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Abstract

In this paper we develop a quantum version of Feinstein’s Lemma

and use it to give a new proof of the direct channel coding theorem for

transmission of classical information through a quantum memoryless

channel. Moreover, we extend the lemma to a class of quantum chan-

nels with memory and thus obtain a bound for the achievable rates in

the case of product state inputs.

1 Introduction

The biggest hurdle in the path of efficient information transmission is the

presence of noise in classical and quantum channels. This noise causes a

distortion of the information sent through the channel. To overcome this

problem, one uses error–correcting codes. Instead of transmitting the original

messages, the latter are encoded into codewords which are then sent through

the channel. The codewords necessarily have redundancies so that even if

part of a codeword is distorted by the noise in the channel, the corresponding

output of the channel can still be decoded to yield the original message with

a low probability of error. The information transmission is said to be reliable

if the probability of error in decoding the output of the channel vanishes

asymptotically (see e.g. [3] and [11]).

Shannon, in his Noisy Channel Coding Theorem [15], showed that in-

formation can be reliably sent over a classical channel at all rates up to

the channel capacity. The first rigorous proof of this fundamental theorem

was provided by Feinstein [5]. He used a packing argument to find a upper

bound to the maximal number of codewords that can be sent through the

channel with a low probability of error. His argument is often referred to as

Feinstein’s Lemma.

In this paper we develop a quantum version of Feinstein’s Lemma and

use it to find an alternative proof of the direct Channel Coding Theorem for

transmission of classical information through a quantum memoryless channel.

For such a channel successive channel inputs are acted on independently.
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The first proof of this theorem, which states that all rates up to the so–

called Holevo capacity are achievable, was proved independently by Holevo

[8] and Schumacher and Westmoreland [14]. Unlike our proof, they employed

the random coding technique. Alternative proofs have been given by Winter

[16], Ogawa [12], and Hayashi & Nagaoka [6].

The proof in [12] was based on the standpoint of quantum hypothesis

testing and the quantum information spectrum, though it also employed an

argument similar to Feinstein’s lemma. In [6] the technique of quantum

information spectrum was used and there were no structural assumptions

imposed on the quantum channels.

Our version of the quantum Feinstein’s lemma can be extended explicitly

to a class of quantum channels with memory. This allows us to obtain a

rigorous lower bound to the maximum achievable rate of transmission for

this class of channels, for the case of product state inputs. The generalized

quantum Feinstein lemma and the direct coding theorem for these channels

with memory are given in Section 5. However, due to lack of space, the

details of the proof have been omitted. They will be presented in [4].

The quantum Feinstein lemma for memoryless channels is stated and

proved in Section 3, and the corresponding direct coding theorem is given in

Section 4.

2 Preliminaries

Let B(H) denote the algebra of linear operators acting on a finite–dimensional

Hilbert space H, and S(H) denote the set of all postive operators of unit trace

in B(H), i.e., states (or density matrices). The von Neumann entropy of a

state ρ is defined as S(ρ) = −Tr ρ log ρ, where the logaritm is taken to base

2. A quantum channel is given by a completely positive trace–preserving

(CPT) map Φ : B(H) → B(K), where H and K are the input and output

Hilbert spaces of the channel. Let dim H = d and dim K = d′. The Holevo
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capacity of the channel is defined as follows:

χ(Φ) := max
{pj ,ρj}

{

S

(

∑

j

pj Φ(ρj)

)

−
∑

j

pj S(Φ(ρj))

}

, (1)

where the maximum is taken over all ensembles {pj, ρj} of possible input

states ρj ∈ B(H) and probability distributions {pj}.

It can be shown that the maximum in (1) can be achieved by using an

ensemble of pure states and that in the maximisation it suffices to consider

ensembles of at most d2 pure states.

3 The Quantum Feinstein Lemma

Theorem 1 Let Φ : B(H) → B(K), be a quantum channel and let χ(Φ) be its

Holevo capacity. Given ǫ > 0, there exists n0 ∈ N such that for all n ≥ n0

there exists N ≥ 2n(χ(Φ)−ǫ) and there exist product states ρ̃
(n)
1 , . . . , ρ̃

(n)
N ∈

S(H⊗n) and positive operators E
(n)
1 , . . . , E

(n)
N ∈ B(K⊗n) such that

∑N
k=1 E

(n)
k ≤

1 and

TrΦ⊗n
(

ρ̃
(n)
k

)

E
(n)
k > 1 − ǫ, (2)

for each k.

Proof Let the maximum in (1) be attained for an ensemble {pj, ρj}
J
j=1, where

J ≤ d2. Denote σj = Φ(ρj), σ̄ =
∑J

j=1 pjΦ(ρj) and σ̄n = σ̄⊗n.

Choose δ > 0. We will relate δ to ǫ at a later stage. The Typical Subspace

Theorem (see e.g. [13] or [11]) ensures that there exists n1 ∈ N, such that

for n ≥ n1, there is a typical subspace T δ,ǫ with projection Pn, such that if

σ̄n has a spectral decomposition

σ̄n =
∑

k

λ̄
(n)
k |ψ

(n)
k 〉〈ψ

(n)
k |, (3)

then
∣

∣

∣

∣

1

n
log λ̄

(n)
k + S(σ̄)

∣

∣

∣

∣

<
ǫ

3
, (4)
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for all k such that |ψ
(n)
k 〉 ∈ T δ,ǫ and

Tr (Pnσ̄n) > 1 − δ2. (5)

Define

S̄ =
J

∑

j=1

pj S(σj). (6)

We make use of the following lemma.

Lemma 1 Given a sequence j = (j1, . . . , jn) let P
(n)
j be the projection onto

the subspace spanned by the eigenvectors of σ
(n)
j = σj1 ⊗ · · · ⊗ σjn

with eigen-

values λ
(n)
j,k =

∏n
i=1 λji,ki

such that

∣

∣

∣

∣

1

n
log λ

(n)
j,k + S̄

∣

∣

∣

∣

<
ǫ

3
. (7)

Let δ > 0. There exists n2 ∈ N such that for n ≥ n2,

E
(

Trσ
(n)
j P

(n)
j

)

> 1 − δ2. (8)

Proof(of Lemma 1) Define independent and identically distributed (i.i.d.)

random variables X1, . . . , Xn with distribution given by

P(Xi = λj,k) = pj λj,k, (9)

where λj,k, k = 1, 2, . . . , d′ are the eigenvalues of σj. By the weak law of

large numbers, we have the following convergence in probability

1

n

n
∑

i=1

log Xi
P

−→ E(log Xi) =
J

∑

j=1

d′
∑

k=1

pj λj,k log λj,k

= −

J
∑

j=1

pj S(σj)

= −S̄. (10)

It follows that there exists n2 ∈ N such that for n ≥ n2, the typical set T
(n)
δ,ǫ

of sequences of pairs ((j1, k1), . . . , (jn, kn)), such that
∣

∣

∣

∣

∣

1

n

n
∑

i=1

log λji,ki
+ S̄

∣

∣

∣

∣

∣

<
ǫ

3
, (11)
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satisfies

P
(

T
(n)
δ,ǫ

)

=
∑

((j1,k1),...,(jn,kn))∈T
(n)
δ,ǫ

n
∏

i=1

pji
λji,ki

> 1 − δ2. (12)

Obviously,

P
(n)
j ≥

∑

k:(j,k)∈T
(n)
δ,ǫ

|ψ
(n)
j,k 〉〈ψ

(n)
j,k |, (13)

and

E
(

Tr σ
(n)
j P

(n)
j

)

≥ P
(

T
(n)
δ,ǫ

)

> 1 − δ2. (14)

QED

Continuing the proof of the theorem, let N = N(n) be the maximal

number for which there exist states ρ̃
(n)
1 , . . . , ρ̃

(n)
N on H⊗n of the tensor product

form

ρ̃
(n)
k = ρk1 ⊗ ρk2 . . . ⊗ ρkn

,

and there exist positive operators E
(n)
1 , . . . , E

(n)
N on K⊗n such that, defining

σ̃
(n)
k = Φ⊗n(ρ̃

(n)
k ), we have

(i)
∑N

k=1 E
(n)
k ≤ Pn and

(ii) Tr σ̃
(n)
k E

(n)
k > 1 − 2ǫ for each k, and

(iii) Tr σ̄nE
(n)
k ≤ 2−n[S(σ̄)−S̄− 2

3
ǫ] for each k.

For any given j define

V
(n)
j =

(

Pn −

N
∑

k=1

E
(n)
k

)1/2

PnP
(n)
j Pn

(

Pn −

N
∑

k=1

E
(n)
k

)1/2

. (15)

Clearly, V
(n)
j ≤ Pn −

∑N
k=1 E

(n)
k , and we also have:

Lemma 2 Define

Wn = {j |Tr (σ
(n)
j P

(n)
j ) > 1 − δ}. (16)

Then, for all j ∈ Wn,

Tr (σ̄nV
(n)
j ) ≤ 2−n[S(σ̄)−S̄− 2

3
ǫ]. (17)
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Proof(of Lemma 2) Put Qn =
∑N(n)

k=1 E
(n)
k . Note that Qn commutes with

Pn. Using the fact that Pnσ̄nPn ≤ 2−n[S(σ̄)− 1
3
ǫ] by (4), we have

Tr σ̄nV
(n)
j = Tr σ̄n(Pn − Qn)1/2PnP

(n)
j Pn(Pn − Qn)1/2

= Tr Pnσ̄nPn(Pn − Qn)1/2P
(n)
j (Pn − Qn)1/2

≤ 2−n[S(σ̄n)− 1
3
ǫ]Tr

[

(Pn − Qn)1/2

×P
(n)
j (Pn − Qn)1/2

]

≤ 2−n[S(σ̄n)− 1
3
ǫ]Tr P

(n)
j

≤ 2−n[S(σ̄n)−S̄− 2
3
ǫ], (18)

where, in the last inequality, we used the standard upper bound on the

dimension of the typical subspace: Tr P
(n)
j ≤ 2n[S̄+ 1

3
ǫ], which follows from

(7). QED

Since N(n) is maximal it follows that for j ∈ Wn,

Tr σ
(n)
j V

(n)
j ≤ 1 − 2ǫ. (19)

We now show that the set Wn has high probability:

Lemma 3 µ(Wn) > 1 − δ, where µ(Wn) :=
∑

j∈Wn
p

(n)
j .

Proof(of Lemma 3) If j /∈ Wn then Tr σ
(n)
j P

(n)
j ≤ 1 − δ. Hence

∑

j /∈Wn

p
(n)
j Tr σ

(n)
j (1 − P

(n)
j ) ≥ δ µ(W c

n), (20)

where 1 denotes the identity operator on H⊗n. On the other hand,

∑

j /∈Wn

p
(n)
j Tr σ

(n)
j (1 − P

(n)
j ) ≤ E

(

Tr σ
(n)
j (1 − P

(n)
j )

)

< δ2, (21)

by (8). Hence, µ(W c
n) < δ2

δ
= δ. QED
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Corollary 1 Assume δ < ǫ. Then

E
(

Trσ
(n)
j V

(n)
j

)

< 1 − ǫ. (22)

Proof(of Corollary 1) Using (19), we have

E
(

Tr σ
(n)
j V

(n)
j

)

=

=
∑

j∈Wn

p
(n)
j Tr σ

(n)
j V

(n)
j +

∑

j∈W c
n

p
(n)
j Tr σ

(n)
j V

(n)
j

≤ 1 − 2ǫ + µ(W c
n) < 1 − ǫ, (23)

since δ < ǫ. QED

The bound given in the following lemma is essential for the proof of the

lower bound (2).

Lemma 4 For all η > 0, there exists n3 ∈ N such that for all n ≥ n3,

E
(

Trσ
(n)
j PnP

(n)
j Pn

)

> 1 − η. (24)

Proof(of Lemma 4) We write

E
(

Tr σ
(n)
j PnP

(n)
j Pn

)

=

= E
(

Tr σ
(n)
j P

(n)
j

)

− E
(

Tr σ
(n)
j (1 − Pn)P

(n)
j

)

−E
(

Tr σ
(n)
j PnP

(n)
j (1 − Pn)

)

. (25)

By Lemma 1, the first term is > 1− δ2 provided n ≥ n2. The last two terms
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can be bounded using Cauchy-Schwarz as follows:

E
(

Tr σ
(n)
j (1 − Pn)P

(n)
j

)

=

= E

(

Tr
(

σ
(n)
j

)1/2

(1 − Pn)P
(n)
j

(

σ
(n)
j

)1/2
)

≤
{

E
(

Tr (1 − Pn)σ
(n)
j (1 − Pn)

)}1/2

×

{

E

(

Tr
(

σ
(n)
j

)1/2

P
(n)
j

(

σ
(n)
j

)1/2
)}1/2

=
{

E
(

Tr σ
(n)
j (1 − Pn)

)}1/2 {

E
(

Tr σ
(n)
j P

(n)
j

)}1/2

≤
{

E
(

Tr
[

σ
(n)
j (1 − Pn)

])}1/2

= (Tr σ̄n(1 − Pn))1/2 ≤ δ (26)

by (5) provided n ≥ n1. Similarly,

E
(

Tr σ
(n)
j PnP

(n)
j (1 − Pn)

)

= E

(

Tr
(

σ
(n)
j

)1/2

PnP
(n)
j (1 − Pn)

(

σ
(n)
j

)1/2
)

≤
{

E
(

Tr P
(n)
j Pnσ

(n)
j PnP

(n)
j

)}1/2

×

{

E

(

Tr
(

σ
(n)
j

)1/2

(1 − Pn)
(

σ
(n)
j

)1/2
)}1/2

=
{

E
(

Tr σ
(n)
j PnP

(n)
j Pn

)}1/2

×
{

E
(

Tr σ
(n)
j (1 − Pn)

)}1/2

≤
{

E
(

Tr σ
(n)
j (1 − Pn)

)}1/2

≤ δ. (27)

Choosing n3 = n1 ∨ n2 ≡ max{n1, n2}, and δ2 + 2δ < η the result follows.

QED

Lemma 5 Assume η < 1
3
ǫ and δ < ǫ. Then for n ≥ n3,

Tr σ̄n

N
∑

k=1

E
(n)
k = E

(

Trσ
(n)
j

N
∑

k=1

E
(n)
k

)

≥ η2. (28)
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Proof(of Lemma 5) Define

Q′
n = Pn − (Pn − Qn)1/2, (29)

where Qn =
∑N

k=1 E
(n)
k . By Corollary 1,

1 − ǫ > E
{

Tr
(

σ
(n)
j (Pn − Q′

n)P
(n)
j (Pn − Q′

n)
)}

= E
{

Tr σ
(n)
j PnP

(n)
j Pn

}

−E
{

Tr
(

σ
(n)
j Q′

nP
(n)
j Pn

)}

−E
{

Tr σ
(n)
j PnP

(n)
j Q′

n

}

+E
{

Tr σ
(n)
j Q′

nP
(n)
j Q′

n

}

. (30)

Since the last term is positive, we have, by Lemma 4,

E
{

Tr σ
(n)
j Q′

nP
(n)
j Pn + Tr σ

(n)
j PnP

(n)
j Q′

n

}

> ǫ − η

> 2η. (31)

On the other hand, using Cauchy-Schwarz for each term, we have

E
{

Tr σ
(n)
j Q′

nP
(n)
j Pn + Tr σ

(n)
j PnP

(n)
j Q′

n

}

≤

≤ 2
{

E
[

Tr Q′
nσ

(n)
j Q′

n

]}1/2 {

E
[

Tr σ
(n)
j PnP

(n)
j Pn

]}1/2

≤ 2
{

E
[

Tr σ
(n)
j Q′2

n

]}1/2

. (32)

Thus,

E
[

Tr σ
(n)
j Q′2

n

]

≥ η2. (33)

To complete the proof of this lemma, we now claim that

Qn ≥ (Q′
n)2. (34)

Indeed, this follows on the domain of Pn from the inequality 1−(1−x)2 ≥ x2

for 0 ≤ x ≤ 1. QED

To complete the proof of the theorem, we now have by assumption,

Tr σ̄nE
(n)
k ≤ 2−n[S(σ̄)−S̄− 2

3
ǫ] (35)
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for all k = 1, . . . , N(n). On the other hand, choosing η < 1
3
ǫ and δ < 1

3
η, we

have by Lemma 5,

Tr σ̄n

N
∑

k=1

E
(n)
k ≥ η2 (36)

provided n ≥ n3. It follows from item (iii) in the definition of N(n) (below

eq. (14)) that

N(n) ≥ η22n[S(σ̄)−S̄− 2
3
ǫ] ≥ 2n[S(σ̄)−S̄−ǫ] (37)

for n ≥ n3 and n ≥ −6
ǫ
log η. QED

4 The Direct Channel Coding Theorem

Theorem 1 can now be used to prove that the Holevo capacity, defined by

(1), provides an lower bound to the maximum achievable rate of transmission

of classical information through a quantum memoryless channel, when the

inputs to multiple uses of the channel are restricted to product states.

Let the sender Alice have a set of classical messages labelled by n-letter

words x ∈ An from an alphabet A. We denote the probability distribution of

the messages by µn. To transmit these messages to Bob through a quantum

channel Φ in the form of product states, she encodes a message x by a

codeword, which is a state ρ̃
(n)
k ∈ S(H⊗n). For this purpose, she makes use

of an ensemble {pk, ρk} of quantum states, and sets ρ̃
(n)
k = ρk1 ⊗ρk2 . . .⊗ρkn

,

with probability pk1pk2 . . . pkn
. This state is transmitted through n uses of

the channel, i.e., through Φ⊗n. Bob receives the state σ̃
(n)
k := Φ⊗n(ρ̃

(n)
k ). To

decode the label k of the message sent by Alice, Bob does a measurement on

σ̃
(n)
k described by positive operators (POVM elements) E

(n)
1 , . . . , E

(n)
Nn

(where
∑Nn

j=1 E
(n)
j ≤ In) and E

(n)
0 := In −

∑Nn

j=1 E
(n)
j . The POVM element E

(n)
0

corresponds to a failure in decoding. The (asymptotic) rate of information

transmission in this scenario is given by

R := lim
n→∞

Rn = lim
n→∞

(log Nn)/n, (38)

where Nn is the number of code words. Assuming that all coded messages

arise with uniform probability (note that this is roughly the case for a typical
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set), the average probability of error is given by

p(n)
e =

1

Nn

Nn
∑

k=1

[

1 − Tr
(

Φ⊗n
(

ρ̃
(n)
k

)

E
(n)
k

]

.

In the following theorem, which is the direct part of the HSW theorem gener-

alized to an ergodic source, we prove that for any rate R < χ(Φ), where χ(Φ)

is the Holevo capacity defined through (1), the coding and decoding scheme

given, respectively, by a code with product state codewords and a POVM,

classical information can be transmitted reliably through the memoryless

quantum channel.

Theorem 2 Consider a memoryless quantum channel given by a completely

positive trace-preserving map Φ : B(H) → B(K), where H and K are finite-

dimensional Hilbert spaces. Let χ(Φ) be the Holevo capacity of the channel. If

A is the alphabet of a classical ergodic source of information with probability

distribution µ and Shannon entropy H < χ(Φ), then there exists for any

given ǫ > 0, an n0 ∈ N such that for all n ≥ n0 there exist a code map

Cn : An → S(H⊗n) with image in the product states, and a random decoding

Dn : S(K⊗n) → An such that the average error probability given by

pe =
∑

x∈An

∑

y∈An;y 6=x

µn(x)P
[

Dn(Φ⊗n(Cn(x))) = y
]

< ǫ, (39)

where µn is the restriction of µ to An. Moreover, Given δ > 0, the code can

be chosen such that the rate of information transmission is exceeds H − δ.

Proof By McMillan’s theorem (see e.g. [3]), for ǫ > 0 and n large enough,

there exists a typical set Tn ≡ T
(n)
ǫ in An, such that for all x ∈ Tn, µn(x) >

2−n(H+ǫ) and µn(Tn) > 1 − ǫ. By the above Theorem 1, there exist product

states ρ
(n)
k and positive operators E

(n)
k with k = 1, . . . , N and N > 2n(χ(Φ)−ǫ)

such that Tr [Φ⊗n(ρ
(n)
k )E

(n)
k ] > 1 − ǫ. Choose ǫ to be so small that H + ǫ <

χ(Φ) − ǫ. Then we can define a one–to–one map Cn : T0 → S(H⊗n) by

Cn(x) = ρ
(n)
kx

for certain kx ∈ {1, . . . , N}. Choosing one k0 in the complement

of In := {kx|x ∈ T0}, we put Cn(x) = ρ
(n)
k0

if x /∈ T0. We define the decoding

as follows: Given σ(n) ∈ S(K⊗n) we define a probability measure on An by

νn(σ(n))(x) = Tr [σ(n)E
(n)
k (x)]. (40)
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To determine Dn(σ(n)) we sample An with this probability distribution. (If

the result is k0 we put it equal to a fixed x0 /∈ T0). Clearly then,

pe =
∑

x∈An

µn(x)P
[

Dn(Φ(n)(Cn(x))) 6= x
]

=
∑

x∈T0

µn(x)(1 − Tr [σ
(n)
kx

E
(n)
k (x)]) + µn(T c

0 ) < 2ǫ,

(41)

where σ
(n)
kx

= Φ(n)(Cn(x)) and T c
0 denotes the complement of T0. Obviously,

the number of codewords is given by |T0| + 1, which is bounded by 2n(H−δ).

QED

5 A class of channels with memory

We consider a class of quantum channels with Markovian correlated noise.

These were introduced in [10] and studied in more generality in [2] and [9].

Such a channel of length n is a CPT map Φ(n) : B(H⊗n) → B(K⊗n) and

needs the following ingredients for its definitions: (i) the transition matrix

of a discrete–time Markov chain, with elements qi|j, (ii) an initial (error)

probability distribution {qi}, which is the invariant distribution of the chain,

and (iii) a finite set {Vj}, where Vj denotes a unitary Kraus operator for a

single use of the channel, i.e., for Φ(1) : B(H) → B(K). The channel Φ(n) is

defined through its action on a state ρ(n) ∈ B(H⊗n) as follows.

Φ(n)(ρ(n)) =
∑

i0,...,in

qin|in−1 . . . qi1|i0qi0

(Vin ⊗ .. ⊗ Vi0)ρ
(n)(V ∗

in ⊗ .. ⊗ V ∗
i0
).

(42)

Extending Theorem 1 to this class of channels yields the following theorem.

Theorem 3 Let Φ(n) denote a quantum memory channel with Markovian

correlated noise, defined by (42). A quantity characterising it is

χ̃ := sup
{pj ,ρj}

{

SM − S̄({pj, ρj})
}

, (43)
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where SM is defined as

SM := lim
n→∞

1

n
S

(

Φ(n)(ρ̄⊗n)
)

(44)

with ρ̄ =
∑

j pjρj, and

S̄({pj, ρj}) = lim
n→∞

1

n

∑

j1,...,jn

pj1 . . . pjn

×S
(

Φ(n)(ρj1 ⊗ · · · ⊗ ρjn
)
)

. (45)

Given ǫ > 0, there exists n0 ∈ N such that for all n ≥ n0 there exists N ≥

2n(χ̃−ǫ) and there exist product states ρ̃
(n)
1 , . . . , ρ̃

(n)
N ∈ S(H⊗n) and positive

operators E
(n)
1 , . . . , E

(n)
N ∈ B(K⊗n) such that

∑N
k=1 E

(n)
k ≤ 1 and

TrΦ(n)
(

ρ̃
(n)
k

)

E
(n)
k > 1 − ǫ. (46)

The proof of this theorem [4] is analogous to the proof of Theorem 1 and

relies on the existence of suitable typical subspaces. However, there are some

important differences. Since the channel has memory, the outputs of the

channel are not of a tensor product form, even when the inputs are chosen to

be product states. They can, however, be proved to be ergodic. This allows

us to use the theorem of Hiai and Petz [7], or more generally of Bjelakovic

et al. [1], to define a typical subspace which is the analogue of the typical

subspace T δ,ǫ used in the proof of Theorem 1. As a consequence, we have a

direct coding theorem for classical information over a quantum channel with

memory:

Theorem 4 Consider a quantum channel with memory defined by com-

pletely positive maps Φ(n) of the form (42). Let χ̃ be the capacity of the

channel defined by (43). If A is the alphabet of a classical ergodic source of

information with probability distribution µ and Shannon entropy H < χ̃, then

there exists for any given ǫ > 0, an n0 ∈ N such that for all n ≥ n0 there exist

a code map Cn : An → S(H⊗n), and a random decoding Dn : S(K⊗n) → An

such that the average error probability given by

pe =
∑

x∈An

∑

y∈An;y 6=x

µn(x)P
[

Dn(Φ(n)(Cn(x))) = y
]

< ǫ, (47)

14



where µn is the restriction of µ to An. Moreover, if δ > 0 then the code can

be chosen such that the rate of information transmission R > H − δ.

References
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