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Abstract

The Generalised Random Energy Model is a generalisation of the Random Energy Model in-
troduced by Derrida to mimic the ultrametric structure of the Parisi solution of the Sherrington-
Kirkpatrick model of a spin glass. It was solved exactly in two special cases by Derrida and Gardner.
A rigorous analysis by Capocaccia et al. claimed to give a complete solution for the thermodynam-
ics of the model in the general case. Here we use Large Deviation Theory to analyse the model
along the lines followed by Dorlas and Wedagedera for the Random Energy Model. The resulting
variational expression for the free energy is the same as that found by Capocaccia et al. We show
that it can be evaluated in a very simple way. We find that the answer given by Capocaccia et al.
is incorrect.

1 Definition of the GREM

The generalised random energy model (GREM) was introduced by Derrida [3] as a generalisation of
his random energy model (see [2]) of a spin glass in order to incorporate some correlations between
energy levels. Whereas in the random energy model all energy levels E; are independent random
variables, and the partition function is given by

oN
ZN(ﬁ) = Z eiﬁEia
=1

the energy levels of the generalised model have a tree-like structure. The tree is defined by a
number of levels n and for each level k = 1,...n, a number ay € (1,2) determining the number of
branches per node. (See Figure 1.) To make the total number of highest-level branches in the tree

add up to 2V as before, we assume that ]}, ax = 2. For each k = 1,...,n there are (ay -+~ ag)V
independent random variables {Ej(-k)}, distributed according to pg\’;) with density
1
PWNE) = === /NI, (1.1)

VapmNJ?

where the positive numbers aj, satisfy > ;_, ai, = 1. (Obviously, in general aé\[ is not an integer,
but we can take its integer part which is very nearly the same for large N. We shall disregard the
difference in the following.)

The partition function of the GREM is defined by

. N . N
110y tn—1Q,

n=3 5 Y e ]a(Se)

1=14=(i; —1)ad +1 in=(in—1—1)all +1 k=1

. (1.2)
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P q r

Figure 1: The tree-like structure of the GREM. The nodes on the nth layer represent the configura-
tions. The energy of any configuration is the sum of the energies on the branches up to the source
node.

This formula is best understood by referring to Figure 1. As usual the free energy is defined by

1 1
f(B) = 3 ]\}EnooﬁanN(ﬁ). (1.3)
We shall prove that this limit exists almost surely w.r.t. the distribution of the energies {El(k)}
To do this, we introduce the random distribution functions Fy(x1,...,2,) and Fy(z1,...,2T,) as
follows.
oziv ilaév in_1al
1 T 7@ g
Fn(z1,..., @) = Q—NZ > > L,'1) -1, (1.4)

1=1i=(i1—1)ad +1 in=(in—1—1)al +1

. N . N
110y In—10,

aN
Fy(z1,...,m,) = QLNZI Z Z ]11(‘11)]11('22)"'11(‘:)7

1=1i=(i1—1)ad +1 in=(in—1—1)al +1

where we use the notation 1% = ]l{Ei(k) > Nay} and iﬁ’“) = ]l{Ei(k) < Nz }. We also define G

i

and Gy as
Nzxq Nz, 1
Gularewnan) = [ e [T B B dE - dE,
= LY e (n)
Gn(x1,...,2n) = / pN (Ev)---py ' (Eyn) dE, - --dE;.
Nz, Nz,
We will abbreviate G (x1,...,2,) to Gy and Fx(x1,...,2,) to F . Let us also use as short-hand,
pi = PEYD > Nz,).

Note that G = pi1p2---pn. In the following section we prove a large deviation property (LDP)
for the distribution functions Fiy analogous to that of Dorlas and Wedagedera [5].
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2 The Rate Function

Theorem 2.1 The sequence of measures un (1, ... ,Tn) with distribution function Fx(x1,...,x,)
satisfies a LDP with rate function I(x1,...,2,) where
1 x? .
7 Z -+, if (x1,...,20) €¥(J;01,...,an;00,...,Qy),
I(xl,...,xn): 1<i<nal
400, otherwise,
where the region U(J;a1,...,an;Q1,...,04) is given by
ko2 k
{ (x1,...,2,) €R" ’ Z;a—z < JQE;lnai, forall 1 gkén}
1= 1=

Proor: First we do the case for (z1,...,2,) € ¥(J;a1,...,an;Q1,...,Q,). By Chebyshev’s
inequality, for all € € (0, 1),

_ _ _ 1 _ _
IP(|FN—GN| >€GN) < —) E(|FN—GN|2).
Gy
Now E(|[Fy — Gy |?) = E(Fy) — 2GNE(Fy) + Gy and

. N : N
110y ’Ln_l()én

o
BFy) = E(Y Y Y aPi®oa?

u=li=(i1—Dadl+1  in=(in—1—1all+1

1 N

= 2—N0¢{Vp1aévp2 c QO P
= PipP2- " Pn
= Gn.

. -2 . .
To obtain [E(Fy) we introduce some new notation. Let

ik:"‘g ikJrl:ika{C]\\}l inzin—lo‘ﬁj
Jp=ag Tk+1=0k 41 Ik=in—108
o (k) 7 (k) E : (k+1) o (k+1) § : (n)q(n)
By = E Z ILik ]ljk ]lik-+1 ]ljk+1 ]lin Iljn
;kii ik+1=('ik—1)a£]+l+1 in=(inp_1—1al +1
k Jpp1=(E—Dap,  +1 dn=0n_1-Daf +1

Now notice that the following recursion holds:
Be = o'pk (B + (an — Dpe(ap vt o) pn)?)

for all 1 < k < n. The initial value is B,, = ol p, + (a2¥ — alY)p2 but this may be obtained by
1
22—1\781'
Alongside the above recursion, let us define a sequence Dy, by which we upper bound Bj. Let
Dyy1 :=1 and define

defining B,,4+1 := 1 and applying the above recursion for £ = n. Notice also that IE(F?V) =

Di = Yk (Drsr+ Ue(Wrs1n)’).

This gives rise to

Dy = yiye - Un 14+ Yn+Yn-1yn+ - +Fy1¥2-Yn)-



ON THE GENERALISED RANDOM ENERCY MODEL Page 4 of 9

If we now take yr = akNpk, then it is clear that Dy > By for all 1 < k < n, hence the following
bound:

—2 1
1
< 22—ND1
n
(1 otn (1+zagpk---azypn>
1<k<n k=1
= 2N6N (1 +Zagpk ~~-0¢,lepn> .
k=1
Thus
_ — 12 1 1 N& ~ N N —2
5 E(|Fny —Gn|?) < = 22—N2 Gn 1+Zakpk“‘anpn - Gy
el Gy k=1
1 1= - N N =2
= = 2—NGN 1+Zozkpk---anpn — Gy
Gy k=1
1 I = N~ - N N =2
= 5 {ovOn |1+2 Gy + > abpr-alp, | — Gy
Gy k=2
1 n
= ——<1+ aNpk---af:fpn
_ 1 1 Z”:affpkmafypn
 2oNGy €2 2Npipa -+ pp

k=2
B Lo = 1
22NGy €2 = alpy ol py
1 & 1
= — _—_ 2.1
62;04{\/]91...0451% ( )

Using the inequality / e 2y >
bounded above by

1 VT(2Nz? + a;J?%) )
- H exp —2 —J Zln oy + Z —
i<k ziJVaiN J 1<i<k b

2
which will converge if and only if Z Ti < J? Z Incy;. Thus it is seen that equation (2.1)

—, 4 -
1<i<k 1<i<k
converges if all the sums of its individual terms converges. The values for which this happens
are precisely those which define the region ¥(J;ay,...,an;1,...,q,) as stated in the lemma.

Introducing the events

Ay = {{E'L(ll""’Ei(:)}‘|§N_FN|>€6N}7
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we see that )\ IP(Ax) < 4+o00. Hence by the Borel-Cantelli Lemma,
P (ﬂ U AN> = 0.
v=1 N=v

This means that with probability 1

o0 o0 C o0 o0

1 n

@ e (N Ua) - UN
v=1 N=v v=1 N=v

In other words, for almost all {Ez(ll)7 ,Ei(:)} there exists a v € N such that for all N > v

{E EZ(:)} € A§. Hence Fy = G with probability 1 for all N > v

ITRE RN

For the case (x1,...,2,) € U(J;a1,...,an;01,...,ap), then it must hold that

a3 2
Z - > J Z lnai

K2

1<i<k 1<i<k
for some k with 1 < k < n. We may now upper bound the function Fy(z1,...,z,) by
irad in_1a

F 1 1) 4(2 k
FN(SCh...,:En) < 2Nak+1 Z Z Z ]]_51)]]_52)]]_Ek)

w=liy=(iy—1)ad +1  ir=(ir_1—1)ap +1

/

. N
z1a2 Te—1Q

C eSS E LY e

w=lip=(ir—1)ad +1  ip=(ir_1—1)af +1

=t Hy(z1,..., %)

We will show that Hy (21, ...,2;) = 0 with probability 1 if N is large enough. We have

{{ED, ... . EPY] HN(ajl,...,xk) -0}

. N
’Llaz Te—1Q

= {{EY, . EMY Z S 3 1011 <

1=14=(i; —1)ad +1 ip=(ix—1—1)af +1
By Chebyshev’s inequality,

; N
11062 Tk—10

P 5 Y s

i1=14,= (zl l)a2 +1 ik:(ik,l—l)afcv-i-l

. N
11042 lk,lak
1 k
cx(S ¥ Y ey
t1=145=(i1— 1)al N+t1 ik:(ik,l—l)ag]-‘rl
= oV o o P(EMW > Nzy) - - P(E® > Nay)
J a; N 2
< ol IT BCAVITIIN <_ jz)
1<i<h 2x;vV/ TN a;
Jya; x?
= H ———— |exp < N Z (1nal 2)
1<ick 2V TN 1<i<k

Since

x? 9
a—z > J Z In a;,

1<i<k 1<i<k
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the series
> Jya; x2
S| I 0o oo dn 3 (mai- )
N=1 \1<i<k 21’1 TN k aiJ

converges. Introducing the events

zlaz ik,laﬁ]
Ay = {E

E““)}!Z > X wees

t1=145=(i;— l)aévﬂ—l ik:(ik,l—l)ag-&-l

we see again by the Borel-Cantelli Lemma, for almost all {Ei(ll), e ,Ei(f)} there exists a v € IN
such that for all N > v, {EZ.(ll), e ,Ez(f)} € A§ and hence Hy/(z1,...,7;) = 0. Thus we have:

1. — 1
limsupﬁlnFN(xh...wn) < limsupﬁlnHN(xh...,xk)

N N
= —o0.
O
3 The Variational Problem
We may re-write the partition function in (1.2) as
Zn(B) = ZN/ exp{—NpB(z1+ -+ x,)} dFn(1,...,2p)
where Fn(z1,...,2,) is given in (1.4). Using Varadhan’s Lemma, we may evaluate —3f(5) as

follows:

—Bf(B) lim —{hl Zn ()}

N—oo N

= In2+ sup {-Blx1+-+ax,) —I(z1,...,2,)}
(z1,...,xn)ER™

n 2
In2— inf {; aZJQ B:cz}

lopn 1. ~1 1 o
In2+ 45 J 2 :Enelf\lf{lz_: al(ml—k 2aZ/BJ ) p.

Performing the change of variables: x; = Jy;\/a;, ' = %ﬁJ and v; = Inq;, the above expression
becomes

= In2+ 62J2— inf {Z —Vaif) }
=1

yew’

where

M;r

k
\P/:{(y17...,yn R"L ‘ y Z’yi’ forall 1<k<n}
=1

i=1
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3.1 Evaluation of the infimum in R"

Define the numbers B(j, k) for all 1 < j < k < n:

B(j, k) =/t ———.
aj + e + ag
Let mg := 0 and recursively define the numbers m; as

m; = inf{m >m;_1|B(m;—1 +1,m) < B(m;—1 + 1,1), forall m;_1 +1 <l < n}

terminating at the value K such that mx = n. A crucial property of rational expressions like
B(j, k) is the following: if a, b, c and d are positive reals, then ¢ < § if and only if § < Zi;. Define
the sequence of inverse temperatures 3; (i =0,..., K +1) by

Gi = B(mij—1+1,m,;), i=1,... K.
and [y := 0, Bk 41 := +oo. Note that this sequence is increasing by the above property.
Lemma 3.1 If 3; < ' < Bj41 for some 0 < j < K, then the infimum is attained at ¥ given by
Biv/ai, ifi € [my_1+1,...,my] for some 1 <1< j,
T { B\/ai, ifi€m;+1,... .
for all 1 <i < n.

PROOF: Let p; = y/a; for all 1 < i < n. We will show that the point & with coordinates given
above is the point such that for all y € ¥/, || ¥ — 8’0’ ||=|| & — 0'F ||. First, let us note two trivial
inequalities,

J m;
S0> T wi—-Bp)? = 0, (3.1)
I=1i=m;_1+1
S wi—-8p)? = o0 (3.2)
i=mj;+1

Note that for all 1 < I < 7, (ﬁ—’ — 1) > 0. By the Cauchy-Schwarz inequality we have, for all
1<j" <4,

. , 1/2
J m; ! vz m; /
2 2 2
> By < | D v S> T s
1=1 i=my_1+1 =1 1=1 i=m_1+1
1/2
my 12 y /
2 2
< Z Vi Z Bi Z Di
=1 =1 t=m;_1+1
Notice that 37, 42 1P = I S a1 = 2oi2t i and so the above expression

becomes

Thus we have
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for all 1 < 7/ < j and ¥ € ¥'. Introducing the numbers (% — 1) into the sum, it is shown by a

recursive argument (see Appendix) that

J / my
Z(é_1> Z Bipi(Bipi —vyi) = 0.

=1 i=my_1+1
Multiplying the above inequality by 2 and re-writing we have

my

22 Z (B'pi — Bipi) (Bipi — i) = 0. (3.3)

1=11i=m;_1+1

Combining equations (3.1), (3.2) and (3.3) while noting that §'p; =: x; (for m; +1 < i < n) and
Bipi =: z; (for 1 < i < my), we have

F—%)- (G+7-267) > 0.
Re-writing gives
1Z2=8%l = 1y-87%I

for all y € W'.

3.2 Expression for the Free energy

Applying the coordinates of our point of infimum to the expression for the free energy gives the
required expressions. Recalling 3’ := % BJ, pi = \/a; and v; = lna; gives

Corollary 3.2 The free energy is given by

n2+ ;3%J2, if B< 26

n 1 J my my

2 72 -r 2 2
)Y (et ) S @) | X ma] #3s<o<3nn
6f(ﬁ) i=m;+1 =1 i=m;_1+1 i=mj_1+1

K my my
ﬁJZ Z a; Z Ina; |, if 2Bk < 3.

=1 i=m;_1+1 i=my_1+1

Applying n = 2 to the above expression yields the same answer as Derrida [3]. In this case the
answer depends on whether a;/Ina; 2 as/Inas. If a1 /Ina; > as/Inas, then

2 2
In?2+ ﬂ if 8 < ,/hw‘1

1
_/Bf(ﬁ) = Inas + a2ﬂ2j2+6jx/a1 Inaq, lf— nan

In oo

2
J
ln o)

BJvVaiInay + BJvas In as, lfj

<B.

Otherwise,
2 92 Ao
In2 + Jf g }nz
—Bf(B) =
. 2v/1n 2
BJIVIn 2, if B> .
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It is an easy exercise to see the solutions also concur for cases A and B in Derrida and Gardner [4].
Capocaccia et. al. [1] approach to the variational problem contains a few minor flaws which are
easily seen by setting m = 2 in their final expression for the free energy. In this case, their result
does not distinguish between the above two cases and their critical temperature is incorrect.

Appendix

Lemma A Let x1,22,...,2, > 0 and {y;}?_; be a sequence of reals. Let G, := Y i~ y; be such
that G, =0 for all 1 < m < n. Then

F(n) = leyl > 0.
i=1

PROOF: Let us define Gy = 0. Notice that y; = G; — G;_1 for all 1 < i < n. Then

n

F(TL) = in(Gi_Gi—l)

i=1

WV
=

since z; — x;_1 > 0 for all i.
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