots H_{k}=S_{n}$,
3. Every d-element subset of S_{n} is contained in a unique $H_{i} \in \mathcal{H}$.

We see that the class of 1-partitions of S_{n} with k sets correspond to $\Pi_{n}(k)$. Let $h_{d}(n)$ be the number of d-partitions of the set S_{n} and $h_{d}^{\star}(n)$ the corresponding non-isomorphic number. It is well known that if \mathcal{H} is such a d-partition with $k>1$, then \mathcal{H} satisfies the hyperplane axioms for a matroid M on S_{n} with rank $d+1$. Such a matroid is called a paving matroid.

2 Enumeration

The approach to counting matroids is through structural properties of the lattice of flats. The main results of this section are given in Theorems 3, 4 and an expression for the number of simple rank- r matroids given in equation 5. Enumerating rank- r matroids on S_{n} involves finding $m_{r}^{0}(n)$ and $f_{r}^{0}(n)$. The number of rank-0 and rank- 1 matroids is trivial, $m_{0}^{0}(n):=1, f_{0}^{0}(n)=0, m_{1}^{0}(n)=2^{n}-1$ and $f_{1}^{0}(n)=n$ for all $n \geqslant 1$. Clearly $m_{r}^{r}(n)=f_{r}^{r}(n)=1$ for all $1 \leqslant r \leqslant n$. The primary recursive relations between the first three classes of matroids are given in the Lemma 1. Note that the class $\mathcal{M}_{r}^{1}\left(S_{n}\right)$ is the class of rank- r matroids on S_{n} with no loops. Similarly, the class $\mathcal{M}_{r}^{2}\left(S_{n}\right)$ is the class of rank- r matroids with neither loops nor parallel elements (simple matroids). The class $\mathcal{M}_{r}^{r-1}\left(S_{n}\right)$ is the class of rank-r paving matroids on S_{n}.

Lemma 1 For all $1 \leqslant r \leqslant n$,

$$
\begin{align*}
& m_{r}^{0}(n)=\sum_{r \leqslant i \leqslant n}\binom{n}{i} m_{r}^{1}(i) \tag{1}\\
& m_{r}^{1}(n)=\sum_{r \leqslant i \leqslant n}\left\{\begin{array}{c}
n \\
i
\end{array}\right\} m_{r}^{2}(i) \tag{2}
\end{align*}
$$

Proof: Any matroid $M \in \mathcal{M}_{r}^{0}\left(S_{n}\right)$ can have at most $n-r$ loops. If M has loops $X \subseteq S_{n},|X|=j$, then X may be chosen in $\binom{n}{j}$ ways. The resulting matroid is $\left.M\right|_{S_{n}-X} \in \mathcal{M}_{r}^{1}\left(S_{n}-X\right)$ which has no loops since all 1-element subsets of $S_{n}-X$ are independent. Hence

$$
\begin{aligned}
m_{r}^{0}(n) & =\sum_{j=0}^{n-r}\binom{n}{j} m_{r}^{1}(n-j) \\
& =\sum_{i=r}^{n}\binom{n}{i} m_{r}^{1}(i)
\end{aligned}
$$

and equation 1 follows.
For equation 2 the argument is more involved. Let $M \in \mathcal{M}_{r}^{1}\left(S_{n}\right)$ have rank-1 flats X_{1}, \ldots, X_{i} (note that $i \geqslant r$). There are no loops, so every element of S_{n} is contained in at least one rank-1 flat. If X_{a} and X_{b} are two distinct rank-1 flats, then $X_{a} \cap X_{b}:=\emptyset$. Hence the collection $\left\{X_{j}\right\}_{1 \leqslant j \leqslant i}$ is simply a partition of S_{n}. Thus the natural bijection between the class of matroids in $\mathcal{M}_{2}^{1}\left(S_{n}\right)$ with i rank- 1 flats and $\Pi_{n}(i)$. The collection X_{1}, \ldots, X_{i} may be chosen in $\left\{\begin{array}{c}n \\ i\end{array}\right\}$ ways where $\left\{\begin{array}{c}n \\ i\end{array}\right\}$ are the Stirling numbers of the second kind.

Any flat of M is the union of some collection of the $\left\{X_{j}\right\}_{1 \leqslant j \leqslant i}$. Otherwise, there is some flat F and elements $a, b \in X_{j}$ such that $a \in F \not \supset b$. As F, X_{j} are both flats, $F \cap X_{j}$ is also a flat. But this forces $\emptyset \subset F \cap X_{j} \subset X_{j}($ since $b \notin F)$ which is a contradiction since there are no non-trivial flats which are properly contained in a rank-1 flat.

Choose any transversal $Y=\left\{x_{1}, \ldots, x_{i}\right\}$ of the family $\left\{X_{j}\right\}_{1 \leqslant j \leqslant i}$. Notice that $\left.M\right|_{Y} \in \mathcal{M}_{r}^{2}(Y)$ since $r\left(\left\{x_{j}, x_{k}\right\}\right)=2$ for all $1 \leqslant j \neq k \leqslant i$. Thus each matroid $M \in \mathcal{M}_{r}^{1}\left(S_{n}\right)$ is uniquely expressible by its collection of rank-1 flats and a simple rank- r matroid $\left.M\right|_{Y} \in \mathcal{M}_{r}^{2}(Y)$. The number of such matroids with i rank-1 flats is given by $\left\{\begin{array}{c}n \\ i\end{array}\right\} m_{r}^{2}(i)$ and the resulting equation 2 by summing from $i=r$ to n.

Lemma 2 For all $n \geqslant 3, m_{3}^{2}(n)=h_{2}(n)-1$.
Proof: For any matroid $M \in \mathcal{M}_{3}^{2}\left(S_{n}\right)$, let \mathcal{F}_{2} be the collection of rank-2 flats. Trivially we have $\mathcal{F}_{1}=\left\{\{x\} \mid x \in S_{n}\right\}$ and so $r(\{x, y\})=2$ for all distinct $x, y \in S_{n}$. Thus for each pair of elements $x, y \in S_{n}$ there is a rank-2 flat $X \in \mathcal{F}_{2}$ containing both.

To show this flat to be unique, suppose there is another $Y \in \mathcal{F}_{2}$ such that $Y \supseteq\{x, y\}$. Now $2=$ $r(X)>r(X \cap Y) \geqslant r(\{x, y\})=2$. Thus there does not exist such a Y and X is unique. The only condition upon \mathcal{F}_{2} in representing such a matroid is that $\mathcal{F}_{2} \neq\left\{S_{n}\right\}=: \mathcal{F}_{3}$. Hence $\left|\mathcal{F}_{2}\right| \geqslant 2$. It follows that there is a natural bijection between the class of 2-partitions (excluding the trivial one $\left\{S_{n}\right\}$) of S_{n} and the class of simple rank-3 matroids on S_{n}. Hence $m_{3}^{2}(n)=h_{2}(n)-1$.

For any rank- 3 matroid $M \in \mathcal{M}_{3}^{0}\left(S_{n}\right)$, we see that by restricting it to any transversal Y of $\mathcal{F}_{0} \cup \mathcal{F}_{1}$, the resulting matroid $\left.M\right|_{Y}$ is self-similar in structure to M. This important fact allows us to enumerate rank-3 matroids. These two lemmas now suffice to prove the following recursions for the m numbers:

Theorem 3 For all $n \geqslant 2,3$, respectively,

$$
\begin{aligned}
& m_{2}(n)=b(n+1)-2^{n} \\
& m_{3}(n)=\sum_{3 \leqslant j \leqslant n}\left\{\begin{array}{l}
n+1 \\
j+1
\end{array}\right\}\left(h_{2}(j)-1\right) .
\end{aligned}
$$

Proof: Applying $r=2$ to equations 1 and 2 we have

$$
\begin{aligned}
m_{2}(n) & =m_{2}^{0}(n) \\
& =\sum_{2 \leqslant i \leqslant n}\binom{n}{i} m_{2}^{1}(i) \\
& =\sum_{2 \leqslant i \leqslant n}\binom{n}{i} \sum_{2 \leqslant j \leqslant i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} m_{2}^{2}(j) \\
& =\sum_{2 \leqslant i \leqslant n}\binom{n}{i} \sum_{2 \leqslant j \leqslant i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} 1 \\
& =\sum_{2 \leqslant i \leqslant n}\binom{n}{i}(b(i)-1) \\
& =\sum_{2 \leqslant i \leqslant n}\binom{n}{i} b(i)-\sum_{2 \leqslant i \leqslant n}\binom{n}{i} \\
& =b(n+1)-n b(1)-b(0)-\left(2^{n}-n-1\right) \\
& =b(n+1)-2^{n} .
\end{aligned}
$$

Similarly, applying $r=3$ to equations 1 and 2 and using lemma 2,

$$
\begin{aligned}
m_{3}(n) & =m_{3}^{0}(n) \\
& =\sum_{3 \leqslant i \leqslant n}\binom{n}{i} m_{3}^{1}(i) \\
& =\sum_{3 \leqslant i \leqslant n}\binom{n}{i} \sum_{3 \leqslant j \leqslant i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} m_{3}^{2}(j) \\
& =\sum_{3 \leqslant i \leqslant n} \sum_{3 \leqslant j \leqslant i}\binom{n}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} m_{3}^{2}(j) \\
& =\sum_{3 \leqslant j \leqslant n} \sum_{j \leqslant i \leqslant n}\binom{n}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} m_{3}^{2}(j) \\
& =\sum_{3 \leqslant j \leqslant n} m_{3}^{2}(j) \sum_{j \leqslant i \leqslant n}\binom{n}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \\
& =\sum_{3 \leqslant j \leqslant n} m_{3}^{2}(j)\left\{\begin{array}{l}
n+1 \\
j+1
\end{array}\right\},
\end{aligned}
$$

from Knuth [11] equation 6.15. The result follows from Lemma 2.
Turning our attention to the non-isomorphic numbers, we see the class of non-isomorphic rank-2 matroids can easily be singled out due to the structural properties revealed in Lemma 1. For the rank-3 case, isomorphisms prove more difficult to exclude but we give a lower bound.

Theorem 4 For all $n \geqslant 2,3$, respectively,

$$
\begin{align*}
& f_{2}(n)=-n+\sum_{1 \leqslant i \leqslant n} p(i) \tag{3}\\
& f_{3}(n) \geqslant \sum_{i=3}^{n}\left(h_{2}^{\star}(i)-1\right) \sum_{k=i}^{n} p_{i}(k) \tag{4}
\end{align*}
$$

Proof: Two matroids on ground sets of different cardinalities cannot be isomorphic, thus we may write the class $\mathcal{F}_{r}^{0}\left(S_{n}\right)$ as the disjoint union of the loopless classes

$$
\mathcal{F}_{r}^{0}\left(S_{n}\right)=\bigcup_{r \leqslant i \leqslant n} \mathcal{F}_{r}^{1}\left(S_{i}\right),
$$

and hence

$$
f_{r}(n)=\sum_{r \leqslant i \leqslant n} f_{r}^{1}(i)
$$

The class of matroids $\mathcal{M}_{2}^{1}\left(S_{i}\right)$ with j rank-1 flats corresponds precisely to the class of partitions of S_{i} into j sets, i.e. $\Pi_{i}(j)$. To rule out isomorphisms, we have the class of non-isomorphic partitions $\Pi_{i}^{\star}(j)$ through which we may view $\mathcal{F}_{2}^{1}\left(S_{i}\right)$. The number of these is simply the number of partitions of the integer i into j parts, $p_{j}(i)$. Thus

$$
\begin{aligned}
f_{2}^{1}(i) & =\sum_{j \geqslant 2} p_{j}(i) \\
& =p(i)-1
\end{aligned}
$$

and hence

$$
\begin{aligned}
f_{2}(n) & =\sum_{2 \leqslant i \leqslant n} f_{2}^{1}(i) \\
& =\sum_{2 \leqslant i \leqslant n} p(i)-1 \\
& =-n+\sum_{1 \leqslant i \leqslant n} p(i) .
\end{aligned}
$$

For the inequality, we construct a sub-class of $\mathcal{F}_{3}^{1}\left(S_{i}\right)$. Let $\pi=\left\{X_{1}, \ldots, X_{j}\right\} \in \Pi_{i}^{\star}(j)$ and let $M \in \mathcal{F}_{3}^{2}\left(S_{j}\right)$. Let us now replace each element $x_{k} \in S_{j}$ by the set X_{k} in the partition π, for all $1 \leqslant k \leqslant j$. Two matroids in $\mathcal{M}_{3}^{1}\left(S_{i}\right)$ are isomorphic if and only if (1) the sequence of cardinalities of the rank-1 flats, when ordered, are the same, (2) both matroids, after restriction to a transversal of its rank-1 flats, are isomorphic (i.e. in $\left.\mathcal{M}_{3}^{2}(\cdot)\right)$ and (3) the assignment of rank-1 flats to the two restricted matroids just mentioned are in accordance. Essentially we are constructing matroids out of the non-isomorphic classes corresponding to (1) and (2) but which are never affected by condition (3). Thus

$$
f_{3}^{1}(n) \geqslant \sum_{j=3}^{i} p_{j}(i) f_{3}^{2}(j)
$$

and so

$$
\begin{aligned}
f_{3}(n) & \geqslant \sum_{i=3}^{n} \sum_{j=3}^{i} p_{j}(i) f_{3}^{2}(j) \\
& =\sum_{i=3}^{n} f_{3}^{2}(i) \sum_{k=i}^{n} p_{i}(k) \\
& =\sum_{i=3}^{n}\left(h_{2}^{\star}(i)-1\right) \sum_{k=i}^{n} p_{i}(k) .
\end{aligned}
$$

This is the point at which difficulties arise for the non-isomorphic matroid enumeration problem. However, the nice form of Theorem 3 gives future hope for the more general problem. It relies only upon knowledge of the number of 2-partitions. We may actually write down an expression for the number of rank- r matroids on S_{n}. For any collection of subsets λ of S_{n}, let us define $\Lambda(\lambda)$ as the family of collections of sets μ satisfying the following: If $Y \in \lambda$ and A_{1}, \ldots, A_{m} are the sets in μ containing Y, then $\left\{A_{1}-Y, A_{2}-Y, \ldots, A_{m}-Y\right\}$ is a partition of the set $S_{n}-Y$. Then the number of simple rank-r matroids on S_{n} is given by the sum:

$$
\begin{equation*}
m_{r}^{2}(n)=\sum_{\lambda_{1} \in \Lambda\left(S_{n}\right)} \sum_{\lambda_{2} \in \Lambda\left(\lambda_{1}\right)} \ldots \sum_{\lambda_{r-1} \in \Lambda\left(\lambda_{r-2}\right)} 1 \tag{5}
\end{equation*}
$$

There is no known closed form expression for the number of 2-partitions of a finite set. Doyen [5] proved upper and lower bounds of $2\binom{n}{3}$ and 2^{n} respectively. In the current setting, these bounds are very much trivial as the number of 2-partitions is less than the number of rank-3 matroids which in turn is less than $2^{\binom{n}{3}}$ (as can be seen by a simple argument involving the bases, i.e. $m_{r}^{0}(n) \leqslant 2^{\binom{n}{r}}$.) The lower bound is weak, it can be seen by choosing a single $X \subset S_{n}$ of cardinality $\geqslant 3$ (of which there are $\binom{n}{|X|}$) This X together with all those 2-element sets not contained in X form a 2-partition. We now form a better lower bound by slightly altering Knuth's [8] argument.

Lemma 5 For all $n \geqslant 3$,

$$
h_{2}(n) \geqslant 2^{\frac{1}{12}(n-1)(n-2)} \quad \text { and } \quad h_{2}^{\star}(n) \geqslant \frac{1}{n!} 2^{\frac{1}{12}(n-1)(n-2)} .
$$

Proof: Knuth's argument applies in more generality to prove the existence of $2^{\binom{n}{d} / 2 n}$ such $(d-1)$ partitions of S_{n}. Let H be the $n \times k$ matrix whose $i^{t h}$ row is the binary representation of i for all $1 \leqslant i \leqslant n$ and $k:=\left\lfloor\log _{2} n\right\rfloor+1$. For any $X \in S_{n}^{d}$, let \underline{X} be its binary representation. We define the partition \mathcal{U}_{j} of S_{n}^{d} by

$$
\mathcal{U}_{j}=\left\{X \in S_{n}^{d} \mid \underline{X} H=\text { binary representation of } j\right\}
$$

for all $1 \leqslant j \leqslant 2^{k}$. Now notice that if $X, Y \in \mathcal{U}_{j}$, then $|X \backslash Y| \geqslant 2$ for otherwise $(\underline{X}+\underline{Y}) H \bmod 2=0$ and this cannot happen as every row of H is distinct. Thus for any $X, Y \in \mathcal{U}_{j},|X \cap Y| \leqslant 1$. Since the \mathcal{U}_{j} partition S_{n}^{d} there exists some \mathcal{U}_{j} with at least

$$
\left|\mathcal{U}_{j}\right| \geqslant\binom{ n}{d} / 2^{k}>\binom{n}{d} / 2 n
$$

sets. This particular \mathcal{U}_{j} (or any collection of subsets of it), along with all $(d-1)$-sets not contained in any member of \mathcal{U}_{j} defines a $(d-1)$-partition. Thus there are at least $2^{\left|\mathcal{U}_{j}\right|} \geqslant 2^{\binom{n}{d} / 2 n}(d-1)$-partitions of S_{n}. We may divide this expression by n ! to rule out any isomorphisms. The lemma follows by choosing $d=3$.

Figure 1 shows the (previously unknown) values of $m_{r}^{2}(n)$ for all $2 \leqslant r \leqslant n \leqslant 8$. The numbers $m_{r}^{0}(n)$ and $m_{r}^{1}(n)$ may be calculated from this table by using Theorem 3. Figure 2 shows the number of nonisomorphic simple matroids, first given by Blackburn, Crapo and Higgs [6]. There is no direct way to calculate the numbers $f_{r}^{1}(n)$ from such a table, that was first done by Acketa [2].

r	n	2	3	4	5	6	7	8
2		1	1	1	1	1	1	1
3			1	5	31	352	8389	433038
4				1	16	337	18700	7642631
5					1	42	2570	907647
6						1	99	16865
7							1	219
8							1	
$m^{2}(n)$	1	2	7	49	733	29760	9000402	

Figure 1: The value of $m_{r}^{2}(n)$ for $2 \leqslant r \leqslant n \leqslant 8$.

r	n	2	3	4	5	6	7	8
2		1	1	1	1	1	1	1
3			1	2	4	9	23	68
4				1	3	11	49	617
5					1	4	22	217
6						1	5	40
7							1	6
8								1
$f^{2}(n)$	1	2	4	9	26	101	950	

Figure 2: The value of $f_{r}^{2}(n)$ for $2 \leqslant r \leqslant n \leqslant 8$.

We also point out that a simple application of Theorem 4, Lemma 5 and a basic inductive argument reveals the inequality $f_{2}(n)<f_{3}(n)$. This is a first step in showing the validity of Welsh's conjecture that the sequence $\left\{f_{r}(n)\right\}_{0 \leqslant r \leqslant n}$ is unimodal.

3 Random Sets Representing Matroids

In this section we examine the probability that a random collection of subsets of S_{n} satisfy the basis exchange axioms for a matroid. The bases of a rank- r matroid on S_{n} is a non-empty collection $\mathcal{B} \subseteq S_{n}^{r}$ such that

$$
X, Y \in \mathcal{B} \quad \Rightarrow \quad \forall x \in X \backslash Y, \exists y \in Y \backslash X \text { with } X-\{x\} \cup\{y\} \in \mathcal{B}
$$

3.1 Asymptotic Behavior

Let $X_{n}^{r}(p)$ be a random subset of S_{n}^{r} generated in the following Bernoulli fashion:

$$
\begin{aligned}
\mathbb{P}\left(A \in X_{n}^{r}(p)\right) & =p \\
& =1-\mathbb{P}\left(A \notin X_{n}^{r}(p)\right),
\end{aligned}
$$

for all $A \in S_{n}^{r}$ and let $q:=1-p$ throughout. Denote by $\varrho_{n}^{r}(p)$ the probability that the pair $\left(S_{n}, X_{n}^{r}(p)\right)$ is a matroid on S_{n} (where $X_{n}^{r}(p)$ is the basis). An exact expression for $\varrho_{n}^{r}(p)$ would require in-depth
knowledge about the exact structure of rank-r matroids. We shall see later that a nice recursion is possible for the $r=2$ case. By definition

$$
\begin{equation*}
\varrho_{n}^{r}(p):=\sum_{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)} p^{|\mathcal{B}|} q^{\binom{n}{r}-|\mathcal{B}|} . \tag{6}
\end{equation*}
$$

We may describe the general characteristics of $\varrho_{n}^{r}(p)$ through the use of inequalities. We see the same limiting behavior to hold in both the $r=2,3$ cases except under different scalings.

Theorem 6 Let $c, r>0$ be two fixed constants, r an integer; then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \varrho_{n}^{r}\left(\frac{c}{\binom{n}{r}}\right) \geqslant c e^{-c} \\
\liminf _{n \rightarrow \infty} \varrho_{n}^{r}\left(1-\frac{c}{\binom{n}{r}}\right) \geqslant(1+c) e^{-c} .
\end{aligned}
$$

Proof: From the class of rank- r matroids, let us focus upon $M_{1}\left(S_{n}, \mathcal{B}_{1}\right), M_{2}\left(S_{n}, \mathcal{B}_{2}\right)$ and $M_{3}\left(S_{n}, \mathcal{B}_{3}\right) \in$ $\mathcal{M}_{r}^{0}\left(S_{n}\right)$, where

$$
\begin{aligned}
\mathcal{B}_{1} & =\left\{\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\} \\
\mathcal{B}_{2} & =S_{n}^{r} \backslash\left\{\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}\right\} \\
\mathcal{B}_{3} & =S_{n}^{r}
\end{aligned}
$$

are the bases for the matroids. The number of such matroids M_{1} in $\mathcal{M}_{r}^{0}\left(S_{n}\right)$ is $\binom{n}{r}$ and the probability of any one of them arising is $p q^{\binom{n}{r}-1}$. Similarly, for M_{2}, the number is $\binom{n}{r}$ each with probability $p\binom{n}{r}-1 q$ and for M_{3}, the number is 1 with probability $p^{\binom{n}{r}}$. Thus we may lower bound $\varrho_{n}^{r}(p)$ by

$$
\begin{equation*}
\varrho_{n}^{r}(p) \geqslant\binom{ n}{r} p q^{\binom{n}{r}-1}+\binom{n}{r} p^{\binom{n}{r}-1} q+p^{\binom{n}{r}} \tag{7}
\end{equation*}
$$

Fixing $c>0$ we have

$$
\varrho_{n}^{r}\left(\frac{c}{\binom{n}{r}}\right) \geqslant\binom{ n}{r} \frac{c}{\binom{n}{r}}\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+\binom{n}{r}\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}\left(1-\frac{c}{\binom{n}{r}}\right)+\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}} .
$$

Hence,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \varrho_{n}^{r}\left(\frac{c}{\binom{n}{r}}\right) & \geqslant \liminf _{n \rightarrow \infty}\binom{n}{r} \frac{c}{\binom{n}{r}}\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+\liminf _{n \rightarrow \infty}\binom{n}{r}\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}\left(1-\frac{c}{\binom{n}{r}}\right)+\liminf _{n \rightarrow \infty}\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}} \\
& =\liminf _{n \rightarrow \infty} c\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+\liminf _{n \rightarrow \infty}\binom{n}{r}\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}\left(1-\frac{c}{\binom{n}{r}}\right)+\liminf _{n \rightarrow \infty}\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}} \\
& =\liminf _{n \rightarrow \infty} c\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+0 \\
& =c e^{-c} .
\end{aligned}
$$

Similarly, for $p=1-\frac{c}{\binom{n}{r}}$ we have

$$
\varrho_{n}^{r}\left(1-\frac{c}{\binom{n}{r}}\right) \geqslant\binom{ n}{r}\left(1-\frac{c}{\binom{n}{r}}\right)\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+\binom{n}{r}\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}\left(\frac{c}{\binom{n}{r}}\right)+\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}}
$$

Hence,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \varrho_{n}^{r}\left(1-\frac{c}{\binom{n}{r}}\right) \geqslant & \liminf _{n \rightarrow \infty}\binom{n}{r}\left(1-\frac{c}{\binom{n}{r}}\right)\left(\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+\liminf _{n \rightarrow \infty}\binom{n}{r}\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}\left(\frac{c}{\binom{n}{r}}\right) \\
& +\liminf _{n \rightarrow \infty}\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}} \\
= & 0+\liminf _{n \rightarrow \infty} c\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}-1}+\liminf _{n \rightarrow \infty}\left(1-\frac{c}{\binom{n}{r}}\right)^{\binom{n}{r}} \\
= & c e^{-c}+e^{-c} \\
= & (1+c) e^{-c} .
\end{aligned}
$$

Lemma 7 For $0<p<1$,

$$
\varrho_{n}^{r}(p) \leqslant m_{r}(n) \max \{p, q\}^{\binom{n}{r}}
$$

Proof: For $p \leqslant q$ we have $\frac{p}{q} \leqslant 1$. From Expression 6,

$$
\begin{aligned}
\varrho_{n}^{r}(p) & :=\sum_{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)} p^{|\mathcal{B}|} q^{\binom{n}{r}-|\mathcal{B}|} \\
& \leqslant\left|\mathcal{M}_{r}^{0}\left(S_{n}\right)\right| \max _{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)}\left\{p^{|\mathcal{B}|} q^{\binom{n}{r}-|\mathcal{B}|}\right\} \\
& =m_{r}(n) q^{\binom{n}{r}} \max _{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)}\left\{\left(\frac{p}{q}\right)^{|\mathcal{B}|}\right\} \\
& \leqslant m_{r}(n) q^{\binom{n}{r}} \max _{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)}\left\{1^{|\mathcal{B}|}\right\} \\
& =m_{r}(n) q^{\binom{n}{r} .}
\end{aligned}
$$

For $q \leqslant p, \frac{q}{p} \leqslant 1$ and hence

$$
\begin{aligned}
& \varrho_{n}^{r}(p)=\sum_{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)} p^{|\mathcal{B}|} q^{\binom{n}{r}-|\mathcal{B}|} \\
& \leqslant\left|\mathcal{M}_{r}^{0}\left(S_{n}\right)\right| \\
& \max _{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)}\left\{p^{|\mathcal{B}|} q^{\binom{n}{r}-|\mathcal{B}|}\right\} \\
&=m_{r}(n) p^{\binom{n}{r}} \max _{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)}\left\{\left(\frac{q}{p}\right)^{\binom{n}{r}-|\mathcal{B}|}\right\} \\
& \leqslant m_{r}(n) p^{\binom{n}{r}} \max _{M\left(S_{n}, \mathcal{B}\right) \in \mathcal{M}_{r}^{0}\left(S_{n}\right)}\left\{1^{\binom{n}{r}-|\mathcal{B}|}\right\} \\
&=m_{r}(n) p^{\binom{n}{r}} .
\end{aligned}
$$

The following lemma gives a rather coarse upper bound on the numbers $m_{r}(n)$ but is essential in showing the limit approaches 0 for p fixed.
Lemma 8 For all $n \geqslant 2,3$, respectively,

$$
\begin{aligned}
m_{2}(n) & \leqslant(n+1)^{n+1} \\
m_{3}(n) & \leqslant \prod_{i=3}^{n} i^{i}
\end{aligned}
$$

Proof: From Theorem 3, we have that $m_{2}(n)=b(n+1)-2^{n}$ for all $n \geqslant 2$. Notice that the Bell numbers satisfy the inequality $b(n) \leqslant n^{n}$ for all $n \geqslant 1$ (proof by induction). Thus we have $m_{2}(n) \leqslant(n+1)^{n+1}$. We may represent any $M \in \mathcal{M}_{3}\left(S_{n}\right)$ as $n-2$ rank- 2 matroids. Let \mathcal{B} be the basis for M and define

$$
\mathcal{B}_{i}(M)=\left\{\left\{x_{j}, x_{k}\right\} \mid\left\{x_{j}, x_{k}, x_{i}\right\} \in \mathcal{B} \text { and } 1 \leqslant j<k<i\right\}
$$

for all $3 \leqslant i \leqslant n$. Each matroid $M_{i}^{\prime}\left(S_{i-1}, \mathcal{B}_{i}(M)\right) \in \mathcal{M}_{2}^{0}\left(S_{i-1}\right)$ and so we may upper bound $\left|\mathcal{M}_{3}^{0}\left(S_{n}\right)\right|$ by

$$
m_{3}(n)<\prod_{i=3}^{n} m_{2}^{0}(i-1)
$$

The result now follows from direct application of the first inequality.
We now show for fixed $p \neq 0,1$, the values $\varrho_{n}^{2}(p)$ and $\varrho_{n}^{3}(p)$ converge to 0 for large n.
Theorem 9 For fixed $p, 0<p<1$, and $r=2,3$,

$$
\lim _{n \rightarrow \infty} \varrho_{n}^{r}(p)=0
$$

Proof: For $r=2, \varrho_{n}^{2}(p) \leqslant m_{2}^{0}(n) \max \{p, q\}^{\binom{n}{2}}<(n+1)^{n+1} \max \{p, q\}^{\binom{n}{2}}$ which tends to 0 for n large. From Lemma 7, let us assume that $0<p \leqslant \frac{1}{2}$. Then,

$$
\begin{aligned}
\varrho_{n}^{3}(p) & \leqslant m_{3}(n) q^{\binom{n}{3}} \\
& \leqslant q^{\binom{n}{3}} \prod_{i=3}^{n} i^{i}
\end{aligned}
$$

from Lemma 8.

Now, as $\binom{n}{3}=\binom{n-1}{2}+\binom{n-2}{2}+\ldots+\binom{2}{2}$, we have

$$
=\prod_{i=3}^{n} i^{i} q^{\binom{i-1}{2}}=: A(n)
$$

Since $A(n)$ is a sequence of positive real numbers, then if we can show that $\lim _{n \rightarrow \infty} \frac{A(n+1)}{A(n)}$ exists and is less than 1, then $A(n)$ converges and $\lim _{n \rightarrow \infty} A(n)=0$ (see Bartle \& Sherbert [3] Theorem 3.2.11):

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{A(n+1)}{A(n)} & =\lim _{n \rightarrow \infty}(n+1)^{n+1} q^{\binom{n}{2}} \\
& =0
\end{aligned}
$$

Since the sequence $A(n)$ dominates $\varrho_{n}^{3}(p)$, we have

$$
\limsup _{n \rightarrow \infty} \varrho_{n}^{3}(p) \leqslant \limsup _{n \rightarrow \infty} A(n) \leqslant \lim _{n \rightarrow \infty} A(n)=0
$$

Because of non-negativity, the limit exists and is zero. For the case $\frac{1}{2} \leqslant q<1$ the same result clearly holds.

3.2 The Rank-2 Case and Random Graphs

A rank-2 matroid may be represented by a simple graph, with the vertices representing the elements of the ground set and the edges representing the sets in the bases. This is what Acketa [1] termed a "matroidic graph". The condition on the graph for it to be matroidic is that it have at least one edge and the collection of non-isolated vertices constitutes a complete k-partite graph for some $k \geqslant 2$. The set of isolated vertices are the loops of the matroid. We give a recursion for the probability that the standard random graph $G(n, p)$ (with edge probability p) represents such a matroidic graph, i.e. a rank-2 matroid.

For any $\pi \in \Pi_{n}(i)$ where $\pi=X_{1}, \ldots, X_{i}$, let the weight of π be

$$
w(\pi):=\sum_{j=1}^{i}\binom{\left|X_{j}\right|}{2}
$$

We now have the precise expression:

$$
\begin{align*}
\varrho_{n}^{2}(p) & =\sum_{i=2}^{n}\binom{n}{n-i} \sum_{\pi \in \Pi_{i}(2, i)} p^{\binom{i}{2}-w(\pi)} q^{\binom{n}{2}-\binom{i}{2}+w(\pi)} \tag{8}\\
& =q^{\binom{n}{2}} \sum_{i=2}^{n}\binom{n}{i}\left(\frac{1}{z}\right)^{\binom{i}{2}}\left\{-z^{\binom{i}{2}}+\sum_{\pi \in \Pi_{i}} z^{w(\pi)}\right\},
\end{align*}
$$

where $z:=q / p$.
Theorem 10 Let $\gamma_{0}(x)=1, \gamma_{1}(x)=1$ and for all $n>0$ define

$$
\gamma_{n+1}(x):=\sum_{0 \leqslant k \leqslant n}\binom{n}{k} x^{-k(n+1-k)} \gamma_{k}(x) .
$$

Then for all $n \geqslant 2$,

$$
\varrho_{n}^{2}(p)=q^{\binom{n}{2}} \sum_{0 \leqslant i \leqslant n}\binom{n}{i}\left\{\gamma_{i}(z)-1\right\} .
$$

Proof: Let $\gamma_{0}(x)=1$ and $\gamma_{1}(x)=1$. For all $n \geqslant 2$ define

$$
\gamma_{n}(x):=\frac{1}{x^{\binom{n}{2}}} \sum_{\pi \in \Pi_{n}} x^{w(\pi)}
$$

Then we see that

$$
\begin{aligned}
\gamma_{n+1}(x) & =\frac{1}{x^{\binom{n+1}{2}}} \sum_{\pi \in \Pi_{n+1}} x^{w(\pi)} \\
& =\frac{1}{x^{\binom{n+1}{2}}} \sum_{k=0}^{n}\binom{n}{n-k} \sum_{\pi^{\prime} \in \Pi_{k}} x^{w\left(\pi^{\prime}\right)+\binom{1+n-k}{2}} \\
& =\frac{1}{x^{\binom{n+1}{2}}} \sum_{k=0}^{n}\binom{n}{k} x^{\binom{1+n-k}{2}} \sum_{\pi^{\prime} \in \Pi_{k}} x^{w\left(\pi^{\prime}\right)} \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{x^{\binom{1+n-k}{2}}}{x^{\binom{n+1}{2}}} \frac{x^{\binom{k}{2}}}{x^{\binom{k}{2}}} \sum_{\pi^{\prime} \in \Pi_{k}} x^{w\left(\pi^{\prime}\right)} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{\binom{1+n-k}{2}+\binom{k}{2}-\binom{n+1}{2}} \gamma_{k}(x)
\end{aligned}
$$

Now $\binom{1+n-k}{2}+\binom{k}{2}-\binom{n+1}{2}=-k(n-k+1)$ so the above expression becomes

$$
\gamma_{n+1}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{-k(n-k+1)} \gamma_{k}(x)
$$

From equation 8,

$$
\begin{aligned}
\varrho_{n}^{2}(p) & =q^{\binom{n}{2}} \sum_{i=2}^{n}\binom{n}{i}\left(\frac{1}{z}\right)^{\binom{i}{2}}\left\{-z^{\binom{i}{2}}+\sum_{\pi \in \Pi_{i}} z^{w(\pi)}\right\} \\
& =q^{\binom{n}{2}} \sum_{i=2}^{n}\binom{n}{i}\left\{-1+\left(\frac{1}{z}\right)^{\binom{i}{2}} \sum_{\pi \in \Pi_{i}} z^{w(\pi)}\right\} \\
& =q^{\binom{n}{2}} \sum_{i=2}^{n}\binom{n}{i}\left\{-1+\gamma_{i}(z)\right\},
\end{aligned}
$$

and since $\gamma_{0}(x)=\gamma_{1}(x)=1$,

$$
\varrho_{n}^{2}(p)=q^{\binom{n}{2}} \sum_{i=0}^{n}\binom{n}{i}\left\{\gamma_{i}(z)-1\right\}
$$

By definition, $\varrho_{n}(0)=0$ and $\varrho_{n}(1)=1$. Figure 3 shows $\varrho_{n}^{2}(p)$ for small values of n and we see its evolving nature with regard to Theorems 6 and 9 .

Figure 3: The graph of $\varrho_{n}^{2}(p)$ for small values of n.

References

[1] D.M. Acketa. On the enumeration of matroids of rank-2. Zbornik radova Prirodno-matematickog fakulteta - Univerzitet u Novom Sadu., 8, 1978.
[2] D.M. Acketa. A construction of non-simple matroids on at most 8 elements. J. Combin. Inform. System Sci., 9:121-132, 1984.
[3] Bartle and Sherbert. Introduction to Real Analysis. Wiley, $2^{\text {nd }}$ edition, 1992.
[4] H.H. Crapo. Single element extensions of matroids. J. Res. Nat. Bur. Stand., 69B:57-65, 1965.
[5] J. Doyen. Sur le nombre d'espaces lineaire non isomorphes de n points. Bull. Soc. Math. Belg., 19:421-437, 1967.
[6] H. Crapo J.E. Blackburn and D.A. Higgs. A catalogue of combinatorial geometries. Math. Comp., 27:155-166, 1973.
[7] John Knovalina. The combinatorics of discrete self-similarity. Adv. Appl. Math., 19:415-428, 1997.
[8] D.E. Knuth. The asymptotic number of geometries. J. Combin. Theory. (A), 16:398-400, 1974.
[9] J.G. Oxley. Matroid Theory. Oxford University Press, first edition, 1992.
[10] M.J. Piff. An upper bound for the number of matroids. J. Combin. Theory. (B), 14:241-245, 1973.
[11] D.E. Knuth R.L. Graham and O. Patashnik. Concrete Mathematics. Addison-Wesley, $2^{\text {nd }}$ edition, 1989.

[^0]: *E-MAIL: dukes@stp.dias.ie TEL: +353-1-614 0147 FAX: +353-1-668 0561

