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It is shown that the long-wavelength, zero-frequency limits of N = 2 supersymmetric Yang-Mills in
3 +1-dimensions and the quantum Hall effect in 2+ 1 dimensions have many features in common.
The phases of both these systems have a hierarchical structure which can be organised and under-
stood in terms of a specific sub-group of the modular group acting on a complex parameter. The
complex coupling has positive imaginary part which is the Yang-Mills coupling in the former case
and the Ohmic conductivity in the latter. In both case the real part of the complex parameter is

associated with a topological term in the effective action for the respective theory. The theoretical
scaling flow of SUSY Yang-Mills that follows from modular symmetry is given by a modular form
and shows a remarkable similarity to the experimental scaling flow of the quantum Hall effect
which, though not necessarily associated with modular forms, is nevertheless strongly constrained
by modular symmetry.
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1. Duality in SUSY Yang-Mills

Pure SU(2) Yang-Mills in 4-dimensional

Minkowski space with global N = 2 super-

symmetry has only 2 parameters in the ac-

tion: the gauge coupling g and the topolog-

ical susceptibility θ, all other couplings, in-

cluding the Higgs φ4 coupling and Yukawa

couplings, are determined by g and super-

symmetry. These parameters can be com-

bined into a single complex parameter

τ =
θ

2π
+ i

4π

g2
. (1)

Seiberg and Witten showed1 that the low en-

ergy physics is symmetric under the action

of a sub-group Γ(2) of the modular group

Γ(1) ∼= Sl(2, (Z)/Z2 on τ . If γ ∈ Γ(2) then

γ =

(
a b

c d

)
sends τ →

aτ + b

cτ + d
, (2)

where a, b, c and d are integers, det γ = 1 and

b and c are even. The group Γ(2) is generated

by

T 2 : τ → τ + 2 and F2 : τ →
τ

1 − 2τ
, (3)

where F2 = S−1T 2S.

Classically the Higgs potential is min-

imised by any constant φ in the Lie algebra of

SU(2) such that [φ†, φ] = 0, and since φ can

always be rotated by a globally well-defined

gauge transformation it can always be taken

to be φ = 1

2
aσ3 with σ3 the usual Pauli ma-

trix and a a complex constant with dimen-

sions of mass. The classical vacuum is thus

highly degenerate and can be parameterised

by a, a non-zero a breaks SU(2) gauge sym-

metry down to U(1) and W± bosons (and

their superpartners) acquire a mass propor-

tional to a, leaving one U(1) gauge boson

(and its superpartners) massless. Classically,

at the special point a = 0 the gauge symme-

try is restored to the full SU(2) symmetry

of the original theory. Seiberg and Witten

then argue that supersymmetry protects this

degeneracy so that it is not lifted by quan-
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tum corrections and is still there in the full

quantum theory. At low energies, much less

than the mass a, the only relevant degrees of

freedom in the theory are the massless U(1)

gauge boson and its superpartners (except

for some special values of a).

A better, gauge invariant, parameter-

isation of the quantum vacua is given by

u = tr < φ2 >. For weak coupling (large

a) u ≈ 1

2
a

2, but < φ2 > �=< φ >< φ > for

strong coupling (small a). Seiberg and Wit-

ten argued1 that in the quantum theory the

strong coupling regime g2 ≈ 0 is associated

not with a = 0 but instead with two points

in the complex u-plane, u = ±Λ2 where Λ is,

by definition, the QCD mass scale at which

the gauge coupling diverges. Furthermore

they found an explicit expression for the full

low energy effective action and argued that

new massless modes appear at the singular

points u = ±Λ2, in addition to the photon

and its superpartners. These new massless

modes are dyons with the magnetic charge

associated with non-perturbative aspects of

the classical theory (solitons). Since g → ∞

when u = ±Λ2, τ is real at these points.

Seiberg and Witten’s Γ(2) symmetry

commutes with the scaling flow as u is var-

ied. Taking the logarithmic derivative of τ(u)

with respect to u, and imposing ad− bc = 1,

we see that

u
dγ(τ)

du
=

1

(cτ + d)2
u

dτ

du
. (4)

Meromorphic functions τ(u) satisfying (4)

are well studied in the mathematical litera-

ture and are called modular forms of weight

−2. For Seiberg and Witten’s expression for

τ(u) β-functions were analysed in2 and it is

shown in 3 that the unique possibility, up to a

constant, that is finite at weak coupling and

at both singular points is

−
Λ2

u

(
1 −

u2

Λ4

)
dτ

du
=

2

πi

1(
ϑ4

3(τ) + ϑ4
4(τ)

) .

where ϑ3 and ϑ4 are Jacobi ϑ-functions

ϑ3(τ) =

∞∑

n=−∞

eiπn2τ , ϑ4(τ) =

∞∑

n=−∞

(−1)neiπn2τ .

At weak coupling (large u) u is propor-

tional to the square of the gauge boson mass

and this flow can be interpreted as giving the

Callan-Symanzik β-function in the asymp-

totic regime. The flow generated by (5) is

shown in figure 1, there are fixed points on

the real axis at τ = q/p where the massless

dyons have electric quantum number q and

magnetic quantum number −p. Odd p cor-

responds to attractive fixed points in the IR

direction and even p to attractive fixed points

in the UV direction. There are semi-circular

trajectories linking some of the IR attractive

fixed points with odd monopole charge.

Note that, since the scaling function (5)

is symmetric under u → −u, which is equiv-

alent to τ → τ + 1, the full symmetry of the

scaling flow is slightly larger than Γ(2), it is

generated by F2 and T and corresponds to

matrices γ such that c is even but b can be

either even or odd. This group is often de-

noted by Γ0(2).

When matter in the fundamental repre-

sentation is included the picture changes in

detail, but is similar in structure.4,5

2. The Quantum Hall Effect

Modular symmetry manifests itself in the

quantum Hall effect (QHE) in a manner re-

markably similar to N = 2 supersymmetric

Yang-Mills. The conductivity tensor for an

isotropic 2-dimensional medium can be de-

scribed by a single complex conductivity

σ := σH + iσL, (5)

where σL is the longitudinal, or Ohmic, con-

ductivity and σH is the Hall conductivity

(in units with e2/h = 1). Note that Ohmic

conductivities must be positive for stability

reasons, so σ is restricted to the upper half-

complex plane.
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The response functions (i.e. the conduc-

tivities) in a low temperature 2-dimensional

system can be obtained from a 2+1-

dimensional field theory. Ohmic conductiv-

ity can be incorporated by working in Fourier

space (ω,p) and introducing a frequency de-

pendent electric permittivity. In a conduc-

tor the low frequency electric permittivity di-

verges, in the long wavelength limit p → 0,

as

ε(ω) = −i
σL

ω
, (6)

so, working in Fourier space, the effective dy-

namics of the electromagnetic field are gov-

erned by

L̃eff [A] = −
ε

4
F 2 −

σH

4
εµνρAµFνρ + AµJµ

≈
iσL

4ω
F 2 −

σH

4
εµνρAµFνρ + AµJµ.

Note that the effective action is not real, an

indication of the dissipative nature of Ohmic

resistance, and non-local in time, again a fea-

ture of a conducting medium. A version of

the Lagrangian (7) was used in the analysis

of6 in which the following transformations

T : σ → σ + 1 and F2 : σ →
σ

1 − 2σ
(7)

were derived, which generate Γ0(2) and map

between different quantum Hall phases of a

spin polarised sample. The T transforma-

tion is interpreted as being due to shifting

Landau levels by one and the F2 transfor-

mation, known as flux-attachment, was an-

ticipated in7 for σL = 0 as a mapping be-

tween ground state wave-functions. It is re-

lated to the composite fermion picture of the

QHE 8. That Γ0(2) should be a symmetry of

the complex quantum Hall conductivity ef-

fect was originally suggested, without a mi-

croscopic justification, in 9.

Of course Γ0(2) is not a symmetry of

all of the physics, after all the conductivi-

ties differ on different plateaux, nevertheless

it is a symmetry of some physical properties,

in particular it should be a symmetry of the

scaling flow11,12. Physically the scaling flow

of the QHE can be viewed as arising from

changing the electron coherence length l, e.g.

by varying the temperature T with l(T ) a

monotonic function of T .13 Define a scaling

function by

Σ(σ, σ̄) := l
dσ

dl
. (8)

Then, for any γ ∈ Γ0(2), γ(σ) = aσ+b
cσ+d

with

ad − bc = 1, so

Σ
(
γ(σ), γ(σ̄)

)
=

1

(cσ + d)2
Σ(σ, σ̄). (9)

In general one expects σ to depend on various

parameters, such as the temperature T , the

external field B, the charge carrier density n

and the impurity density ni. If n and ni are

fixed then σ(B, T ) becomes a function of B

and T only.

If we further assume that the only fixed

points of the scaling flow are the fixed points

of Γ0(2) then, with a few extra reasonable

assumptions, the topology of the flow dia-

gram is completely determined and it is ex-

actly the same as the flow diagram in figure

1 for N = 2 SUSY.10 IR fixed points have

τ = σH = q/p corresponding to fermionic

charge carriers which are composite objects

consisting of bosons with p units of statisti-

cal flux attached, with p odd. Experimental

data are shown in figure 2 and the similar-

ity with the Γ0(2) in figure 1 is remarkable

(the conductivities are doubled in the figure

because of spin degeneracy, the spins in the

sample are degenerate).

A second striking consequence of Γ0(2)

symmetry of the scaling flow is a selection

rule for quantum Hall transitions 11

q1p2 − q2p1 = 1. (10)

This selection rule is well borne out by the

experimental data. In spin-split samples

any two adjacent well-formed plateaux, with

no unresolved sub-structure between them,

obey this rule.

The group Γ0(2) is the symmetry group

relevant to 2-dimensional samples in strong
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magnetic fields when the charge carriers are

fermions. When the charge carriers are

bosons, as in 2-d superconductors, a differ-

ent group emerges, but a similar hierarchy

of quantum states is predicted that differs in

essential details14 that would provide a clear

experimental signal if high mobility samples

that can sustain a large magnetic field are

ever manufactured.
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