Title
Creators
Date

Citation

URL
DOI

DAIR

DIAS Access w
Institutional Repository Instititid Ard-Léinn

DIAS

Dublin Institute for
Bhaile Atha Cliath | Advanced Studies

Quantization of Flag Manifolds and their Supersymmetric Extensions
Murray, Sean and Sadmann, Christian
2006

Murray, Sean and Samann, Christian (2006) Quantization of Flag Manifolds and their
Supersymmetric Extensions. (Preprint)

https://dair.dias.ie/id/eprint/489/
DIAS-STP-06-21



hep-th/0611328
DIAS-STP-06-21

Quantization of Flag Manifolds

and their Supersymmetric Extensions

Sedn Murray'? and Christian Sémann'

L School of Theoretical Physics
Dublin Institute for Advanced Studies
10 Burlington Road, Dublin 4, Ireland

2 Department of Mathematical Physics
NUI Maynooth
Maynooth, Co. Kildare, Ireland

Email: smury, csamann@stp.dias.ie

Abstract

We first review the description of flag manifolds in terms of Pliicker coordinates
and coherent states. Using this description, we construct fuzzy versions of the
algebra of functions on these spaces in both operatorial and star product lan-
guage. Our main focus is here on flag manifolds appearing in the double fibra-
tions underlying the most common twistor correspondences. After extending the
Pliicker description to certain supersymmetric cases, we also obtain the appro-
priate deformed algebra of functions on a number of fuzzy flag supermanifolds.
In particular, fuzzy versions of Calabi-Yau supermanifolds are found.
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1. Introduction and results

Quite often in physics, approximation methods like perturbation theory are necessary for
explicit computations. In particular, non-perturbative methods, which typically involve the
reduction of the field theory to a model with a finite number of degrees of freedom, are
required to access the physics of field theories in the strong coupling regime. The standard
method of this type is lattice field theory. It has been very successful in the study of confine-
ment in quantum chromodynamics and for non-perturbative regularization of quantum field
theories.

Lattice discretizations do have some disadvantages, however. They do not retain the
symmetries of the exact theory except in some rough sense. By limiting the couplings to
nearest neighbor, the topology and differential geometry of the underlying manifolds are
treated only indirectly. Furthermore, the description of fermions in this context leads to the
well-known fermion doubling problem.

Fortunately, the lattice is not the only method of reducing a field theory to a finite number
of degrees of freedom. An alternative is what has become known as the fuzzy approach [1]-
[10], see [11] for a detailed review. The basic idea is here to take a classical phase space of
finite volume, quantize it and thus obtain a space carrying a function algebra with a finite
number of degrees of freedom. There are certain limitations to this approach, such as the
even dimensionality of the parent manifold, that can be avoided when the phase space is a
co-adjoint orbit of a Lie group. The functions on the resultant fuzzy spaces are described
by linear operators on irreducible representations of the group. The simplest such example
is the two sphere S2, with the resulting phase space known as the fuzzy sphere [1]. Field
theory models on the fuzzy sphere then possess only a finite number of modes. The simplest
such field theory with ¢* interaction was proposed in [3].

There are other reasons to consider fuzzy spaces. They lead to matrix models, which have
seen much interest by string theorists especially in describing D-branes: When considering
D-branes on group manifolds [12], turning on background fields can render the target space
geometry fuzzy [13]. Similarly, a system of DO-branes in a nontrivial background can form
the fuzzy sphere [14]; see also [15].

The spaces we chose for deformation play a prominent réle in various geometrical ar-
eas. Flag manifolds, i.e. the spaces of sequences of nested subvector spaces in a given vector
space, are generalizations of GraBmannians (and thus of complex projective spaces) and serve
as non-trivial examples in algebraic geometry. They are special cases of coset spaces, and
in particular coset superspaces received growing attention recently [16, 17]. Moreover, flag
manifolds arise naturally in the theory of characteristic classes of vector bundles, in represen-
tation theory, in mirror symmetry and in twistor theory. It is therefore clear that studying
fuzzy versions of flag manifolds may lead to a deeper understanding of both differential and
algebraic geometry on fuzzy spaces. Although the results presented in this paper generalize
to arbitrary flag manifolds, we will restrict our attention to those which appear naturally in
the double fibrations of twistor theory described e.g. in [18]. A few examples of quantized
flag manifolds which have a noncommutative algebra of functions with finitely many degrees
of freedom have already been studied in a different form in [15, 19].

We start our discussion by giving a detailed description of flag manifolds in terms of



Pliicker coordinates and the geometric structures on these spaces. The latter is induced
from a canonical embedding of the flag manifolds into Euclidean space. We continue with
the description of the correspondence between flag manifolds and coherent states in various
representations of the Lie group SU(n). In particular, a relationship between the patches
covering a flag manifold and dominant weight states in the corresponding representation is
established.

With the appropriate representations found in the coherent state picture together with
the Pliicker description, the discussion of fuzzy flag manifolds is rather straightforward. We
present the matrix algebras corresponding to the algebra of functions on these spaces together
with the equivalent star product picture. The latter is used to translate derivatives, which
contain information about the geometry of the flag manifolds, into the operator language.
In particular, the Laplacian turns into the second order Casimir operator in the considered
representation. It is also shown that the constructed matrix algebras converge towards the
algebra of continuous functions on flag manifolds in the limit of infinite-dimensional repre-
sentations.

To prepare the fuzzification of flag supermanifolds, we develop the superanalogue to the
Pliicker embedding, which is novel, as far as we know. Also, the embedding of these flag
supermanifolds into Euclidean superspaces is discussed. A relation between supercoherent
states and points on flag supermanifolds is found, which is closely related to the correspond-
ing picture in the case of ordinary flag manifolds. The fuzzification can then be obtained in a
rather straightforward way. We give a series of matrix algebras, which approximate functions
on the flag supermanifolds and present the equivalent star product formulation. All deriva-
tives can again be translated into the operator language and encode geometric information
about the spaces.

The results we obtain may find several applications. First, it is desirable to see whether
the Penrose-Ward transform (see e.g. [20] for a review) can be carried over to an analo-
gous construction built on a double fibration of fuzzy spaces. This, however, would demand
a clearer understanding of the various gauge theories (i.e. holomorphic Chern-Simons and
Yang-Mills theory) on the involved fuzzy geometries together with an explicit notion of holo-
morphic vector bundles over fuzzy spaces, see [21] for progress in this direction. Second,
the Grafimannian Go,4 is the conformal compactification of complex Minkowski space and
after imposing reality conditions, one arrives at the compactified form of four-dimensional
space-times with all possible signatures. Fuzzy versions of these spaces would certainly be
very useful; unfortunately, it is not clear, how to impose the corresponding reality conditions
in the fuzzy case. The main purpose of constructing fuzzy flag manifolds and in particular
their supersymmetric counterparts is, however, to have at hand fuzzy versions of Calabi-Yau
supermanifolds. These spaces, as e.g. the fuzzy version of the complex projective superspace
CP?* discussed in this paper, might be used for the construction of first examples of in-
teracting supersymmetric field theories on fuzzy spaces that can be simulated numerically.
Furthermore, there is a conjectured mirror symmetry [22] between two of the flag super-
manifolds we describe in this paper ((DP3|4 and F(l‘o)(3|3);4‘3), and trying to understand this
mirror symmetry in terms of fuzzy spaces seems very promising.



2. Pliicker coordinates and the geometry of flag manifolds

2.1.  Flag manifolds of U(4)

Consider the vector space C". A flag fi, . k,.n in C" is a sequence of nested vector subspaces
Vih € ... € Vi, C C" such that dimg V; = j. A flag manifold F, . j,., is the set of all flags
Jhyokrine

The simplest example of a flag manifold is Fy.,, which is the complex projective space
CP"!. Furthermore, the Grafmannian G'.n, the space of k-dimensional vector subspaces
of C", is the flag manifold F}.,. A flag fi., = Vi is obviously invariant under the subgroup
H =U(n—k)xU(k) C U(n), as the elements of U(n — k) do not change vectors in Vj, while
the elements of U(k) are just the unitary maps Vi, — Vi. Therefore, the group H defines
(maximal) equivalence classes of flags in U(n) and we can write Fj,,, = U(n)/H. This can be
generalized to

Fryoom = U)/(U(n — k) x U(ky — K1) .. x U(ky))

(2.1)
= SU(n)/S(U(n — k) x U(ky — ky1) ... x U(ky))

and thus the dimension of this flag manifold is n? — (n — k)% — (k. — k,—1)% — ... — (k1)%
Note that the above equation cannot be used as a defining relation, as the embedding of the
subgroup factored out is not specified. The flag manifolds of SU(4) can also be obtained as
coset spaces of SL(4, C), the complexification of SU(4), see e.g. [23]. Here, one factors out the
group of certain upper block triangular matrices and from this complexified description it
follows that flag manifolds are complex manifolds. They are in fact Kéhler manifolds and we
will construct their Kéhler structure explicitly later on. We will also see that flag manifolds
are adjoint orbits {gPg~'|g € SU(4)} of certain projectors P and therefore carry a natural
symplectic structure. Furthermore, a flag manifold is a homogeneous space.

The flag manifolds of U(n) split naturally into irreducible and reducible ones, where the
irreducible flag manifolds are the Gramannians Fy,., = Gi,.,. In their case, the compact
subgroup H consists of two factors. These flag manifolds form hermitian symmetric spaces,
i.e. the commutators of two elements of u(n)/(u(n — k1) x u(ky)) is an element of u(n — k) x
u(kl).

In the following, we will be exclusively interested! in flag manifolds of U(4), which natu-
rally appear in the double fibrations underlying the most important twistor correspondences,
see e.g. [18]. These fibrations are obtained by truncating the flags in an obvious manner,
e.g. there is a projection Fi2.4 — Fb.4. All the twistor double fibrations are included in the
following diagram:

Fy3.4
P
2:4 3,4
bl / b
T Fia3.4 T (2.2)
Fia.4 l Fi3.4
\F1;4/

!Nevertheless, all of our discussion trivially translates into the case of flag manifolds of U(n).



In the twistor context, the space Fb.4 is the conformal compactification of complexified
Minkowski space M and the spaces Fi.4, F3.4, F13,4 are the spaces of self-dual null planes in
M (twistor space), anti-self-dual null planes in M (dual twistor space) and null geodesics in
M (a thickening of which is the ambitwistor space), respectively. One can also consider affine
(non-compact) subspaces of all the above spaces and the corresponding double fibrations. For
more details on this point, see [20].

The dimensions of the involved spaces are easily calculated from the formula given below
the defining equation (2.1). The minimal number of patches in a covering of the flag manifolds
can be calculated inductively in the following way. The minimal number of patches covering
all of Gy, is (Z), in particular, we have n as the minimal number of patches for CP"~!. The
number of patches needed for a flag manifold is then obtained by multiplying the patches of
the contained subflags. For example, to cover Fi2.4, one needs at least 6 for Fy4 times 2 for
Fi.9 equals 12 patches. We summarize the results of these calculations in the following table:

Flag manifold Fiq | Foy | F34 | Fioa | Fi3a | Foga | Flo3a

)

complex dimension | 3 4 3 5 5 ) 6
minimal # patches | 4 6 4 12 12 12 24

2.2.  Description of CP3

There are various aspects of the classical description of flag manifolds, that we will use for
their fuzzification. In particular, we need a description in terms of homogeneous coordinates,
a description in terms of projectors and the link between both of them. We will first discuss
the simple example of Fy.4 = CP? = U(4)/(U(3) x U(1)) in detail before going over to the
more complicated spaces.

A normalized vector in C* clearly spans a one-dimensional vector subspace of C* and
thus corresponds to a flag fi.4. There is, however, a redundancy in the total phase of the
vector, which needs to be factored out. One is thus naturally led to consider the generalized
Hopf fibration defined by the short exact sequence

1 — U(l) — s — ¢cp! — 1 (2.3)

for the case n = 4. In coordinates a’ on C*, the projection down to S” amounts to imposing
the condition a‘a’ d;; = 1 and the subsequent projection down to CP? is performed by
considering the auxiliary coordinates

Ty = (ii)\gjaj, (2.4)

where Af;, a = 1,...,15 are the Gell-Mann matrices? of SU(4). These coordinates describe

an embedding of CP? in R'. Note that we factored out only the U(1) (internal) part from
the invariance group of the flag fi,4 acting non-trivially on the one-dimensional subspace of

2We shall adopt the following convention throughout:

tr(A*A") = 6°° A% AP = VR2iFMAC .



C* spanned by the vector a. The remaining U(3) (external) part acts orthogonally to this
vector and therefore leaves it invariant. In an equivalent construction [21], the action of this
external group appears more explicitly.

The homogeneous coordinates a’ are a special case of the so-called Pliicker coordinates,
which we will discuss in the next section. Before, however, let us give a second description
of ©P3 in terms of projectors, see e.g. [6].

A projector P is a hermitian 4 x 4 matrix satisfying P? = P. The rank of the projector P,
tr (P), is equal to the dimension of the subspace it projects onto. It is therefore evident that
every point on an irreducible flag manifold Fj.4 corresponds to a rank k projector Pp.4(z);
in particular, CP? is isomorphic to the space of rank one projectors Pra(x).

The space of projectors acting on C* is spanned by the Gell-Mann matrices of SU(4) and
the identity. We can write

P = 2%\ = 2N + 2%\, , (2.5)

where ¢ = 0,...,15 and a = 1,...,15. We use \g = 1/v/4, which implies that 20 =
tr (P)/v4 and

Ao = “2 X+ —=(dap® + ifwr)Ae (2.6)

RS

where d;,¢ and f,;¢ are the (traceless) symmetric invariant tensor and the structure constants
of SU(4), respectively. Recall that the Lie algebra indices are raised and lowered with the
Killing metric d4p.

As stated above, the irreducible flag manifolds F}.4 correspond to the space of projector
P4 of rank k and the condition (Pk;4)2 = Pp.4 defines a set of quadratic constraints, embed-
ding the flag manifolds in R® (or R, if one considers xg; 4 already fixed by the condition
on the trace of Pj.4). Explicitly, they read as

2
ThaTisa = # and a2 g da’ = \/54 _42k$2;4 ' (2.7)

Given a projector 732; 4 of rank £, all of the space F}.4 is obtained by its orbit 97318; 49_1,
g € U(4). However, two elements g and ¢’ related by g = ¢’h, where h € H = U(4—k) x U(k),
1 _ 9/73](3;49/—1

will rotate to the same element gP,S; 19" . This simply reflects the definition
(2.1) of Fj.4 as a coset space.

There is evidently a relation between F.4 and F3.4 since the coordinates :E‘f; 4, of a projector
P14 yield the coordinates of a projector Psyq by 25, = —zf,, as one easily checks using
(2.7). Furthermore, the coordinates TGy of a projector Pa.4 yield a second projector 752;4
with coordinates 25, = —x5,. The meaning of these dualities will become clear in the next
section.

For CP? = F}.4, the projector is obtained by extending the definition (2.4) of the auxiliary
coordinates to x‘%A = ELi/\%aj, which satisfy the constraints (2.7). Due to )‘% ﬁl = 0;0kj, the
resulting projector is then explicitly given by the matrix P14 = aa’ and one easily verifies

(P1.4)? = Pra.

2.8.  Pliicker coordinates and projectors describing irreducible flag manifolds

To define a two-plane in €%, we can use two normalized vectors a,b € C* antisymmetrized
to Ay == aAb=1(a@b-b®a) = (AY) := alb/l. As one easily observes, the antisym-



metrization projects on the mutually orthogonal components of a and b. The A;j are so-called
Pliicker coordinates on Fa.q4 = U(4)/(U(2) x U(2)) and satisfy by construction the identity

eijmAY AL = 0 . (2.8)

As there are six projective Pliicker coordinates, we learn that the GraBmannian Fy. is a
quadric in ©P?, the so-called Klein quadric, see e.g. [24]. Equation (2.8) is an example of
the Pliicker relations, which describe an embedding of a Grafmannian Gy, in P(AFC™).
Although the Pliicker relation is straightforward in the present case of Fy.4 = Ga.4, we will
need more nontrivial such relations when discussing flag supermanifold and we will present a
more explicit discussion in section 5.2. There are certainly other approaches to coordinatizing
flag manifolds; see e.g. [23] for “Bruhat coordinates” and more background material on flag
manifolds.

Let us now consider the space of hyperplanes in C%, i.e. F3q = U(4)/(U(1) x U(3)).
Analogous to the case of the two-plane, a three-plane is spanned by three antisymmetrized
vectors a A b A ¢, which are naturally dual to a single vector d = (d;) = (;;ma’b"c!), which
in turn spans the orthogonal complement to the hyperplane. However, the non-dualized
picture will be useful later on and therefore let us also introduce the Pliicker coordinates
Aéjk = alipi M.

We can contract these new Pliicker coordinates by tensor products of the Gell-Mann
matrices, which yields auxiliary coordinates describing an embedding of the Graimannians
in Euclidean space. In the case of Fb.4, we have

1‘35)4 = AéliQ()\& AN )\b)ili%jleAéljZ (2.9)
with the antisymmetrized tensor product A defined in components as
(A A B)ij;kl = % (Aikle - Ajsz'l - AilBjk + Aleik) . (210)

The choice of this contraction, which again factors out a phase, will become obvious after
discussing the description of Fy.4 in terms of projectors. Note that 563?4 is symmetric in its
indices. The above contraction is in agreement with the generalized Hopf fibration®

1 — UQ) — S"x8° — Fy = Gyy — 1. (2.11)

As before, a normalized complex vector in C* defines a point on S7, and we choose a to
be this point. In the combination As = a A b, the component of b parallel to a vanishes
trivially, and thus the relevant component of b is a point on S°. Factoring out the internal
U(2) which describes rotations in the plane a A b, one obtains Go.4. The other U(2) factor
is again trivially factored out, since it does not affect Aéj . To see that the contraction (2.9)
indeed factors out an U(2), note that the action

at ... at at ... at .
(bl b4> H9<b1 b4> with g € U(2), (2.12)

3 After imposing a certain reality condition, this fibration reduces naturally to

1 — S'x8" - x5 - %8 =G5y — 1.



leaves invariant both /_lgj and A% up to a phase, and therefore (2.9) is indeed invariant.
Correspondingly, one can discuss the isotropy groups for all the flag manifolds we construct
in the following. We refrain from doing this, but present a more detailed discussion in the
quantized picture.

In the case of F3.4, we choose the auxiliary coordinates

abcé

L34 = _?1223 ()‘& A AP A )\é)i1i2i37j1j2j3Ag’>1]2J3 . (2'13)
In the dual picture, this corresponds to
j§;4 = dk}‘%ldl with 5‘%l ™~ Ekirizis€lj1j27s (>‘b AN )‘d)ilizis,jljzjs ) (2'14)

and the implied map of the Lie algebra indices (Bé(f) — a can easily be calculated. This
contraction corresponds to the generalized Hopf fibration

1 — UB) — S™Tx8°x8 — I3y — 1. (2.15)

Although we already gave a description of the Gramannians Fj.4 in terms of projectors
in the previous section, it will be more convenient to switch to certain rank 1 projectors
P4 acting on the representation spaces of the 6 and 4 of? u(4) in the cases Fy.4 and Fi4,
respectively. This can be done in three equivalent ways. In the first one, one chooses two or
three rank one projectors and antisymmetrizes them

Py = 2P'AP? and Psy = IPLAPIAPE, (2.16)

where P = 24 )\; are some rank one projectors. Besides the usual conditions (2.7) on rank one
projectors, additional conditions between the coordinate vectors x, and x arise to guarantee
that %4 and 3.4 are projectors. These conditions state, e.g. for P54 that Pl 4+ P2 is
again a projector, which amounts to P'P? + P2P! = 0. In terms of coordinates, the first
projector is constructed from a complex vector a* by r{y = &i)\%aj, while the second one is
constructed from an orthonormalized vector b’ with b} ~ b* — (a/b’)a’ by Ty = 51)\%61.
The sum of these two rank one projectors will automatically yield a rank two projector.
Alternatively, we can also antisymmetrize our previous rank two and rank three projectors
P2;4 and 7?3;4
325;4 = P2y ANPoy and f@éﬂ = P34 NP3.a ANP3a (2.17)

as discussed in [8]. Note that both approaches are equivalent, the latter, however, is slightly
more economical in the use of parameters. Furthermore, due to the formula

tr (AAB) = 3(tr(A)tr(B) — tr (AB)) , (2.18)

which is easily verified using (2.10), and a similar one for the antisymmetrization of three
projectors, all of the above projectors have unit trace and therefore indeed rank 1.

Here, we choose to work in the first approach, embedding the Graimannians in the space
of symmetrized products of vectors in R'. This will eventually lead to simpler expressions

4Recall that these representations carry two and three antisymmetrized indices of the fundamental of u(4),
respectively.



for the star product on all the Graimannians. It is also linked to the contractions we obtained
from the various Hopf fibrations in the previous section. Let us first introduce the shorthand

notation
ABLwn = N8 A A NI (2.19)

Recall that A% turns out to be totally symmetric in its indices. Using this notation, we

can easily define the appropriate projectors in the 6 and 4 of u(4) as

Poa = )N with 2l = @) 0" (2.20)
P34 = 3x§‘?4bé)/\@gé with l’i(,)(j‘ic) = ailgizéig()\déé)ili2i3,j1j2j3aj1b72cj3.

Here, the subspaces are spanned by complex vectors a, b and a, b, ¢, respectively, and :L‘g?i) and
xé‘?ﬁé) describe embeddings of Fy.4 and F3y4 in R617/2-1 and R16'17’18/(2’3)_1, respectively.
Note that the coordinates x8?4 and arg?f

Py

To check that these operators are indeed projectors, one uses identities like

are fixed by the ranks of the projectors %4 and

(AAB)(CAD) = L((AC ABD)+ (AD A BC)) (2.21)

yielding the Fierz identities discussed in appendix B. For example, &4 can be shown to
read as

(Poa)ijan = alvlakpl) | (2.22)
where we have chosen a and b orthogonal to each other. It then follows immediately that
(Z24)ijskt (P2 ktzmn. = (P2a)igzmn - (2.23)
Note that the naive contraction to obtain the auxiliary coordinates for Fb.4
23y = AFAT A1) AL (2.24)

does not yield a projector since :cg 4()\& A 1)4j.11 is not idemquadratic.

2.4. The description of reducible flag manifolds

The construction of the Pliicker coordinates for the reducible flag manifolds is performed in
successive steps. For the complete flag manifold® Fiaz.4 = U(4)/(U(1))%, we start from the
Pliicker coordinates for a line in C*, @, and add a plane containing this line, Aéj = al'pd as
well as a hyperplane containing this plane, Aéj = alibickl. We arrive at the set of coordinates

ali® el A (2.25)
from which we can construct the auxiliary coordinates
2y’ = abRE (W) o e aa PR

. o T . . ) (2.26)
% a[Msz]()\W4w5)i4i5’j4j5a[]4bjs] ' ()\wG)iGjanG )

5The manifolds consisting of non-maximal flags are called partial flag manifolds.



The Hopf fibration underlying this contraction reads as

I — U1)xUQQ)xUQ1) — STxS°x8% — Flozy — 1, (2.27)

and the three U(1) factors leave invariant the three factors in x%lg";f‘s

On the remaining flag manifolds, the Pliicker coordinates are given by subsets of the
coordinates for Fya3.4. For example, on Fia.4 = U(4)/(U(2) x U(1) x U(1)), we have the
Pliicker coordinates

alipd | & (2.28)

with obvious auxiliary coordinates. The Hopf fibration reads as
1 — UQ)xUQQ) — S"xS° — Floq — 1. (2.29a)

This fibration is a reduction of the Hopf fibration for Fb.4 to the case in which the (internal)
isotropy group of the flags is merely U(1) x U(1).

The construction of Fiz4 = U(4)/(U(1) x U(2) x U(1)) and Faz.q = U(4)/(U(1) x U(1) x
U(2)) follows the same line of argument, and the two Hopf fibrations read as

1 — UQ)xU@Q2) — STxS8"x8 — Figq — 1, (2.29b)

1 — UQ)xUQ1) — STxS"x8 — Fpgy — 1, (2.29¢)

respectively. In particular, the flag manifold Fi3.4 is described by the set of Pliicker coordi-
nates (a[ibj ckl, a®). In twistor theory, the common description of this space is in terms of a
quadric in the space CP? x CP? with coordinates a’ and a;. The quadric condition reads as
aia;k = 0 and with the identification a; = 8ijklaj bkd, its relation to the Pliicker description
becomes clear.

Also the reducible flag manifolds can be mapped to the space of certain tensor products
of projectors. For example in the case Fig.4, we combine Pp.4 = 7311; 4/\7312; 4 with an additional
rank one projector Pi4 given by a linear combination of 7711;4 and 7712;4:

Py = aPl,+ 6Py, o +5° = 1. (2.30)

Thus, Pi 4 Projects onto a one-dimensional subspace of the plane which Z%5.4 projects onto.
The definition of 7719’;4 implies that the coordinates are linear combinations:

2 = axl + pad (2.31)

and together with the constraints on the projectors and the antisymmetrization of ’Pll; 4 and
7312;4 in P54, this equation describes an embedding of the flag manifold Fi2.4 in Euclidean
space.

For the complete flag manifold Fi23.4, we use altogether six rank one projectors, combined
in ,@?};243, L@éi and 7316;4, each satisfying equation (2.7) and furthermore fulfilling conditions
corresponding to (2.31). The coordinates x‘fgg, xﬁé and z¢ form an over-complete set of
coordinates on Fy23.4, and the restrictions we impose are an embedding of F23.4 in Euclidean

space.
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All of the reducible flag manifolds can again be described in terms of rank one projectors
. Explicitly, these projectors read as:

W1 WeWs | W1W2 W
93;4 __:1:1 4A1 3®)\47 (232)
@23. = 1 5A 1 3 ®)\ 4W5 ,

Aoz = WO @ NS @ \W6

where the %1% are the auxiliary coordinates constructed from the (independent) Pliicker
coordinates on the various flag manifolds. Note that in all cases the number of generators
in the projector corresponds to the sum of the dimensions of the nested vector spaces in
the flag. Even though this description contains a vast redundancy, it turns out to be rather
convenient for describing the geometric structures on the flag manifolds inherited from the
embedding in Euclidean space, which is the purpose of the next section.

2.5.  Geometric structures on the flag manifolds

In this section, we will develop expressions for the complex structure, the metric and the
symplectic structure on the flag manifolds introduced above, following closely [6]. Given
a projector PV, which describes a point on the flag manifold M = F;, .4, all of M is
obtained by an appropriate action of U(4) on P°. That is, the tangent directions are given
by infinitesimal actions of U(4) and thus the space of tangent vectors is

TpoM = {R(A)PY|A € su(4)} . (2.33)

Here, we have to distinguish the different representations R of A for the different projectors
PO used for the various flag manifolds. For projectors consisting of k-fold antisymmetric
combinations of rank 1 projectors, R(A) is the sum of a k-fold tensor product with all entries
1 but one, which is adp := i[A, -]. In particular, we have

R(A) := ady for Pig ,
R(A) = adp®1+1®ady for Py, (2.34)
R(A) == ady®1®1+1®ady®1+1®1®ady for Pay .

for the irreducible flag manifolds. The representations in the case of reducible flag manifolds
are constructed in an obvious manner, and one has e.g.

R(A) == adp®1®adp+1®adA®1 for Pia4 ,

2.35
RA) == adp®1®1l®ady+1Radp®1®1+1®1®ady®1 for P34 . ( )

If and only if A is a generator of H, R(A)P? vanishes, and therefore Tpo M is of the same
dimension as M. By construction, we have for an element V € TpoM:

vi=v, {(POV} =V, &V =0. (2.36)

The orthogonal complement of TpoM in the embedding space is spanned by all other
actions of U(4) onto PY. In particular for CP3, the generators x® of the stabilizer subgroup

11



H = U(3) xU(1) of P° span the orthogonal complement of Tpo M in the embedding space R
as they satisfy by definition [P°, k%] = 0 and therefore they are orthogonal to any element of
TpoM: itr (k%[A, P]) = 0.

To define a complex structure I, we start from such a structure on the embedding
space, which in turn induces a complex structure on the tangent space at P°. Consider
the generators A% of u(4). We can pair them into (A%, A\?**1) p = 0...7 and define
I(AZP \2P+1) = (= \2PF1 A\2P) which amounts to the canonical complex structure on R!S.
This translates into a complex structure on any general embedding space and the pairing
together with the projection onto Thpo M is performed by taking the commutator with P°:

IV = —i[P° V] with V € TpoM . (2.37)

One easily checks that 12 = —1 and IW =0 for W € Tf;OM . This definition extends from
TpoM to the full tangent bundle and yields an almost complex structure on M, which turns
out to be integrable.

Also the metric is induced from the one on the embedding space, which is the Euclidean
(Killing) metric and, after translation into matrices, simply given by the trace. To incorporate
the projection onto TpoM, we can multiply each vector in TpoM by the complex structure
before taking the trace which yields the hermitian metric

g(Vi, Vo) = tr IViIVa) = —tr ([P, VA][P°, V3)) (2.38)

as for elements Vi, Vo € TpoM, we have g(Vi, Vo) = g(IVi,IVa2). The continuation of this
metric to all of M is evident. There is furthermore a symplectic structure defined as

V1, V) == g(I1,V2) , (2.39)
which we can combine as usually with the metric into the Kéhler structure J defined as
J(Vi,Va) = 3 (9(Vi,Vo) +iQ(V1, Vo)) = tr (P'Vi(1 — PO)Va) (2.40)

which also extends globally.
Note that the projectors we use in the description of flag manifolds are of rank one, and
therefore, the above formula simplifies to

J(Vi, Vo) = tr(PVVa) — tr (POVy) tr (P°V%) . (2.41)

OnCP3, Aisa generator of the fundamental representation of SU(4) and we can introduce
the components Q??At = QA% \b) as well as Jﬁz = J(A% \Y). For these, we have the useful
identities

0 = V2f®al (2.42)
and B ) R )
TN = tr <PO)\“(]L —PO)A”) N = PO —PY) |
b A ) ) (2.43)
NadB = atr (POA“(R —770)/\b) = (1 - P)APPO
In deriving these identities, one needs the relation
tr(AA)N, = AP for AT A € u(d) (2.44)

12



cf. formulze (B.23). Due to (PY)? = P, the relations (2.43) remain valid after omitting the
hats over the indices.

Let us briefly comment on the explicit form of the structures obtained in the above
discussion for the various flag manifolds. We start with the Grafimannians. These spaces are
described by rank one projectors in the representation R, which is here the previously defined
k-fold A-product of the fundamental one. The tangent directions are given by infinitesimal
actions of elements of U(4):

Tpy P24 = {(adr@1+1® adp)PyylA € su(4)}

(2.45)
Tpy Foa = {(ada®1®1+1®ady®1+101® adp)PeylA € su(4)} .

Note that the most general action e.g. on the projector 733; 4 is given by Ady, ® Adg,. Since

738; 4 is the sum of antisymmetrized tensor products of the form A% A )\B, only the symmetrized
form of Adgy, ® Ady, is relevant, which is 3((Adg, +Ady,) ® (Ady, +Ady,)). At infinitesimal
level, this yields the action ady ® 1 + 1 ® ady.

All the properties (2.36) are easily verified to hold also for the tangent vectors of all the
GraBBmannians. Furthermore, the definitions of the complex structure, the metric and the
Kaéhler structure is done in a straightforward manner, since the only essential aspect in their
definition on CP? was that P? is a projector.

Using again the shorthand notation (2.19), the appropriate components of the symplectic
and the Kahler structure are given by

Qg;ﬁi@d _ Q()\ai;’)\e% and Qgi@,d@f _ Q()\aéé’xiéf%

A SR 2.46
ngléd _ J()\&{,,Aé% and ngé’déf _ J()\&Bé’)\z{éf) ‘ ( )

The corresponding versions of the identities (2.42), (2.43) read as
Qgg,ad — (e V2 facbxbd and Qggf),déf = (@eh) V2 fadbxbef 7 (2.47)

where these relations only hold for the components symmetric in (cd) and (def), respectively,
and

Jhedyed — g (PONP(1 @ 1~ PONDN = PONB(1 g1 - DY),
JIeAEr N gy (PON(1 @ 1 @ 1 — PN N = PON (1 g1 o1 —PY),
which follow from the relations in (B.23).
To describe the tangent space to the reducible flag manifolds M = Fj, ,.4 at a point

(2.48)

73,81 hipid = 73,(32 ® P,Sl(k2); 4» one proceeds completely analogously to above and defines

Tpp M = {(ady®1®.. . +10ady®...+...918 adn)(Pya @ PR (ky)a) [N € 5u(4)}
(2.49)
It immediately follows that the elements of Tpglk2;4M all satisfy (2.36). The stabilizer sub-
group H of P/glkz;4 is indeed U(4 — ka) x U(ke — k1) x U(k1).
The definition of the complex structure, the metric, the symplectic and the Kéahler struc-
ture are again straightforward. For the latter, we introduce components, e.g. for Fia.4:

sihaie] _ il g it (2.50)

and one has again obvious identities corresponding to (2.43).
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2.6. Spherical functions on the flag manifolds

Before discussing the fuzzification of functions on the flag manifolds, let us briefly review some
aspects of harmonic analysis on these spaces. That is, we want to describe the construction
of spherical functions on flag manifolds, which form a complete orthonormal basis on these
spaces and are simultaneously eigenfunctions of the Laplace operator. For this, we will extend
the standard discussion of spherical functions using the various generalized Hopf fibrations
described above. (A detailed discussion for CP" = F}., is found e.g. in [25].)

The spherical functions on the sphere S are simply the restrictions of the homogeneous
harmonic polynomials on R™*! to S™ [26] and the dimension of the eigenspaces H’, j € N,
corresponding to the eigenvalue j(j +m — 1) are (mT:J) For m = 2n — 1, the eigenspaces
HI are spanned by homogeneous polynomials in the complex coordinates a* on C™ plus their
complex conjugate minus all terms containing contractions a‘a’, as these terms belong to
spaces H* with k < j.

The complex projective space CP? is obtained from the generalized Hopf fibration U(1) —
S7 — CP3. The eigenfunctions of the Laplace operator on this space are the subset of the
corresponding eigenfunctions on S” which are invariant under U(1). These functions are obvi-
ously the product of a homogeneous polynomial of order k in a’ and another such polynomial
in @’ minus all the possible contractions. We thus get the “hyperspherical harmonics”

Yffﬁ“'“”““jk = a"...a"a’" ...a’" — contraction terms , (2.51)

which have eigenvalues A\ = k(k + 3) and their eigenspaces H ﬁ 4, have dimensions

k+3\2 [(k+2)\?
dim Hf, = ( 2;‘ ) —<kf1> , (2.52)

where the last term subtracts the dimensions of the contraction terms.

The GraBmannian Go.4 is obtained from the Hopf fibration U(2) — ST x 85 — Go.4. The
spherical functions on S7 x S are constructed from homogeneous polynomials in A and
ARl where we add again the complex conjugate polynomial to render the expression real and
finally subtract all terms containing contractions. The subspace of U(2)-invariant functions
is now spanned by those polynomials, which have an equal number of A%”s and A*'s, and we
thus have:

Y2’f4“31"'Zk]kllml“'l’“m’“ = AR AR g AlmE  contraction terms (2.53)

From the generalized Hopf fibrations discussed in the preceding sections, the construction
of the remaining flag manifolds is obvious. For our purposes, it is more important to note that
these spherical functions on G/H are in one-to-one correspondence with so-called spherical
representations of G/H, i.e. (finite dimensional) representations of G with non-trivial H-
invariant vectors, see e.g. [27, 28]. This allows us to associate each set of eigenfunctions of
the Laplace operator on the flag manifolds with certain sets of irreducible representations
of GG, which we will do in the next section. Later on, we will use these representations to
construct the algebra of fuzzy functions on the flag manifolds. From this construction, one
can also read off the eigenvalues of the eigenspaces of the Laplace operator on the various
flag manifolds.
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3. Flag manifolds and coherent states

To quantize the flag manifolds, we would like to connect every point on these spaces to a
state in a Hilbert space. A function then automatically becomes an operator on this space.
To establish this connection, recall that every point on a flag manifold which is a coset space
of G = U(n) is in one-to-one correspondence to a generalized coherent state in a specific
representation of G. We will review this relation in the next section and partly follow the
discussion of Perelomov [29], see [30, 15] for quantization using coherent states.

3.1.  Representations of SU(n) and coherent states

Consider the Dynkin diagram of SU(n) for simple roots oy, ..., ap—1
a1 a2 Gp—1
a1 (&%) Qn—1 (3.1)

An irreducible representation T with highest weight A can be labeled by the Dynkin
indices® ay,...,a,_1. In the representation (Hilbert) space ", there is a corresponding
highest weight vector |[A) and " has a basis of weight vectors” {|u)} i.e. Hjlu) = u;|p).

The isotropy subgroup H,, for any weight vector |;) contains the Cartan subgroup H of
SU(n), which is isomorphic to the maximal torus 7"~1 = U(1)*"*~1 = U(1) x...xU(1) and for
general weight vectors the subgroup H,, coincides with T' "=1_ For degenerate representation,
where the highest weight A is orthogonal to some simple root «;, i.e.

ANa;) =0 = a, (3.2)

the isotropy subgroup H, may be larger than T~ for some weight vectors. This is evident
since, as explained in appendix B, the a; indicate the highest power of F_,, whose action is
still nontrivial on |A).

A helpful picture arises, when enlarging SU(n) to U(n). The Cartan subalgebra consists
now of n factors of U(1), which one can imagine sitting around the a;. Every a; which is zero
combines the U(my) left of it with the U(mg) right to it to a U(my 4+ mg). This allows us
to construct all the isotropy groups one encounters in flag manifolds, and we will be more
explicit in the next section.

To construct a coherent state system, one has to choose an initial vector 1)) in 5#*. Then
the system of states {|1,) = T(g)[t0)} is called the coherent state system {7, |1))}. Let
Hj be the isotropy subgroup for the state |1)p). Then a coherent state |14) is determined by a
point = x(g) in the coset space G/ Hj, corresponding to the element g by |¢4) = exp(ia)|z)
up to a phase, |1)g) = |0). The isotropy subgroup for a linear combination of weight vectors is,
in general, a subgroup of the Cartan subgroup. Therefore it is convenient to choose a weight
vector |p) as an initial state. For non-degenerate representations, the isotropy subgroup H,
is isomorphic to the Cartan subgroup H, and the coherent state |z) is characterized by a
point of G/H, or equivalently by a point of the orbit of the adjoint representation

Hjlz) = T(9)H;T~(g)lx), |z) = T(g)ln) - (3.3)

5See appendix B for more details.

“which can be chosen to be orthonormal
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In a representation with some Dynkin labels vanishing, the isotropy subgroup H, is larger
than H for some weight vectors |u), in which case the orbit may be degenerate.

There is considerable choice in the selection of the initial state |0), even on restriction to
weight vectors. Perelomov [31] has shown that the state |0) must be |u), where u is a dominant
weight, if it is to be closest to classical. That is, |u) is obtained from the highest weight by the
Weyl reflection group. Then the coherent states minimize the invariant uncertainty relation

ACy = min , (3.4)

where

Cy = Z(Hj)z + Z (EaE—a + E—aEa) (3-5)
J aEX

is the quadratic Casimir operator and

ACy = (Co) = | D (H)*+2 ) (Ead(E-a) | - (3.6)

J aEX

Let us take the initial state to be the highest weight vector |A). The coherent state system
is then more explicitly defined by

@) = NTYg)[A), N2 = (A|ITA(g)[A) (3.7)

@)

N exp Za;E_a exp (h;H;) exp Za;rEa |A)

a€E+ a€E+

= N exp Z ayE_o | |A) (3.8)

aceXy

where we have restricted ourselves to elements of G which have a Gaufliian decomposition.
Note that if some of the Dynkin labels a; vanish (degenerate representations), then the
corresponding coordinates a, (and possible some others, see the appendix) are no longer
independent and can be eliminated from the definition of the group element g and thus the
coherent states correspond to points on various flag manifolds. The number of independent
coordinates a, gives the (complex) dimension of the flag manifold.

Note that our construction of coherent states yields merely one patch of the covering of
the flag manifolds. Starting from a different dominant weight state corresponds to working
on a different patch, as the state |w(A)), where w is an element of the Weyl group W, is
not contained in the set of the coherent states |a) constructed from |A). This is because
we have restricted ourselves to group elements that have a Gauflian decomposition. We can
assume all the weight states to be orthogonal. In particular, two states |A) and |w(A)) have
no overlap, i.e. (Alw(A)) = 0. Consider now the coherent state |a) as constructed above,

n

la) = N 1+Z% > 4 E IA) . (3.9)
n=1

a€eX

As E_, contains only lowering operators, we have (A|E_,|A) = 0, which implies

(AMla™) = (AINJAY+0 = N . (3.10)
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It is thus clear that all |a) have a component parallel to |A) and therefore |a) never equals
|w(A)), which we wanted to prove.

The number of such dominant weight states from which we can start and thus the number
of patches is evidently given by the dimension of {w(A), w € W} or equivalently the number
of corners of the convex hull of the states in the weight diagram of the representation. This
number is just the rank of the Weyl group modulo group elements acting trivially in a
certain representation. As the Weyl group for SU(n) is essentially the permutation group of
n elements with rank n!, the minimal number of patches covering the complete flag manifold
F123. .n—1:n is given by n!, while the number of patches for all other flag manifolds of SU(n)
is smaller. The reason for this is simply that for other flag manifolds, certain Dynkin labels
a; are zero, which implies that the corresponding Weyl reflections
2 (Oéi, A)

(v, ;)

1Sa, ) = A - ;) (3.11)

act trivially on the highest weight state.

To clarify the above construction, we will first discuss the simple case of flags in SU(3),
whose weight diagrams are two-dimensional, before presenting the construction for the flag
manifolds of SU(4).

3.2.  Examples for SU(3)

There are two flag manifolds which arise as coset spaces of SU(3): The complex projective

space CP? = Fi;3 = Fp3 = CP? = U((Q)) and the reducible flag manifold Fio.3 = U(1)U(3)( -

The representations 3, 3 and 6 of SU(3), corresponding to the diagrams

1 0 0 1 2 0

O—O =82, O0—0 =H Oo—0 = m (1
all have dominant weight states with isotropy group U(2). Thus, the coherent states con-
structed from these representations are in one-to-one correspondence with points on CP2.
The adjoint representation 8 as well as the 27 corresponding to the diagrams

1 1 2 1

o—o =B o—o0 = H- (3.13)
have dominant weight states, whose isotropy group is only the maximal torus U(1) x U(1),
and therefore the derived coherent states are in one-to-one correspondence with points on the
flag manifold Fi2.3. Recall that the number of patches is found to be the number of corners
in (the convex hulls of) the weight diagrams. Consider e.g. the diagrams

NASAY;

corresponding to the representations with Dynkin labels (1,0), (1,1) and (2, 1), respectively.

We see that the complex projective space CP? is covered by at least three patches, while the
flag manifold F12.3 requires a minimum of six patches.
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3.8.  The flags in C*

Let us now come to the coherent states which correspond to points on flag manifolds of

SU(4). For these, the choice of representations as well as the Dynkin diagrams are given in

Table 1.

Note that the representations for the reducible flag manifolds are not unique at level L.

One can choose any representation (ai(L),az(L), as(L)); however, for considering the limit

L — o0, the functions a; should be polynomials of the same order in L.
The minimal numbers of patches for the various flag manifolds are again the numbers of
corners in the weight diagrams for the various representations. For example, consider the

weight diagrams of the representations (1,0,0), (1,0,1), (1,1,1),

|
AN
‘ o\
/ 7\ \
/ / \/ \
\/ /\\
\ / N\
\ [ \ | //
\| |/

which yield coherent states corresponding to CP3, Fi3.4 and Fi23.4 with minimal coverings

of 4, 12 and 24 patches, respectively.

dimg | patches isotropy group in U(4) Dynkin labels | Young diagrams
L
F1;4 3 4 U(l) X U(3) (L,0,0) (TT11
L
~
Fag | 4| 6 UE) x U(2) (0,L,0) SE=E
L
—~
F3;4 3 4 U(3) X U(l) (0,0,L)
L+L
——
Fio.4 5 12 U(1) x U(1) x U(2) (L,L,0) Bﬂﬂm
L+L
—
Fisq | 5 12 U(1) x U(2) x U(1) (L,0,L) .
L+L
——
Fosa | 5 12 U(2) x U(1) x U(1) (0,L,L) HH
L+L+L
Fioga | 6 24 | U(1) x U(1) x U(1) x U(1) | (L,L,L) R

Table 1: Representations of SU(4) related to the flag manifolds in C*.
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4. Fuzzification of the flag manifolds

Combining the description of the flag manifolds in terms of Pliicker coordinates which we
developed in section 2 with the correspondence to coherent states in the previous section,
we have an obvious way in which one can truncate the algebra of functions on these spaces
to obtain the latter’s fuzzy versions. Before we describe the construction of the fuzzy flag
manifolds in detail, let us briefly recall the underlying principles.

4.1.  Fuzzification

By fuzzy geometry, we mean a truncation of the algebra of functions on a compact space such
that the coordinates become noncommutative while all isometries are manifestly preserved.
Given a compact Riemannian manifold M without boundary, the spectrum of the Laplace
operator is discrete and the eigenfunctions form an orthogonal basis B of L?(M). A naive
guess for a discretization would be to truncate the expansion of a function by using only a
finite subset BY of elements in B. Multiplication of functions, however, clearly necessitates a
subsequent projection back on to B, which in turn will render the product non-associative
in general.

If the manifold M = G/H is a coadjoint orbit of a Lie group G, we can easily circumvent
this problem: we can map functions to operators acting as automorphisms® on the represen-
tation space of some representation R of G which admits singlets under H and replace the
product between functions by the operator product. In the previous section, we described
which representations R are suitable for the various flag manifolds of SU(4). We will see that
the choice of R corresponds to a choice of the truncation and the closure of multiplication is
trivially given.

Using a projector pr(z) = |x) (x| which corresponds to a point x € G/H and acts on the
representation space of R, we can establish a map between operators and functions on the
coset space by the formula

fr(@) = tr (pr()f) - (4.1)

The operator product then induces a star product via

(fr*gr)(@) = tr (pr(2)f7) - (4.2)

In general, there is an infinite sequence of suitable representations R; for any coset space and
for each of these representations, the star product is different. Choosing higher-dimensional
representations amounts to a better approximation of the functions by operators, and there
is usually a well-defined limit, in which the complete set of functions on the coset together
with the ordinary product is reproduced.

Let us return to equation (4.1). To each operator f representing a function on Mg, assign
a corresponding symbol f(g), g € G by [§]

f(9) = nptr (D)) | (4.3)

8That is, they can be represented by square matrices.
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where Df(g) is the group element g acting in the representation R. The normalization
constant np is defined by

/dM(Q)DR(g_l)z‘jDR(Q)kZ = an(siléjk (4.4)

with du(g) being the Haar measure on G. Inversely, the operator f corresponding to the
symbol f is therefore obtained from

[ = /du(g)f(g)DR(g)- (4.5)

From the symbol f of an operator f , we can easily calculate the function defined in (4.1)
using

fr(z) = /du(g)w}z(fv,g)f(g) with wg(z,9) = tr (pr(z)D"(g)) . (4.6)

In the definition of the star product (4.2), this translates into

(Frkgr)(@) = / du(g) / duld wr(z, 99)F(@)3(d) | (4.7)

and it is for this formula that we will find explicit expressions for all the flag manifolds later
on.

In the discussion of fuzzy flag manifolds using star products, we can use both of the two
equivalent descriptions: either real coordinates describing an embedding of the coset space
into flat Euclidean space or the complex homogeneous or Pliicker coordinates. In the latter
coordinates the star product can be shown to simplify considerably. Moreover, they allow
for a direct translation to the operator picture.

Note that so far, we only arrived at an algebra of functions on a topological space. The
explicit geometry of this space, i.e. its metric structure, has not been described yet. In
noncommutative geometry, this information is encoded in a Dirac operator, or — in a slightly
weaker way — in a Laplacian. Using the above mentioned embedding, we obtain a canonical
metric on the coset space and can show that the Laplace operator naturally translates into
the second order Casimir in the representation R.

For more details on the principle underlying fuzzification, see also [6].

4.2.  The fuzzy complex projective space CPy

The fuzzification of F1,4 (and therefore also that of its dual F3.4) is well-known [6], and we
follow the usual discussion of the procedure for CP". That is, we promote the vector a and
its complex conjugate a to a four-tuple of annihilation and creation operators satisfying the
algebra [a?,a/f] = 6. The auxiliary coordinates defined in (2.4) also become operators

) 1 L
Al . T
4 = 7&“&15“&2 Aija’ (4.8)

which evidently commute with the number operator N = a*ta!6y;. Therefore, we can restrict
the algebra of functions to the subspace of the Fock space, on which N = L. This subspace

%&ilT...&iL”O) with C = /nilnalnglng! (4.9)
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where the n; are the number of indices being i. The truncated algebra of functions Ay, on
this space is the algebra of operators with basis

ant. . aitjoy(olalt - - - adr (4.10)

It is immediately obvious that these operators will commute with the number operator N,
which amounts to factoring out a U(1) as implied in the definition of any flag manifold. The
coefficients of the expansion of an operator in terms of the basis (4.10) form square matrices

: : 3+L)1) 2 : : ]
of dimension ( “5r7; [6], and in terms of Young diagrams of SU(4), we have

L
L L —— L

0 ® o = ® 4. (4.11)

To expose the underlying SU(4) structure and to construct the polarization tensors, we can
contract indices from the creation operators with indices from the annihilation operators using
the 15 generators Aj; of SU(4). A contraction with )\% ~ 0;j yields the embedded subalgebra
truncated at level L — 1, since the trace over a fundamental and an antifundamental index
corresponds to the determinant over four indices in either the fundamental or antifundamental
representation and thus to a column of 4 boxes in a Young diagram, which is cancelled. The
tensor product expansion looks as

L 2L
N L A

®H\H:1€B@j@7”@...@ - (4.12)

A representation of the Lie algebra of SU(4) is given by the Schwinger construction and

we can write
L% = &'\l . (4.13)
One can easily verify the algebra [L%, L}] = iv/2f% L¢ using [a’, a7T] = §%.

In the representations R = R(L) introduced above, the projector P14 = P(z1,4), which
describes the embedding of CP? in R, is simply the L-fold symmetrized tensor product
pf;4 = pL(:Ul;4) =P(z14)®...®P(x14), and we can map any operator f in the algebra Af,
to a corresponding function f;, on the embedding of CP? in R!'® by

fr(@ia) = tr(p"(xra)f) . (4.14)
Furthermore, this map induces a star product on CP? defined as
(foxgr) (@) = fr(@ia) *grleta) = tr(p"(z14)4) (4.15)

where fr, and g7, are the functions corresponding to the operators f and g, respectively.
To make the star product more explicit, we calculate w” (1,4, 99") for the fundamental

representation L = 1:
wL(x1;4agg/) = tr (Pl;4gg/) = tr (7)1;497)1;49,) + tr (7)1;49(1 - Pl;4)g/) . (416)
Since P1.4 is a rank one projector, we have

tr (P1;4g7)1;4g/) = ftr (Pl;4g) tr (P1;4g/) = WL($1;479)WL($1;479/) (417)
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and with the identities (2.43), it follows immediately that

tr (Pl;4g(]]- - P1;4)g,) = tr ()\ag) tr (P1;4>\a(:ﬂ- - Pl;4)g,)
9 w0 (4.18)
= (Ww($1;4,9)) J (Ww(ffl;zhgl)) .

For the representations with L > 1, we can simply take the L-fold tensor product of w!(z1.4, g)
8: ®L
wL(x1;4ag) = (wl(x1;4vg)) ) (419)

and the total star product reads as [6]

(fr*gr)(x1:4) Oay...a, fr.(x1:4)) Jalbl . al "(Oby..ty9r(z1:4)) . (4.20)

L'l'

NMN

In the homogeneous coordinates a’,a’ on CP?, the space of functions is spanned by homo-
geneous polynomials of the form

a...a'ta ... at | (4.21)

which correspond to the operators (4.10) under the map (4.14). In these coordinates, the
star product simplifies to [32]

19 o 1.9 9
L19a™ " daor = Llda™ " daot

(frg) = n (f®g)]| (4.22)
where u(a ® b) = a - b. Note that this construction of a star product generalizes in a rather
straightforward way to other spaces, as soon as we have a suitable projector p”(z) at hand.

To relate the given matrix algebra to the space CP3, we need some additional structure
to encode the geometry of this space. For this, consider the vector fields on CP? from the
perspective of the embedding space R!6:

)
= —\/ifabcxb@, [La, Ly = iV2fuLe (4.23)

where fy,¢ are the structure constants of SU(4). Note here that in the limit L — oo, the
fuzzy derivatives approach the ones from the continuum in an obvious way. It is now rather
straightforward to show that [6]

Lfi(x) = V20 abm ) = (@ fola)- fol)a®) = (b @lLe, /1), (4.29)

V2

where [L?, -] are the generators of SU(4) in the representation (L, 0,0)®(0, 0, L). It is therefore
also clear, that the Laplace operator on CP3, A = £%L,, is mapped to the second order
Casimir in the adjoint representation (L,0,0) ® (0,0, L):

Avaf = [L%[L, flbas - (4.25)
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4.8.  The fuzzy Grafimannian G’2F;4

We proceed analogously to the case of CP3, which leads to the results presented in [8] in
a somewhat simpler form. That is, we take the Pliicker description discussed in section 2.3
and promote the vector components to creation and annihilation operators a’, a'f, f)i, bit. We
thus arrive at the algebra

(@, o't = [, W1 = 69, (4.26)

and all other commutators vanish. From these operators, we construct the composite creation
and annihilation operators

AV = alibl and AW — alitit (4.27)

which satisfy

AY, AT = (ool 4 otaktal 4 6T (4.28)
[é5] (k1)
where (-)[;)ky denotes antisymmetrization of the enclosed components, as well as
A AM At = (ggitgim Ak . 4.29
145, 45", A3 = ( ) I (4:29)

We can now use A;”"T to build an L-particle? Hilbert space L%ﬂlLél This space is spanned by
%Agm . A;LJLT|O> ’ (4.30)

where C' is the norm of the state. Acting with Ag”" on such a state yields a state in %”254_1
due to (4.28) and (4.29). Recall that in the Pliicker description of G4, we constructed the
plane by antisymmetrizing two vectors, which could be chosen orthogonal i.e. a’b’* = 0. On
the operator level, this translates into

[a'te’, A3 = 0, [a'b, AYT) = 0, (a6, A5 = 0 and [a'0',AE) = 0, (4.31)

and therefore the action of a’’b* on any state in %”2%4 vanishes. This implies that we can
introduce the number operator

N = a'fale; = bive,; = L (4.32)

and
AYTAElS 0y = 2N(N —1) = 2L(L—1), (4.33)

where the equalities hold only after restriction to %”2L4 Thus, %”2%4 is indeed an L-particle
Hilbert space. We already know from the discussion in the previous section, that the states
(4.30) are invariant under S(U(2) x U(2)). Let us nevertheless be more explicit on the action
of the internal SU(2), which acts nontrivially on both a4’ and b. Its generators LI, act
according to

Ly = ad (aiin,ah) | (4.34)

9Note that a particle is here a composite object consisting of two excitations.
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where @} = a’, ab = b and Apgs D@ = 1,2, 7 =1,2,3 are the Gell-Mann matrices of SU(2).

The combinations Aéj and Aéj T are now invariant under this action due to the general formula

[ag)\;qaz,a[lm...aﬁn] =0, (4.35)
where p=1,...,k and ¢,j, = 1,...,n; see appendix B for a proof.

The truncated algebra of functions Ay, is the algebra of operators spanned by
A;jﬂ . AiLjLT‘O> <0’Aklll ... A];LZL , (4.36)

and the coefficients in an expansion in terms of these operators are square matrices of size
(3+L)!(2+L)!
3TLRI(L+1)!
terms of Young diagrams, we have here

. Note that these operators again commute with the number operator N and in

L L L L
—~

i —~ —~ —~
TR0 - -0 @)

Again, each of the tensor product decompositions at level L contains the tensor product
decomposition at lower levels:

—~—
THe HH = 1o oMo o e e 4

Contrary to the case of CP3, where increasing the level L by one yielded precisely one new
type of Young tableau in the sum, we here obtain L + 1 new diagrams in each step, which
consist of three rows with a + b 4+ a, a + b and a boxes respectively. The new diagrams at
level L are the ones for which a =n and b=2L —2n forn=1... L.

All these notions readily translate for arbitrary Grafimannians.

To find a representation of the Lie algebra of SU(4), we use a generalized Schwinger
construction ) 1 )

Lo = EA;” AL AR with A% = (A A D)ijm - (4.39)

It is important to stress that the Lo by themselves do not form a representation of SU(4),
but again after having them act on a state in jféﬁl, they do. This is simply due to the fact
that because of (4.31), L* reduces when acting on a state in e%’éﬂ to

L* = a'"\Gal + bTAGY (4.40)

The projector yielding a star product on this space is the symmetrized L-fold tensor

product p5;4 = pL(x2;4) = P24 @ ... 0 P24. Proceeding precisely along the lines of the
discussion of the star product on CP3, we find that

. = ap s
wH(z®, g¢) = wl(z,g) (1 + 8d8Jab’Cd6&Z> wl(z, g, (4.41)

where at least one of the indices in each ab or éd is nonzero. That is, the component 20
plays a similar role to the component z in the case of CP3. Furthermore, one should stress
that as usual for the derivatives on spaces with symmetrized tensors as coordinates, one has

{ O fora = b#0

Oxb R
% for a #£b

(4.42)

9xab
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It is then quite obvious that the star product is given by

L
(L - 1) arby;érd
(frxgr)(x24) = 0 5 s fr(wa) ) Jaired
lzg L! ( (@161)...(abr) ) , (4.43)

arb ;¢ d,
J2;l4[ o (6(51621)---(6131)QL(x2;4)> ’

where . ; .+ =0, ; ...0.;. Note that our choice of embedding Fb.4 in R?¢17/2-1
(@1b1)...(arbr) a1by ayby ;
yielded a slightly simpler expression for the star product on this space than the one in [§],
which used an embedding in R!®.

The expression for the star product further simplifies, if we switch again to complex

coordinates al’b’! on ©* A C*. The functions corresponding to the operators (4.36) read as
alrpnl | aliepiclglbphl o glkepiel (4.44)

and the star product is here defined as

1 9 9 o 0 1 9 9 g 0
A TIL 9ali obi] ** 9aliz dbit) ®© L'L! palir gpirl =" dalic gvicl

(fxg) = (f®g)

The natural Laplacian on %L4 encoding the geometry of Go.4 is derived from the embed-

ding of G2.4 in R617/2=1 Tn terms of Pliicker coordinates, the generators read as
a _iva 9 Tiva O iva 0 iva O

From this expression and equation (2.9), we obtain the following expression in terms of the
embedding coordinates:

Ly = _i\/ifabcxbdaa

= (4.46)

which satisfies the algebra [£%, £%] = iv/2f®.L¢, as is easily verified. Using the first relation
in (2.47), we can write

LOfr(x) = \@aﬂycdafcd fo@) = a2 fr — fr+z® = —itr (p"(z24)[LY f1]) . (4.47)

We thus see again that all the derivatives are mapped to the generators of SU(4) acting
in the adjoint, and therefore the Laplacian is given by the second order Casimir of this
representation of SU(4),

A2;4 = adﬁaadﬁbéab. (4.48)

This observation from the cases CP? and Go.4 translates to all flag manifolds and we suppress
this calculation in the remaining cases. For the discussion of the eigenvalues of these Casimirs,
see appendix B.

4.4. The fuzzy dual complex projective space Fgf4

One can infer the fuzzification of F3.4 in a straightforward manner from the ones of Fi4
and Fy4. We start from the Pliicker description and promote the vectors a,b,c to a triple
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of four-tuples of oscillators with creation and annihilation operators a?, af, i)i, bit, ¢t et We
furthermore introduce the composite operators

AE = alpieH and  AM = alifjiteRlt (4.49)

satisfying the commutation relations

[621', din] = 5ijk15mnrs[Aékla Agm]
_ (Sim + EijMEmnrs (&n‘f&jérkésl + 5njBTTBk5sl + 6nj5rkésTél+ (450)

amtalbrTpkest 4 antadgrhestel 4 gingripkest él> .

The expression for [[[d;, dj}dl]d;r] contains only the combination djy, = €nrs A3
The L-particle Fock space %’fﬁl is evidently spanned by the states
AIIT AR oy (4.51)

and this space forms the representation (0,0, L) of SU(4). The isotropy subgroup of any state
in this representation is thus S(U(3) x U(1)), and the internal SU(3) action, affecting all the
elementary oscillators a, b, ¢ is given by

L = ad (afXp,a5) (4.52)

where at, ab, dg stand for a’, Bi, ¢, respectively, and A" are the Gell-Mann matrices of SU(3).
Invariance of the operators /1? * and flgj M follows from equation (4.35). It is this represen-
tation which underlies the construction of vector bundles over CP%. [21].
The algebra of functions truncated at level L is again constructed from two copies of the
Fock space and their SU(4) transformation property is captured by the diagrams
—— R
® = 1 ® : (4.53)

We clearly see that this algebra is dual to (4.11), i.e. that of Fﬂ. For this reason, we will
not go into any further details.

The definition of a star product is obvious. The projector in the symmetrized L-fold
tensor product reads as p§;4(x3;4) =P34 Q... 0 P34 and yields

L
G1b1é1;d1ér f
(frxg1)(ws:4) Z L'l' ( alélél)...(@lz;lél)fL(x3;4)> J3y ! e
=0

(4.54)
b
J??;l4lq o (8(‘ilé1f1)m(filélfz)gL(x3§4)> )
where again the components %% are dropped in the formula and
Bz(?lbf fora = b = 75 0
6 ) N
8abc = iawabc fOI‘ a = b (455)
% for a # b % ¢ ;é

Q

8
&
Sl
&
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The discussion of the star product formalism in the complex coordinates alit/cl on €4 A
C* A ©* s trivially deduced from the cases CP% and GL'. The star product here reads as

1 8 o 0 o o 0
LIL'L! altr 9bir §ck1l * 7 dalic Obir Hckel @
1 9 0 0 o 9 0
© LI 9al 9bin 9] Daliz obi dckL]

(fxg) =

(f ®g)] :

4.5.  The fuzzy reducible flag manifold Ff;A

In the case of the reducible flag manifolds, one needs a set of composite creation and annihi-
lation operators. These sets are in one-to-one correspondence with the Pliicker coordinates.
For Ff;; 4 we thus have

A9 AT and &b, a't, (4.56)
The missing commutation relations are easily found from (4.28) and (4.29), e.g.
[a*, AJFT) = sl (4.57)
and the (L1, Lo)-particle Hilbert spaces are now constructed as
Apnt | AInTgkt - gktg) (4.58)
The corresponding operators

Apnt AIndgmt gkt A AL gh gl (4.59)

evidently form a closed algebra and act on the representation space of the representation
given in terms of Young diagrams by

Lyi+Lo Li+Lo La+1n Li+Lo
[T 1]
ITTTTTT] @ [LIIITTITT] = HH@BEEB:\:\:D (4.60)

The internal isotropy subgroup here is U(1) x U(1), which follows from the discussion of the
underlying coherent states. The explicit action of this subgroup on the elementary oscillators
is given by the number operators for @' and b

To define a star product on this space, recall that we could describe the flag manifold
F12.4 in terms of two rank one projectors Py and P; satisfying PoP1P2 = Pi. Furthermore,
note that we can split every operator f in this representation as

,_51\ L fé Lo
f= fuhyehi with hyeJFH ® HFH and hfe ® o), (4.61)

where I and J are multi-indices. To such an operator, a truncated function is assigned by

F@oua,120) = frotr (p"(z2a)hd) tr (p" (z12)4)R]) | (4.62)

where pl'(72.4) and p* (71(2);4) are the projectors P(zg,4) and P(r1(2)4) in the same represen-

)

tations as h{ o and zy(),4. Furthermore, z9.4,%1(2).4 are the coordinates on Fi2,4 embedded
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in Euclidean space, of the plane and the included line, respectively. On this embedding, the
star product of two operators is defined as

(f % 9) (@24, 21(2pa) = Frogun tr (p" (zoa) RERET) tr (p" (21 (20.0) R Y ) (4.63)

Evidently, the star product between xa,4 and (2,4 is simply the ordinary product. Alto-
gether, the star product on Fia4 can be derived from the ones on CP? and Ga.4, and we
have

L L
) L)l & (L k! :
(fzxgr)(z124) = Z( L!l!) Z( L!k!) (a(dli’l)"'(&li’l)aél"'ékfL(:ElZA)) g (4.64)

0
a1b1),(¢1d1);e arby),(&dy);éx f
< J1(2141) (@dienfn J1(214l) (&rdr)ser fre (8(61621)“.@[&1)8f1._.fkgL(x12;4)) .
4.6.  The fuzzy reducible flag manifolds FQI};A, F£;4 and Fll;3;4

After the discussion of the fuzzy version of Fia.4, the corresponding constructions for the re-
maining reducible flag manifolds are quite straightforward. We first choose sets of oscillators,
which in turn yield the generators for the algebra of functions:

F13'4 : Agjk ) A?H ’ dz ) le )

Froga: AJF . AYFT O AY  AYT ot

The underlying representations, on which these operators act are given by the Young dia-

grams
Lyi+Lo Li+Lo Lo+L4 Li+Lo
_— ——— —— ——"—
Fro [T T11 [TT] [TT]
134 ° X = & ,
Li+Ls Li+Lo Lo+L, Li+Lo
Foe, T Ea i T (4.66)
234 T ® T = HHHHHHH © 11,
Ly+Lo+Ls Li+Lo+Ls L3+Lo+Ly Ly+Lo+Ls
—— — e
[TILL] EEEEE EEEEE EEEEE
Fia3.4 : ] ® 1] = 1] ® \ .

From these diagrams, it is evident that Fb3.4 is dual to Fio,4, and that the spaces Fi3,4 and
F123.4 are dual to themselves.

Furthermore, the explicit action of the internal isotropy subgroups is easily constructed.
For example, in the case Fy3.4, the group acting nontrivial on the elementary oscillators but
leaving invariant the states of the Fock space is SU(2) x U(1). Its action reads as

int » “‘pgq int

LL, = ad (aiw a) and L, = ad (cTc) , (4.67)

where as before @} = a’, a} = b’ and Apg are the Gell-Mann matrices of SU(2). Evidently, the

composite operators A5 and A3 T and A * and AY M are invariant under this combination.
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The definition of a star product is performed analogously to the case of Fi2.4. We de-

A~

compose an operator f representing a function on a fuzzy flag manifold into

f = f[]il,él ® iLZZ and f = f}JKiLé & ilg ® iLi] (4.68)
for Fj, k,:4 and Fia3.4, respectively. The map from operators to functions reads as
F@hosts Ty (kg)a) = S tr (0" (@rpea) k) 01 (07 (2, (hg)ia) D) (4.69)

and

F(@34, a3y, T1(23ya) = frox tr (o (w334)h3) tr (0" (1’2(3);4)%) tr (p" (371(23);4)3‘1]) ;
(4.70)
which naturally induces a star product via the usual formula. The explicit form of the star
products are then obtained from the obvious sums over the differential operators

(arbrér),(drér f1);91h

— —
Fi34:0 9 g1..onJ13:4

(arbrér)...(arbye;)

(abiey) (dierfo)sanhe = Y
J13;4 a (d1é1f1)~-~(dlélfl) 8h1hk )
Y (a1b121),(d1é1 f1);(g1h1), (TR 1)

420 Grbir)...@bie) O @ua)..- (o) T2300

J(dlélél)v(‘ilélfl)?(gkhk)’(mkﬁk)—> o L 5) - .
234 (dré1fr)...(dierfr) © (mana)...(mkfk) >

5 9 ) (a1b1¢1),(d1é1 f1);(g1hn), (1 n)ip1d
F1230:0 (b)), (abier) @ (@ihn)o(uhe) O prodr iz L
(@ubiér),(diér f1);(Grbr),(Maf)iprdr = = =
J1g:l3;f RS T Ere a(dlélfl)...(cilélfl) (). (i) O Gudr -

4.7. Continuous limits of the fuzzy flag manifolds

As a consistency check, one can calculate the dimension of the continuous flag manifolds from
considering the L — oo limit of the various representations used in describing the fuzzy alge-
bra of functions on them. The underlying idea is simply that given a cutoff L, the number of
eigenvalues should be proportional to L% on a d-dimensional manifold. The number of degrees
of freedom in the matrix algebras was the square of the dimension d(ai(L),as(L),as(L)) of
the representation (aj(L),as(L),a3(L)), and we can thus deduce that
In(d(a1(L), as(L), a3(L)))
InL '
A trivial calculation shows that the representations and the matrix algebras we have chosen

d= lim

L—oo

(4.71)

in the previous sections indeed reproduce the right dimensions for the various flag manifolds:

Flag manifold Fiy4 Foy F34 Fio,4 Fi3,4 Fo3.4 Fia3:.4
representations | (L,0,0) | (0,L,0) | (0,0,L) | (L,L,0) | (L,0,L) | (0,L,L) | (L,L,L)
real dimension 6 8 6 10 10 10 12

Considering the expressions for the star products on the various flag manifolds found in
the previous sections, it is also evident that the star or operator product will go over to the
commutative product in the limit L — oo. As discussed in [32], this limit is, however, not
clearly observable in the simplified formulse using the complex coordinates a’, b*, ¢’. Further-
more, the derivatives in the fuzzy case containing the geometric information are evidently
approaching the derivatives in the continuum for L — oo.
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5. Super Pliicker embeddings and flag supermanifolds

5.1.  Flag supermanifolds of U(4|n)

Flag supermanifolds can be defined analogously to bosonic flag manifolds by considering the
supervector space €™ [18]; see also appendix A for more details. A superflag is a sequence
of superspaces Vp, C ... C Vp, C C™" such that dime Vp = D = d|6. Note that inclusion
requires that d; < d; and ¢; < J; for i < j with at least one inequality being strict. A flag
supermanifold Fp,  p,.mjn is correspondingly the set of all superflags fp,  p,.mn- One can
again write a flag supermanifold as a coset space:

Fp,. . Dympn = U(m|n)/(U(m — dg|n — 0) X ... x U(d1|01)) . (5.1)

The special unitary supergroups SU(m|n) are not useful here, as for m = n, one has to
exclude the identity matrix, which is a central element in this case, from the set of generators
of su(m|n). See appendix A for more details on this point.

As before, we will be interested in the flag manifolds arising naturally in the double
fibration underlying well-known supertwistor correspondences. These spaces are flags in the
superspace C4", and because there are again natural projections, they fit into the following
diagram:

|
- Femam

T F110)(2/0)(2fn) (3Jn): (4]n) T
F ~— | T~F
(110)(2[0)(2[n);(4In) l (110)(3In);(4]n)
Y Faoam
Here, F{1|0),(4n) 15 the superspace CP3" and F(210)(2jn);(4|n) 18 the conformal compactifica-

3

(5.2)

tion of super Minkowski space with n = N being the number of supersymmetries. Note
that F(2)0)(2jn);(4[n) contains the left chiral superspace F{g)g).(4jn) as well as the right chiral
superspace Fojn).(4jn) [18]. Since in the twistor correspondences involving Fl1)0);(4/n) and
F(3Jn);(4jn), only these chiral subspaces play a role, we will also restrict the correspondence
spaces and only consider F(1|0)(2‘0);(4|n) and F(2\n)(3|n),(4|n) instead of F(I\O)(2|O)(2\n);(4\n) and
F210)2m) (3ln): (4m)-

To get a reliable handle on the geometry of the flag supermanifolds, it is useful to introduce
local coordinates. For simplicity, we will first consider the ordinary Gramannians and then
discuss the super case. The extension to reducible flag supermanifolds will be straightforward.
On a Grafmannian Gy, a patch corresponds to a subset I C {1,...,n} with k elements,
which selects k columns of a k xn matrix Z. We identify these columns with the columns of a
k x k unit matrix; they fix parts of the vectors spanning the k-dimensional vector subspaces.
The remaining columns are filled by the local coordinates on the patch I. As an example,
consider CP? = G1.3, where there are three patches

7y = (121 28), Zo = (24123) and Z3 = (23 22 1). (5.3)

Transition functions are elements of a finite subgroup of GL(n, C), permuting the k X k unit
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matrix to different columns. We also see that on every patch we have the U(k) x U(n — k) C
U(n) invariance manifest.

For a super Graimannian Gy|,..,|,,, we consider a (k|r) x (k+(n—k)|x+(v—k))-dimensional
supermatrix Zr, into which we insert the columns of the k|x x k|k-dimensional unit matrix,
preserving the grading of the matrix. The set I of the columns which we selected corresponds
again to a patch. The discussion of the transition functions is the same as in the bosonic
case and the symmetries factored out are again manifest.

A first observation is that for the super Grafimannians we are interested in, the fermionic
dimension of the subspace is always either maximal or minimal. This leads e.g. to matrices
Z1

Gojoapa : L3 = ( Taxa laxo ‘ Eoxa ) ,

Gooia: Z1g = (ﬂ2x2 €2x4> , (5.4)

a . g [ max2 laxo ‘ O2x4
o4;4/4 © Z3aj1234 = ;
ax2 Oz | Laxa

where the lines indicate the boundaries of the four canonical blocks in the supermatrix
Z. The first and the third space are the compactified, complexified chiral and anti-chiral
N = 4 superspaces, respectively. It is easy to convince oneself that (the bosonic part of)
the transition functions are the same as in the purely bosonic case. Therefore, the super
Grafimannian (and also the flag supermanifolds) we are dealing with are simply certain
fermionic vector bundles over their bodies, i.e. the embedded ordinary flag manifolds. As an
explicit example, consider the space C P2, Following our discussion of local coordinates, we
introduce the two patches UL, corresponding to the matrices

Zi = (201G ¢¢) and Z- = (12-¢L ). (5.5)

The transition function between both patches is evidently f,_ = 2z, and therefore we have
C_lf = z+¢’2. Thus, the space CP'? is the total space of the rank 0|2 vector bundle

no(1) @ Io(1) — CP. (5.6)

For more details on the definition of super Gramannians and flag supermanifolds, see [33].

For simplicity, we restrict our attention to the case n = N = 4 in the following. Using
the description of super Grafimannians given above, it is easy to determine the dimensions
of the various flag supermanifolds in (5.2) for n = 4. We have

Fajoyaa) 2 314 Flojoy(aa) = 418
Flojayi(apy 1 418 Flojoy(2layaa) + 4[16
Fajoyioya) 1 518 Fiajayap) : 3[4 (5.7)
Foaysjayapy 918 Fajoysjay(aja) 516
F1/0)(210)(214)(314):(414) * 616 -

The minimal numbers of patches covering the flag supermanifolds are the same as the ones
for their bodies.
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5.2.  The Plicker and super Plicker embeddings

Before discussing the super variant of the Pliicker embedding, let us briefly recall its common
form; see also the review article [34]. A GraBmannian Gy, is the space of all k-dimensional
vector subspaces in V = C™. Each such space is spanned by a basis fi,..., fr and we can
combine this basis into an element of the k-th exterior power of V:

A= fIN...ANfp, AecAtv. (5.8)

Each element of this form describes a point on Gy.,,, however, not every element of ARV
is of this form. In particular, a sum of two different such elements will not in general be
decomposable into a single wedge product of k vectors. One thus needs additional conditions
to decide, whether an element of A*V is fully decomposable. Physically, this question is
completely analogous to the question, whether a k-fermion state can be decomposed into a
product of k single particle states.
It is well known that the necessary and sufficient condition for A € A*V to be of the form
(5.8) is
(BJAYAA = 0 forall Be AF1VY | (5.9)

where V'V denotes the space dual to V. The proof of this statement is a simplification of the
one in the graded case, which we will give below. The equations arising from (5.9) are called
the Pliicker relations. In the case k = 2, this condition simplifies to (Bs A)AA = B (ANA)
and thus to AN A = eijklAijAkl = 0, the condition we used in section 2.3.

Consider now a basis (e1,...,e,) of V with a dual basis (el,...,e) of V*, (e, €l) = 53

It is obviously sufficient to consider (5.9) only for elements B of the form ELALLLA e@“.

Writing A = A%%e; A...Ae;,_,, (5.9) reduces to

k
Z(—1)tAj1.--jk—1itAi1---iAt---ik+1 —  Ad-dk-ilin gizeiega] 0, (5.10)
t=0

where © indicates an omission as usual.

Note that not all of these equations are independent, but one can easily read off the
number of independent ones. As the Pliicker relations are evidently projective, one can fix
a nonvanishing component to unity, e.g. AP*Pc = 1. Then it follows that one can solve
for all coordinates with m > 2 indices different from all of the p, [34]: Consider a sequence
q1 - - - qg of indices, m of which are not in the sequence p; ...pg. From (5.10), we obtain for
(Jk)=(q1---Gr--.qx) and (i) = (grp1 - .. pr) the following equation:

k

Ad1--Gr-Gkqr AP1-PE — Z(_1)tAq1--~€Tr~~-QkptAp1~~~i7t-~~pk ) (5.11)
t=1

If p, is contained in the sequence ¢ . . . g, the right hand side vanishes, otherwise exactly m—1
of the elements in the sequence ¢ ... ¢ ...qep: are not in the sequence p;...pg. Iterating
this prescription, we find that all Pliicker coordinates can be expressed in terms of A% -
with at most one ¢s not in the sequence p; ...pg. That is, of the (Z) coordinates on AFC™,
only 1+ k(n — k) are relevant, and this is the number of (homogeneous) coordinates on the
Grafimannian Gy.y,.
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For the discussion of flag supermanifolds, we need a similar picture at hands, and we
will find that for Gramannians G|y, for which x € {0,v}, the Pliicker embedding can
be straightforwardly extended. This fact is mentioned in [33], but beyond this, we are not
aware of any explicit discussion of super Pliicker embeddings in the literature.

The Grafimannian Gy, consists of spaces spanned by k even and x odd supervectors
in V= C"¥. Given a basis e/ = (ef,e), we can write a point!? A € ARlsgnly Gljwsnlv a8

A = AD-ITe-Yegh A Aele peXt AL AeTr (5.12)

where I, and T, range each from 1 to n + v. The Pliicker relations we are looking for are
supposed to be the necessary and sufficient conditions that

A=A ABAGIA.. Ay, (5.13)

where f, and ¢, are linearly independent!'! even and odd supervectors, respectively. We now
claim that for € {0,v} (and these are the only cases we are interested in), the necessary
and sufficient condition reads as

(BLA)AA = 0 for any B € AF-lFyY (5.14)

First, note that an even supervector v with nonvanishing body v° divides an element A of
AFURVY with A° # 0, ie. A = v Aw for some w € A*2l% with w® # 0, if and only if
v AA =0. Let us assume that x = 0. If A is of the form f; A ... Af;, then we can complete
the f, to an (orthonormal) basis of V by even supervectors fi1...f,1,. If B is composed
only of £ with o < k, (5.14) is satisfied. If there is one or more of the f, with a > k, (5.14)
is also true. Since (5.14) is linear in B and the span of the cases we discussed comprises all
of AF=1sVV (5.14) is true in general.

To prove the remaining direction, we follow the proof in the bosonic case [34] and explicitly
construct the GraBmannian Gy, |, from the coordinates ATk First, note that we can
again fix a bosonic coordinate which has nonvanishing body (at least one such component
exists, if A has nonvanishing body), say A‘-% = 1, since the equations are projective.
Furthermore, all coordinates A”1+/k with a sequence J; . .. Jj, of more than one index different
from i1 ...4; can again be written in terms of the remaining coordinates; the proof is the
same as in the bosonic case. We now construct k£ vectors spanning a k-plane in ARl
by putting py,(J) = Al-im—1Jimtiik gy =1,k J =1...n+ v. This evidently yields k
linearly independent vectors with nonvanishing bodies, as they differ in the £ components
J = 42 it is pm(iy) = 0 for m # [ and p;(4;) = 1. It remains to show that the plane
corresponding to these vectors is indeed compatible with all the Pliicker coordinates. First,
it is straightforward to see that the components A% #m-1Jim+1-k 3]] are compatible with
our definition. As shown above, the remaining coordinates are derived from these and thus
all the Pliicker coordinates are the ones corresponding to the Graffimannian we constructed.
Altogether, if the equation is satisfied, then the multivector A describes a GraBmannian,
which completes our proof for x = 0.

107 discussion of wedge products of supervector spaces and their duals is found in [35].

1 Gee appendix A for a discussion of linear independence of supervectors.
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For k = v, it is sufficient to note that the wedge product of the v odd supervectors in A
either vanishes, if they are linearly dependent, or spans all of the odd supspace. Therefore,
it suffices again to focus on the even supervectors in A, which is done by contracting with a
dual multivector B € A*"1"VV_ and there is nothing left to prove.

5.8.  Pliicker coordinates and projector description of irreducible flag supermanifolds

From the discussion in section 5.1., the description of CP3* is evident: homogeneous coor-
dinates on CP?* are provided by the components of an even supervector (normalized and in
a representation of type I, i.e. in a pure even basis) a’ = (a’,7®). From the discussion above,
we know that the space CP?* is the fermionic rank 4 vector bundle

C*oIo(1) — CP?, (5.15)

and its sections are given by homogeneous polynomials of degree one in the coordinates on

CP3. We can therefore rewrite the fermionic components of the even supervector al as

n® = nfa’ with nf e QB (5.16)

In the following, however, we will not be interested in sections of this bundle but rather in
the algebra of functions on its total space.
We therefore continue along the lines of the bosonic case and construct a projector using
the supervector a according to
Pijp = aa’ . (5.17)

Note that the description of a flag manifold using projectors trivially generalizes to the
supercase. First of all, the bodies of even and odd supervectors of dimension 4|4 have non-
zero components in the first and the last four components, respectively. This property is
preserved by the action of U(4|4). Thus, given a projector

P Pa Ps
pr— .1
<Pc Pp ) ’ (5.18)

we can read off the dimension k|x of the subspace of C** onto which it projects to be
tr (P9)| tr (Pg,), where -° denotes the body of the projector. We will define the rank of such
a projector to be k|k.

Also, there is a subgroup U(4 — k|4 — k) of U(4]4), which leaves invariant a projector of
rank k|x. This is easily seen by the usual identification of u(4|4) with u(4+4) after combining
the odd generators with an odd parameter and the fact that the rank of a projector is left
invariant by the action of U(4/4).

For Py|y to be a projector, we have to demand that

(a,a) = aa = a'a’ +ig"n™ = 1, (5.19)

see appendix A for a definition of the scalar product of complex supervectors. This condition
can also be understood from the construction of CP™" ! via

(Dn+1|n+1 N S2n+1|2n+2 N (DP"‘TH"l’ (520)
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as the first projection, see also [36]. We can in fact introduce coordinates xA = al XfiJaJ in the
superspace R32132, where the A4 are the generators of U(4/4) as described in the appendix.

R32132 and due to AfJAELgAB =

The coordinates x4 describe an embedding of CP3* in
51L5JK, we have

Pio = XA)\BgAB, = aal . (5.21)

Underlying this construction is again a generalized Hopf fibration
1—UQ1) — Stttz gprintl 1, (5.22)

Let us now turn to the Graimannians, whose description is rather straightforward using
the super Pliicker embedding. We start with Ggjo,4)4, and the Plicker coordinates are given
by .

Af = allb?t = a'b’ — (-1)a’b! = a'b’ —bla’ (5.23)
where a = (a,n) and b = (b, () are two even supervectors, {-, ]} is the supercommutator and
I denotes the parity of the corresponding index. That is, ¢ = 0 and & = 1, plus the parity of
the supervector under consideration, modulo 2. In more detail, we have

AZQJ|0 = a[ibj] , ;O"O = — g|i0 — % (aiCa _ nabi) and Aglﬁo _ n{acg} ’ (5'24)
where {-} denotes symmetrization, in particular of GraBmann-odd quantities. Note that this
super-antisymmetrized combination of a and b indeed eliminates all components of b parallel
to a and in the following, we will assume that b and a are perpendicular:

a'b! = @' +i*n® = 0. (5.25)

Together with a® # 0 # b°, this equation implies that both supervectors are linearly inde-
pendent. The (internal) stabilizer subgroup of U(4]4) leaving A% invariant is U(2|0), which
rotates the supervector a into b and vice versa; see the discussion of the fuzzy case for more
details.

We observed before that the Pliicker coordinates Aéj on (2.4 contain some redundancy:
first there is a scaling, which renders them effectively coordinates on CP%, and second, there
is the identity EijklA;j A’;l = 0. In the present case, the redundancy is somewhat larger, but
from the discussion of the super Pliicker embedding, we can be specific about the number of
redundant coordinates. First of all, we have 16 even and 16 odd homogeneous coordinates
and thus we are using a Pliicker embedding into Cpos, Assuming that A%|20 = 1 fixes the
scaling, only the coordinates

13 14 15 18
A3 Ao Aap e A (5.26)
A2|o Az\o A2|0 A2|0

are independent and we thus arrive at a 4|8-dimensional space, Go|o.4)4-
From the bi-supervector Ay, one can again construct a projector:

((@2|0;4|4)1J;KL = AéiIOAg()L (5.27)
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With our choice and the orthonormality of a and b, yg.44 indeed satisfies (@2|0;4|4)2 =
P5)0.414- Underlying the construction of this projector is again a generalized Hopf fibration,
which is evidently a superextension of the one for Ga.4:

1 — U(200) — ST xS — Fyoyy — 1. (5.28)

It is now necessary to introduce a super-antisymmetrized tensor product defined as

(A @B)[J;KL = i(AIKBJL - (_1

) YA kB —
(_1)Kﬂ

i, KL (5.29)
AiBig + (=)™ (-1)""A;Bik) .

As in the case of the antisymmetric product of the generators of U(4), we also have here
various Fierz identities, see appendix A. Using one of these identities, we can introduce the
projector

AKL AL
(Popu)inxr = Agg'Asgjg
= A%D(}\A o )\B)K'L/I/J'Aéibjl()‘c MAP) kL gac gD (5.30)
= xPACAANP) 15k 9ac 98D -

The next Grafmannian to be described is the space G444 This space is certainly
“dual” to Ggjo,4)4, as one easily guesses from the description in terms of coordinate matrices
Z1 given in the previous section. To describe this space, one needs to take two even and
four odd normalized supervectors and then super-antisymmetrize them. A short remark is
in order to show that super-antisymmetrizing indeed yields a projection on their mutually
orthogonal components. We saw above that this is true for two even supervectors. Since
the bodies of normalized even and odd supervectors are non-vanishing exactly in the even
and odd indices, respectively, a pair of an even and an odd normalized supervector are
always linearly independent; antisupersymmetrization just eliminates redundancies in the
description of 1|1-dimensional subspaces via Pliicker relations. Given two odd supervectors,
super-antisymmetrization has the same effect on the even and odd components as it had on
two even supervectors and thus projects out non-orthogonal components.

Altogether, we have Pliicker coordinates

Aél‘fl'”n = a{IanT1 ...nT4} ) (5.31)
where a’, b’ and nY are even and odd supervectors, respectively. We assume that A%ﬁmmg =
1 to fix the scale. From the discussion of the super Pliicker embedding, it then follows that
the independent coordinates here are given by

AL35678 A 145678 A L55678 A 185678
24 2l 914 oo Aoy

A235678 A 245678 A 255678 A285678 - (5.32)
214 214 214 s Ay
314

In the case of the dual complex projective superspace CPy'", we add to this picture
another even supervector ¢/ and obtain the Pliicker coordinates

Ag‘{f(n...n — allp/cKpTr | pTab (5.33)
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where al,b! and nY are even and odd supervectors, respectively. We fix the scale by

Aéﬁf“wg = 1 and the remaining independent coordinates here are
1245678 1345678 2345678 155678 185678
A3|4 Ag‘4 A3|4 A:,)‘4 e A2|4 . (5.34)

We refrain from going into any further detail at this point and refer to the discussion of the
fuzzy pictures of these super Grafimannians.

5.4. The reducible flag supermanifolds

As in the bosonic case, the description of the reducible flag supermanifolds is merely a
combination of the underlying “elementary” Grafimannians.

The complexified, compactified super Minkowski space F{a(0)(2j4);(4j4) 15 @ reducible flag su-
permanifold, although its body is an irreducible flag manifold. Combining the sets of Pliicker
coordinates on Gyj,44 and Gyj44)4 and factoring out redundancies arising from the fact that
the even supervectors in both cases are the same, one arrives at the Pliicker coordinates on
the space Fig|0)(2/4):4j4, Which is of superdimension 4/16.

Similarly, the remaining flag supermanifolds are constructed by combining the coordinates
of the Grafimannians corresponding to the various subflags. Again, a more detailed discussion
will be presented, when we develop the fuzzy versions of these spaces.

5.5.  Geometric structures on the flag supermanifolds

The description of the flag supermanifolds in terms of projectors allows us to proceed similarly
to the case of ordinary flag manifolds in the description of their geometry. That is, we describe
a point on a flag supermanifold M again by a projector Py, and the action of G = U(4]4)
on this point produces all of M. The coordinates x* provide an embedding of M in R™"
(e.g. CP3* is embedded in R32132). The tangent vectors at Py are naturally obtained from
an appropriate action R(A) on Py and we define analogously to the bosonic case

Tp,M = {R(A)Po|A € u(4/4)} . (5.35)

The generators of the subgroup H in M = G/H will leave Py invariant, and thus Tp,M is of
the same dimension as M. In the case of (DP3|4, R(A) is the superadjoint action, and since
Po is an even supermatrix, it is thus clear that a vector V € T'p M satisfies

{Po,V} = V and strV = 0. (5.36)

From this point, it is rather obvious that we can proceed with the definition of the complex
structure, the metric and the Kéhler structure exactly as in the bosonic case. We thus go
over to an arbitrary projector P describing any point on M and define the complex structure

as

IV = —i{P,V} = —i[P,V], (5.37)
which trivially satisfies I2 = —1 and the hermitian supermetric as

g(Vl,Vg) = —str (IVlfVQ) , (538)
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which satisfies g(IV1,IVa) = g(V1, Va). The latter is invariant under the action of U(4/4)
on the vectors V1 and Vo and defines a supersymmetric even tensor:

9(V1, Vo) = (=1)V1V2g(V,, V). (5.39)
Evidently, there is the supersymplectic structure
Q(V1, V) = g(IV1,V2), (5.40)

satisfying Q(V1,Va) = —(—1)V1VQQ(V2, V), from which we obtain the super Kéahler struc-
ture J as

J(Vl,Vg) == %(g(Vl,VQ) + IQ(Vl,VQ)) = str (PVl(]l — P)VQ) . (541)

Note that for any normalized supervector a, there is a transformation g € U(4]|4) map-
ping it to the vector a’ = (1,0,...)7. This implies that by an appropriate action of g,
one can turn P into diag(1,0,...) and therefore we have again the formula str (PAPB) =
str (PA)str (PB) , which allows us to write

J(Vl,VQ) = str (PV1V2) — str (PVl) str (PVQ) . (542)

Furthermore, we introduce the obvious components J48 = J ()\A, AB) etc., for which we have
e.g. the identity

JABAg = str (PAY(1—P)AP)A = PAY(1-P). (5.43)

Note that a projection onto the body of all the structures introduced in this section
naturally reduces them to their ordinary counterparts on bosonic flag manifolds. These
geometric structures are thus (unique) supersymmetric extensions. Furthermore, the above
discussion naturally extends to the case of all other flag supermanifolds involving super-
antisymmetrized tensor products of the type A maABm .. ..

6. Fuzzy flag supermanifolds

Having a description of flag supermanifolds using the Pliicker embedding, we obtain quite
straightforwardly the description of fuzzy flag supermanifolds. We will be rather concise and
essentially stress the differences with the bosonic case.

6.1. Supercoherent states

The discussion of supercoherent states is done in close analogy to the case of bosonic coherent
states. Consider the generators of the supergroup U(4]|4). After taking out the matrix
diag(1l4, —14), we are left with 31 bosonic and 32 fermionic generators. There are seven
generators of the Cartan subalgebra: the six Cartan generators of the two SU(4)s contained
in U(4/4) together with 1g. We pair the remaining 24 bosonic and 30 fermionic generators
into raising and lowering operators. Seven of them are fundamental, the remaining ones are
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generated by supercommutators of these. All of the fundamental and Cartan generators are
of the form

0 0 O .00 O .00 O
H, = 0 1 0 O Ef = 0 01 O B - 0 00 O ’
0 0 -1 0 ! 0 0 0 O ¢ 0 1 0 O
0 0 O 0 0 0 ° 0 0 0 °
except for the following three:
00 O . 0|0 O .00 O
0O 1|0 O 0 0|1 O 0 0j0 O
Hy = , Ef = , By =
0 0|1 O 0 0/0 O 0 1/0 O
0 010 0 0]0 0 00
The lines mark the boundaries between the four blocks of the supermatrices.
Correspondingly, we can introduce a super Dynkin diagram of the form
ai a2 as q0 aq as ae
O O O ® O O o 6D

where the Dynkin labels indicate again the number of nontrivial actions of E;” on a highest
weight state. Setting these labels to zero, we evidently enlarge the isotropy group of the
highest weight states in the same way as in the bosonic case. That is, the highest weight
state in the representation (L,0,0,0,0,0,0) has isotropy group SU(3|4), while the highest
weight state in the representation (0, L, 0,0, 0,0, 0) has isotropy group SU(2) xSU(2|4). These
are thus the representations, in which the coherent states correspond to points on the flag
supermanifolds Fyg.44 and Fjo.4)4-

The remaining representations for the flag manifolds F3|4,4)4 and Fy)4,4)4 are given by repre-
sentations with the Dynkin labels (0, 0,0, 0,0, 0, L) and (0,0,0,0,0, L,0). The representations
corresponding to flag manifolds are derived by choosing the Dynkin labels corresponding to
all the contained Grafimannians to be non-vanishing.

The further discussion of the construction of coherent states as well as the treatment
of the various patches (choosing dominant weight states instead of highest weight states) is
evident. Instead of going into details, we continue directly with the construction of fuzzy
matrix algebras on the flag supermanifolds in the next section.

L 3/
6.2. The fuzzy complex projective superspace CP

The fuzzification of CP3* is obtained by promoting its homogeneous coordinates to creation
and annihilation operators of bosonic and fermionic harmonic oscillators:

al = (a',n*) — al = (a@',7%) with {al,a’T} = 7. (6.2)

The total number operator reads then as N = alfal = aifaé + 777, and commutes with
the auxiliary coordinate operator

1
SA . AITAA ad 6.3
X = == a . .
N 1J ( )
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We can thus restrict the algebra of functions to the L-particle Hilbert space jﬁﬁ) i spanned
by the states
altt  altto)y or aif .. gir—rpat | got|0) (6.4)

where, evidently, £ < 4. Using the Schwinger construction for Lie superalgebras, we can
define an action of u(4|4) on this space:
LA = altad,a’l . (6.5)
F

In the standard notation'? for Young supertableaux, the representations space %”1'0. 44 COT-

responds to
L
——

- (6.6)

The algebra of functions on CPis given by the matrix algebra
alt . alctjoyola’ ... a't | (6.7)

which corresponds to the tensor product
L L

M o A (6.8)

where [ /| stands for the dual (contragredient) representation of | o] .
For simplicity, let us give the star product on this space only for the complex coordinates

al = (a',n®). The algebra of functions is spanned by the monomials
alt .. altalt. .alt (6.9)

and the star product is defined as

Frg) - ulL P 0 19 a(
& = Ml T19alh " 9alt © Lloal  dalr

feog)| . (6.10)

Although the second order Casimir still labels representations to some extend, the Lapla-
cian in the continuum does not have any immediate meaning. We are thus more interested
in translating all the various derivatives, written in terms of the embedding coordinates to
the fuzzy picture. This is easily done using the generators £4 described in appendix B. One
can show in complete analogy to the case of CP? that

Lafe(x) = j§(XA*fL<x>—(—1>AfoL<x>*XA) = tr (P (a1 - (6.11)

Together with the Killing metric g4p, this sufficiently describes the geometry on fuzzy Cpil
embedded in R332,

2see e.g. [37, 38]
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6.3. The remaining fuzzy Graffmannian supermanifolds

The next flag manifold in our list is G'/p,4/4, Which is of complex dimension 4[8. From the
super Pliicker embedding of this space into A20C** (see (5.12) for a definition of this space),
the fuzzification is immediately obvious. We start from two sets of supersymmetric oscillators

{al,a’f} = 6%, {b!, b’} = o/ (6.12)

with components &/ = (a%,7®) and b! = (b%,6*). From these, we construct the composite
annihilation and creation operators

ALJ . alIpJ ALJH AR
Al = alpt AT = allfp/ht (6.13)
or, in more detail,
Azzj\o = 'yl Zﬁo\lo = a'6% — b, Ag\io - _Ag\lt)v Aglg = 07 (6.14)

together with their hermitian conjugates. The construction of the usual L-particle Hilbert
space is now again straightforward and this space forms a representation of U(4|4). Combining
this Hilbert space with a dual copy, we obtain the algebra of functions on G;o; 4ja BS 2 matrix
algebra of the form

L L
I P vy
S © (6.15)

From this construction, the deformed algebra of functions on Gyjg.44 together with the
star product are also obvious.

The construction for the remaining two Grafimannians Gojs,4)4 and G444 = @Pi|4 uses
composite creation and annihilation operators obtained from super-antisymmetrizing 2 even
and 4 odd, and 3 even and 4 odd sets of superoscillators, respectively:

A I A T
AT Y. a{Ianfl.. a}

i At and  AIZEYTa = qUpTeKpT gl (6.16)

3[4
where the §1 = (7%, a®) are sets of odd annihilation operators satisfying with their hermitian
conjugate the algebra

{a",a"h = ahe (6.17)

From the discussion above, the representations are clear.

6.4. The fuzzy reducible flag supermanifolds

The discussion of the fuzzy reducible flag supermanifolds is now completely obvious. By
combining sets of oscillators from the various super Graimannians, we obtain the appropriate
sets of oscillators (and thus the relevant Fock spaces from which the algebras of functions
are constructed) for the flag supermanifolds naturally projecting on these Gramannians.
Instead of repeating the discussion for all the flag supermanifolds, let us merely study the
example of F(l\O)(2|0);4|4‘
For this flag supermanifold, we need the oscillators of Gyjg,44 = CP3* together with the
ones of Gyjp.4)4:
al, alf, Al = alb), AL = aUTBH (6.18)
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1Jt
2[0
and its dual. Tensoring them yields the algebra of functions on F(q|g)2j0).4)4 @s the matrix

Using L, operators a’f and L, operators AT we construct the (L1, Lo)-particle Fock space

algebra
Lo+Ly Lo+Ly
A AA o NN (6.19)
s AN

6.5. Fuzzy Calabi- Yau supermanifolds

Calabi-Yau supermanifolds have received much attention recently in twistor string theory
[39], where CP* was used as a target space for the topological B-model. The interest in
this particular space is due to the fact that CP3 14 s simultaneously a supertwistor space and
a Calabi-Yau supermanifold. The latter spaces are defined as spaces whose canonical bundle
is trivial and thus have a nowhere vanishing holomorphic volume form. It was furthermore
conjectured [39, 40] that there is a mirror symmetry between CP3* and the superambitwistor
space L6 .= F1j0)(313):413- (Note that in our above constructions, we instead considered the
space F{1|0)(3j4):44-) The space £516 is of real dimension 10|12 and a coset space of U(4|3), as
defined in (5.1). The corresponding fuzzy space is obtained from merging the fuzzy versions
of CP3I3 = Fijo,43 and (DPZF,Z’|3 = F3)3,43 in the same way fuzzy flag manifolds are obtained
from their sub-Grafimannians. Since the construction is again rather trivial, we stop here
and postpone the analysis of fuzzy mirror symmetry to future work.
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Appendix

A.  Supermathematics, conventions and definitions

We denote even objects by Latin letters and odd objects by Greek ones. Boldface symbols
will represent superobjects. Furthermore, a tilde over an index or an object will denote the
naturally assigned parity, and -° attached to an object refers to its body.

Supernumbers

A supernumberis an element of the Gramann algebra A, N € NU{oo} which has generators
€,i=1,...N satisfying £¢/ +£7¢ = 0. The Gramann algebra decomposes into an even and
an odd part, Axog = Ay, An1 = An,q, which are the subsets of supernumbers built from an
even and an odd number of GraBmann generators, respectively. The body of a supernumber
is denoted by z° and consists of the purely complex part of z containing no Grafimann
generator. For complex conjugation of Grafimann odd quantities, there are essentially two
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conventions used throughout the literature. First, and most commonly, there is

(0102)* = 020, = —010, , (A1)
which is used e.g. in [38, 41]. Second, there is

(0105)° = —BoBy — +610s | (A.2)

which is used in [42, 35]. The latter convention respects the sign rule that interchanging two
Grafimann-odd objects in a monomial should always be accompanied by an additional sign.
There is a discussion of this issue in [42]. Manin in his book [33] also discusses all of these
conventions. In this paper, we use the second convention.

Supervectors

A supervector space is a free module over a supercommutative ring. We restrict our consid-
erations to supervector spaces which are endowed with a so-called pure basis. In particular,
consider a supervector space V with a so-called class I (even) basis (e) of n even and v
odd elements: (e4) = (el,...,e" el,...,”). The supervector space V is then said to be of
dimension n|v.

A n|v-dimensional supervector consists of n + v components. If the first n of the compo-
nents of a supervector are even and the remaining v odd, the supervector is called even. If
the inverse statement is true, the supervector is said to be odd:

x = 2% +£%" = x =0 and x = %' +2%" = x =1, (A.3)

where 2* and & are complex even and odd supernumbers, respectively. If the supervector is
neither odd nor even, it is of mixed parity.

We will also allow for class II bases, in which the parity of the even and odd basis
clements is interchanged: (e?) = (¢!,...,€", ¢!, ...,e"). Here, the dependence of the parity
of a supervector on the parity of its components is evidently inverted.

Two supervectors (efl), (e5) are called linearly independent, if and only if
e +0ed =0 = a=p=0, (A.4)

where a, 3 € An. This is equivalent to their bodies e, e5 being linearly independent. A
scalar product between two complex supervectors is supposed to be graded antilinear, i.e.

(a,b) = (=1)3(b,a)" . (A.5)

For even supervectors with components a = (a’,7%) and b = (b, (%), where a’,b’ € Ay . and
n%, (% € AN q, we can thus define

(a,b) := a'b := @b’ +i7*¢™ . (A.6)

Two supervectors are perpendicular, if they have non-vanishing bodies and the scalar product
between them vanishes. It follows that they are linearly independent.
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A general supermatrix acting on the elements of an n|v-dimensional supervector space is

of the block form
A| B
( C|D ) ’ (A7)

where A is of dimension n x n and D of dimension v X v. The supermatrix M is called even,
if A and D have only even components and B and C' consist only of odd components; it thus
preserves the parity of any supervector it acts on. Furthermore, if it inverts the parity of the
supervector, it is called odd.

Note that the space €™ is defined in two different ways throughout the literature. Most
commonly, it denotes a space described by a set of coordinates consisting of n even and com-
plex numbers and v complex Grafimann variables. On the other hand, it is a n|r-dimensional
supervector space over a complex supercommutative ring, as e.g. the ring of complex super-
numbers. For the description of flag supermanifolds, we need the latter definition.

The supergroup U(4[4)

In our conventions for supergroups, we follow essentially [38], see also [43]. The Lie superal-
gebra u(n|v) is given by block supermatrices of the form (A.7), where A and D are elements
of u(n) and u(v), respectively, while B and C' are hermitian conjugates of each other. This
algebra is generated by n? 4+ v? even generators with non-vanishing entries only in A and
C, as well as 2nv odd generators with entries in B and C. Exponentiating these generators
with even and odd parameters, respectively, yields the supergroup U(n|v). To obtain the
superanalogue of su(n|v), one linearly combines the identities A) and AJ of u(n) and u(v)

L1, 0 L1, 0

v and vn . (A.8)

0 1q 0 19
N N

Imposing the condition str(-) = 0 on the generators, eliminates the second generator. For

into

n # v, this yields a semisimple super Lie algebra su(n|v). For n = v, however, the first factor
becomes %]lgn and generates an invariant Abelian subgroup. For this reason, one excludes
this generator and arrives at psu(n|n). However, the lowest dimensional representation is the
adjoint, see e.g. [38, 41] for more details. To avoid these complications, we choose to work
with u(4/4).

The Killing form for u(n|n) is easily evaluated to be

1, O 0
0 1,
9ip = strAzAp) = —o2 0 0 : (A.9)
0 0 -0y O
0 0 in

and we also define gAB with g4 gB ¢ = 52. The Killing form is furthermore supersymmetric,

ie. gip= (—I)ABgBI;1 and non-degenerate.
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Supermanifolds

We define a (complex) supermanifold [44] as a topological space X together with a sheaf On
of Zs-graded supercommutative rings on X, satisfying the following two conditions

(i) There is a projection on the “body” of X, which is an ordinary complex manifold
of dimension m. More explicitly, consider the reduced structure sheaf O° := Oy /Z,
where 7 is the ideal of nilpotent elements in On. We demand that (X, O°) is a complex
manifold of dimension m.

(ii) Locally, the structure sheaf is the structure sheaf of the body with values in a Grafimann
algebra. That is, for every point x in X, there is an open neighborhood U such that

Only = Oreqlu(A*C") . (A.10)

We will define the dimension of such a supermanifold to be m|n. For more details on super-
manifolds, see [33, 41, 35].

Riemannian supergeometry

A supermetric on a (real) supermanifold M := (M,Op) is an Oy-linear, even map g :
TM ®p, TM satisfying the following properties:

(i) g is supersymmetric: g(X ® Y) = (—1)5({/9(1/ ® X).
(ii) g induces a Riemannian metric on (M, O°).
(iii) g induces a symplectic form on the fermionic tangent directions of 7M.

An almost complex structure on a (real) supermanifold M := (M, Oy ) is an even, smooth
map I : TM — TM, which satisfies I? = —1. As in ordinary complex geometry, a real
supermanifold underlying a complex supermanifold has a natural almost complex structure.

A hermitian supermetric on a supermanifold M := (M, Oy) with almost complex struc-
ture I is a supermetric g which satisfies g(IX ® IY) = g(X ® ') for all vector fields X,Y in
TM. A Kahler supermetric is a supermetric, the derived Kdahler form J(X,Y) = g(X, 1Y)
of which is closed: dJ = 0. As an example of a K&hler supermanifold see the discussion of
the space CP* in section 5.5. For more details on supergeometry, see e.g. [45].

B.  Representations of su(4) and u(4[4)

In this appendix, we briefly recall a few facts on the representation theory of su(4) and give
the necessary background on the superalgebra u(4|4) and its subalgebra su(4).

Representation of su(4) in terms of Plicker and embedding coordinates

Consider the case CP3 =2 SU(4)/U(3) C R'6. A representation of SU(4) acting on functions
written in terms of complex Pliicker coordinates a’ € C* is given by

) 9 9
a _ ziya _“ _ _jy\a
L = a/\ija&j a )\maai,

(B.1)
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where )\?J are again the Gell-Mann matrices of SU(4) together with the identity. One easily
verifies that [£%, £%] = iv/2f®.L¢, where f%. are the structure constants of SU(4). In terms
of the real coordinates

= di/\%aj (B.2)
describing the canonical embedding of CP? in R'®, the above generators read as

0 0
L0 = _j 2abc ﬁON a )
iv2 e, pl 2y

as one easily verifies. The representations in terms of the embedding coordinates for Gay4 is

(B.3)

given in the text, from which also the remaining cases follow.

Dynkin and Young diagrams for su(4)

The 15 generators of su(4) split into three generators of the Cartan subalgebra H;,i =1,...,3
and 12 raising and lowering operators E1z,, j = 1,...6 satisfying the commutation relations

[HI’HJ] = 07 [HivE(i] = aiE(ia

B.4

Ea,Bg] = S aiH, [BaEs] = NagBoss . (B4)
i

Here, @ are the six three-dimensional positive root vectors, X, three of which are simple.
The irreducible representations of su(4) can be labeled by the three eigenvalues y; of a highest
weight state |u) under the action of the H;. Equally well, one can label them by three integers
a;, the Dynkin labels, which are given by
(i, @)

ai:2

, (B.5)

where @; are the three simple roots. The Dynkin diagram labeling irreducible representations
of su(4) is then

ai a2 as

O O O (B-6)
and these representation are of dimension
ai+1las+lag+lay+as+2ax+a3+2a; +as+az+3

1 1 1 2 2 3 '

The Dynkin labels indicate, how often one can act with a lowering operator on the highest

d=

(B.7)

weight state without obtaining a trivial state:

(B a)™[1) 0, (B_g)" " u) = 0. (B.8)
On the other hand, the Dynkin labels appear naturally in the Young diagrams of the

representation (a1, ag,as):
asz+az2+ai

HHHHHH (B.9)

and a; counts the number of columns with 7 boxes.

Due to the existence of the e-tensor, which is invariant under SU(4), four antisymmetrized
boxes combine to a singlet. Furthermore, this tensor provides a duality between three anti-
symmetrized indices and one index as well as two antisymmetric ones and their complement:

¢i = cyud™ and ¢y = Leuo™ . (B.10)
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Schwinger construction for Lie superalgebras

Consider a Lie superalgebra having the even generators A® and the odd generators A“ satis-
fying the commutation relations

AN = X AT = AT AT AT = 0 (B.11)
We summarize the generators into A4 = (A% A®) and the commutation relations to
AT = Ao (B.12)

where {-}} denotes the supercommutator. Assume furthermore that the generators are in a
representation acting on an (m|n)-dimensional supervector space. After introducing a set
of m bosonic and n fermionic oscillators together with the corresponding annihilation and
creation operators

al = (a',9") and &'T = (a9, (B.13)
the Schwinger construction yields a representation of the Lie superalgebra by

LA = altadal . (B.14)

Representation of u(4|4) in terms of Pliicker and embedding coordinates

Completely analogously to the representations of u(4) in terms of coordinates describing
CP3, one finds a representation of u(4]4) in terms of coordinates describing CP3*. We have

i 0

LA = 'Y o —aJA?J% , (B.15)
where al = (a’,7%) € C4* and in terms of the real coordinates
x4 = alada’ (B.16)
describing the embedding of CP3* in R3232, the above generators read as
LA = —i\/iff“BCxBi ;LY oxA 9 (B.17)
ox¢ oxA

Representations and Dynkin diagrams for psu(4|4)

The representations of supergroups are divided into two classes. In the first class, the repre-
sentation space is spanned by an even basis, while in the second one, the basis is odd and they
can be regarded as dual to each other. Representations are again labelled by highest weights,
which are the eigenvalues of the generators of the Cartan subalgebra. The latter is generated
by two copies of the Cartan subalgebra of su(4) as well as Hy := diag(0,0,0,1,1,0,0,0), cf.
section 6.1. Accordingly, the Dynkin diagram has seven nodes:

ai a2 as q0 a4 as ag
O O O ® O O O (B.18)

It is now evident that a class I representation is dual to a class II representation provided
that
I i1 I i1
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Since the superdeterminant is no longer a polynomial of finite degree, there is no invariant
totally antisymmetric e-tensor for the SU(m|n) supergroups. However, the duality between
class I and II representation takes over the role of the duality between the representation and
the corresponding conjugate representation. The latter arises from the interchange between
covariant and contravariant indices corresponding to a contraction with an e-tensor in the
SU(4) picture, as we saw above.

The second order Casimir operator on irreducible representations of u(4)

We constructed the algebra of functions on the fuzzy flag manifolds from spherical represen-
tations of the groups underlying the flag manifolds. These representations are described by

Young diagrams, and given such a Young diagram with m < 4 rows of n; > ... > n, >0

boxes, the eigenvalue of the second order Casimir operator on these representations reads
13

as

% <4§:m + im(m +1—2i) — (Zlni m)2> . (B.20)
i=1 i=1

We will be mostly interested in the representations consisting of a row of 2L boxes and 2
rows of L boxes. For these diagrams, the above formula reduces to L(L + 3). The other
type of diagrams we will encounter consist of three rows with a + b 4+ a, a + b and a boxes,
respectively. For them, the above formula reduces to a® + a(3 + b) + 1b(4 + b).

The second order Casimir operator on representations of u(n|n)

We can write the second order Casimir operator acting on the Hilbert space %”lﬁ] m of (DP%|4

in terms of one set of oscillators using the Schwinger construction:

Cy = gapL?LP

1 1. 1 1 - ) )
_ ”n Nb(Nb+n)+EN§—” Ny(n = Ny) = =N + 2NNy + 0Ny —nNy)
- %N(N—n,

where N, = a'fa? and N F= 77, For the other flag supermanifold we require more than
one set of oscillators and the calculation is more complicated.

Fierz and super Fierz identities

Consider the Gell-Mann matrices A%, a = 1,...,15 of su(4) and extend them to the generators
A% of u(4) by adding \° = 1/v/4. We have the Fierz identity

A%A%z = 0ydjk » (B.21)
which trivially extends in the case of the antisymmetric tensor products NG NGEANDA

we defined in section 2.3 to

()‘db)ij;kl()‘db)mn;pq = (5ip5km(5jq5ln)[ij}[kzl][mn}[pq]7 (B22)

(Adbé)ijk;lmn(Aabé)pqr;stu = (5is5lp5jt5mq6k:u6n7‘)[ijk}[lmn][pqr][stu] .

13This formula is given, e.g., in [46] with a different normalization of the Lie algebra generators.
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Moreover, we can write
tr (AADA = A; and  tr (42N = A — Lr(4))1 (B.23a)
for any hermitian matrix A; € Mat, as well as
tr (AN = 4
(AN = A (B.23b)
tr (AsA®)A = A3

for hermitian matrices Ay € Maty A Maty and Az € Maty A Maty A Maty.
We can use the Killing form on U(4]4) to establish the following super Fierz identity:

gABANINEL = §lLgIK (B.24)

To prove this formula quickly, one can e.g. extend the one for su(n|n) given in [38]. From this
Fierz identity, we can, as in the purely bosonic case, immediately derive the further identities

A2) 1k A B) arwipg = (0rPOKMOIQOLN) (1T} {K LY{MNYPQ}
(AABO)IJK;LMN(AABC)PQR;STU = (01s06LP0 TOMQOKUONR) {17 K}{LM NHPQR}{STU} >
where A48 denotes again the graded antisymmetric tensor product
MB — B (B.25)

introduced in section 5.3.

Oscillator representation of internal isotropy subgroups

In the description of the various Gramannians, we needed the following formula to describe
the action of the internal part of the isotropy subgroup acting on the states of certain Fock
spaces:

() Adal, aT M = 0, (B.26)

To prove this formula, consider the following form of the generators L, of U(k):

Lpg = djal,, (B.27)
where 7 is summed over 1,...,n. The composite creation operators relevant in the description
of G}, can be written as

it 1 .
AP = gl (B.28)
Then
1

[quv A;:clmi”] =

k,5p1 i@ pT[aq’ aglﬁ ;’ZH]

alfglnt ... 5t gt
k|Z€P1 i O Ay 0" Ogp, - agh

k .
= 1 Cap2e pka’[llT e ;IZH

— i
—5qu;gl B )
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and thus the (traceless) generators of SU(k) leave the composite creation operators invariant.
In the supersymmetric case, the same statement holds. Here, the creation and annihila-

tion operators satisfy
{al.a]T} = 6,,6" . (B.29)

Using the relations

{a,bc} = {a,b}c+ (—1)~~Bb{[a, cl, (B.30)
{ab,c} = a{bc} + (-1)**{a,c}b,
we obtain
fa), A6} = {a),a{"ba) " + (-1)Va{ fal, af T} — (1) (J < K) B0
= 5u67akT +5,0(-1) s Kalt — (1)K (] & K) .
With this relation, we can conclude that
(i ALY = af el ALY
= o (aylayt — (-1 afTa)h) + 0,((-1)afal’ — ajla))
= 8101 AN T + 6,200 A0NT (3:52)
p1Pql 90 p29q2+39)0
= S Ay

Similar relations can also be proven for the remaining cases of Ay4 and Agy by observing
that, for example,

JKL JKY_L KL A JLT TR+ JL A KLt J
As\o T A2|0Ta3T—(—1)KLA2|OTa3T (_1)JK+JLA2‘OTa3T (B.33)
and
JKY_L JKtq L JK L
{[agaf;, Ado Ta3T]} = {[aﬁag, Ado T]}agT + A5, T{[aﬁaf;, a3T]} (B.34)
JKT L JK
= (0pq — Gpadas) Ay o + oAy Tall . (B.35)
Hence,
It I AJKL JKL
{[apTaq,A3|0 = Opg Az r (B.36)
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