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Abstract

We calculate the time-dependent probability distribution of cur-

rent through a selected bond in the totally asymmetric exclusion pro-

cess with periodic boundary conditions. We derive a general formula

for the probability that the integrated current exceeds a given value

N at the moment of time t. The formula is written in a form of a

contour integral of a determinant of a Toeplitz matrix. Transforming

the determinant expression, we obtain a generalization of the known

formula derived by Johansson for the infinite one-dimensional lattice.

To check the general formula, we consider the specific case correspond-

ing to the probability of a minimal non-zero current. For this case we

get an explicit analytical expression and analyze its asymptotics.

1 Introduction

The study of space-time correlations in stochastic models of interacting par-
ticles is a central subject of the non-equilibrium statistical mechanics [1].
Among a variety of correlations functions, the current characteristics are the
most natural and important ones for physical applications. During the past
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decade, there has been considerable progress in the study of current fluc-
tuations in the totally asymmetric exclusion process (TASEP) which is a
paradigm for non-equilibrium many-particle systems [2, 3, 4, 5].

Two main quantities are used for the description of current, depending
on the geometry of system. For the ring geometry and the fully asymmetric
process, an adequate quantity is the total distance Yt covered by all of the
particles between time 0 and t [6, 7, 8]. For the infinite chain, the time-
integrated current can be measured by the number of particles Qt which
have crossed a particular bond up to time t [9]. For the finite chain which
is in contact at its ends with two reservoirs, Qt is the number of particles
which have moved from the left reservoir into the system during time t [10].

Most of the known results obtained so far concern the limiting case of large
time when the generating functions 〈eαYt〉 and 〈eαQt〉 increase exponentially
with t,

〈eαYt〉 ∼ eλ(α)t

and
〈eαQt〉 ∼ eµ(α)t

where λ(α) and µ(α) are the largest eigenvalues of the properly defined gen-
erator matrices [6].

At the same time, much less is known about the finite-time behavior of Yt

and Qt. The first exact result for the probability P (x1, ..., xP ; t|a1, ..., aP ; 0)
of finding P particles on lattice sites x1, ..., xP at time t given that they were
on sites x0

1, ..., x
0
P at time 0, has been obtained in [11] (see also [12]) for

the TASEP on the infinite chain. Based on this result, it became possible
to find the probability distribution of the current Qt(x), i.e. the number
of particles that have crossed the lattice bond (x − 1, x) up to time t for a
specific boundary condition of the half filled infinite chain, when the sites
from −∞ to 0 are occupied and the right half is empty at t = 0 [14].

The knowledge of P (x1, ..., xP ; t|a1, ..., aP ; 0) enables calculation of many
other current properties for arbitrary time intervals. However, the infinite
geometry is not sufficient for complete description of the relaxation phenom-
ena because, in the case of an infinite lattice and a finite number of particles,
the stationary state corresponds to zero density, so that the particles are
non-interacting.

The probability P (x1, ..., xP ; t|a1, ..., aP ; 0) for the TASEP with P parti-
cles on a ring has been derived in [15]. This opens the prospect for studies of
finite-time current probabilities during the whole process of relaxation from
an initial configuration to a non-trivial steady state.

2



At the same time, much less is known about the finite-time behavior of Yt

and Qt. The first exact result for the probability P (x1, ..., xP ; t|a1, ..., aP ; 0)
of finding P particles on lattice sites x1, ..., xP at time t given that they were
on sites x0

1, ..., x
0
P at time 0, has been obtained in [11] (see also [12]) for

the TASEP on the infinite chain. Based on this result, it became possible
to find the probability distribution of the current Qt(x), i.e. the number
of particles that have crossed the lattice bond (x − 1, x) up to time t for a
specific boundary condition of the half filled infinite chain, when the sites
from −∞ to 0 are occupied and the right half is empty at t = 0 [13], [14].
A remarkable formula for this case had been obtained earlier by Johansson
[16] using a representation in terms of the symmetric group.

The knowledge of P (x1, ..., xP ; t|a1, ..., aP ; 0) enables calculation of many
other current properties for arbitrary time intervals. However, the infinite
geometry is not sufficient for complete description of the relaxation phenom-
ena because, in the case of an infinite lattice and a finite number of particles,
the stationary state corresponds to zero density, so that the particles are
non-interacting.

The probability P (x1, ..., xP ; t|a1, ..., aP ; 0) for the TASEP with P parti-
cles on a ring has been derived in [15]. This opens the prospect for studies of
finite-time current probabilities during the whole process of relaxation from
an initial configuration to a non-trivial steady state.

In this paper, we consider the current Qt(0) on the ring of L sites which
is the number of particles that have crossed the bond (L− 1, 0) up to time t.
Our goal will be to compute the probability Prob[Qt(0) > N ] that at least
N + 1 particles have crossed the bond (L − 1, 0) up to time t. In Section 2,
we obtain a general expression for this probability assuming arbitrary initial
positions of P particles on the ring. This result still contains a contour
integral of a determinant of P × P matrix. In Section 3 we consider the
particular initial conditions a1 = 0, a2 = 1, . . . , aP = P − 1 and evaluate
the determinant expression to get Prob[Qt(0) > N ] in a form which is close
to Johansson’s formula for the infinite lattice [16]. In Section 4 we consider
the simplest case N = 0 corresponding to the minimal current probability
among all initial conditions. We derive an explicit analytical expression for
Prob[Qt(0) > 0] and compare it with the result obtained by straightforward
probabilistic calculations. Section 5 contains an analysis of the asymptotic
behaviour of the resulting expression.
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2 Current probabilities

Let C be a configuration of P particles on a ring of L sites, where the positions
of particles are 0 ≤ x1 < x2 < ... < xP < L. The TASEP is defined
by the master equation for the probability Pt(C) of finding the system in
configuration C at time t,

∂tPt(C) =
∑

{C′}
[M0(C, C ′) + M1(C, C ′)]Pt(C

′), (2.1)

with the initial condition that the system is in configuration C0 at time t.
Here M1(C,C ′) is the probability of going from configuration C ′ to C during
a time interval dt, and M0(C,C ′) is a diagonal matrix with diagonal elements

M0(C,C) = −
∑

{C′ 6=C}
M1(C

′, C). (2.2)

The matrix elements of M1(C, C ′) obey the exclusion rule that, during dt,
each particle jumps with probability dt to its right provided that the tar-
get site is empty. Given the initial positions of particles 0 ≤ a1 < a2 <
... < aP < L at the moment t = 0, Pt(C) is the conditional probability
P (x1, ..., xP ; t|a1, ..., aP ; 0) of finding P particles on the sites 0 ≤ x1 < ... <
xP < L at time t.

The solution of (2.1) is [15]:

Pt(C) =
∞

∑

n1=−∞
...

∞
∑

nP =−∞
(−1)(P−1)

PP
i=1 ni detM. (2.3)

Elements of the P × P matrix M are

Mij = Fsij
(ai, xj + niL|t), (2.4)

where

sij = Pni −
P

∑

k=1

nk + j − i, (2.5)

and Fm(a, x|t) are functions introduced by Schütz [11]:

Fm(a, x|t) =
∞

∑

k=0

(

k + m − 1
m − 1

)

F0(a − k, x|t), (2.6)

if integer m > 0, and

Fm(a, x|t) =
−m
∑

k=0

(−1)k

(

−m
k

)

F0(a − k, x|t), (2.7)
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if integer m < 0. For m = 0 and x ≥ a,

F0(a, x|t) =
e−ttK

K!
, (2.8)

where K = x − a. For m = 0 and x < a

F0(a, x|t) = 0. (2.9)

The derivation of (2.3) in ref.[15] contains, as an intermediate step, the eval-
uation of probabilities ψn(C; t|C0; 0) to reach configuration C from C0 for
time t after making n visits of the origin 0 ≡ L of the ring by particles in
turn, starting with the last. Thus, the probability Pt(C) is the sum

Pt(C) =
∞

∑

n=0

ψn(C; t|C0; 0) =
∞

∑

n=0

∑

{ni}n

(−1)(P−1)n detM. (2.10)

where summation over ni, i = 1, 2, . . . , P is restricted by the condition n1 +
n2 + · · · + nP = n.

To find Prob[Qt(0) > N ], we have to take the sum over all final config-
urations C which can be reached from C0 after at least N + 1 visits of the
origin,

Prob[Qt(0) > N ] =
∞

∑

n=N+1

∑

C

ψn(C; t|C0; 0) = (2.11)

∞
∑

n=N+1

∑

0≤x1<x2<···<xP <L

∑

{ni}n

(−1)(P−1)n detM, (2.12)

or, in the explicit form,

Prob[Qt(0) > N ] =
∞

∑

n=N+1

L−1
∑

xP =P−1

xP−1
∑

xP−1=P−2

· · ·
x3−1
∑

x2=1

x2−1
∑

x1=0

∑

{ni}n

(−1)(P−1)n×

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11(a1, x1 + n1L) Fs12(a1, x2 + n1L) · · · Fs1P
(a1, xP + n1L)

Fs21(a2, x1 + n2L) Fs22(a2, x2 + n2L) · · · Fs2P
(a2, xP + n2L)

...
...

...
FsP1

(aP , x1 + nP L) FsP2
(aP , x2 + nP L) · · · FsPP

(aP , xP + nP L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(2.13)

To evaluate these sums we proceed as in [17]. Using the identity

x2
∑

x=x1

Fs(a, x) = Fs+1(a, x1) − Fs+1(a, x2 + 1), (2.14)
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the first column of the determinant becomes, after summation over x1,

Fs11+1(a1, n1L) − Fs11+1(a1, x2 + n1L)

Fs21+1(a2, n2L) − Fs21+1(a2, x2 + n2L)

...

FsP1+1(aP , nP L) − FsP1+1(aP , x2 + nP L).

It follows from (2.5) that
si1 + 1 = si2 (2.15)

for all i = 1, 2, ..., P , and we can reduce the first column by adding the second
to it. Continuing this process up to the sum over xP , we get the first P − 1
columns in the form

Fs1k+1(a1, k − 1 + n1L)
Fs2k+1(a2, k − 1 + n2L)

...
FsPk+1(aP , k − 1 + nP L)

(2.16)

for k = 1, . . . , P − 1, and only the last column remains nonreduced,

Fs1P +1(a1, P − 1 + n1L) − Fs1P +1(a1, L + n1L)

Fs2P +1(a2, P − 1 + n2L) − Fs2P +1(a2, L + n2L)

... (2.17)

FsPP +1(aP , P − 1 + nP L) − FsPP +1(aP , L + nP L).

Thus, the resulting determinant splits into two determinants D1 and D2 cor-
responding to two summands in the last column (2.17). The first determinant
D1 has a convenient form
∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, n1L) Fs12+1(a1, 1 + n1L) · · · Fs1P +1(a1, P − 1 + n1L)
Fs21+1(a2, n2L) Fs22+1(a2, 1 + n2L) · · · Fs2P +1(a2, P − 1 + n2L)

...
...

...
FsP1+1(aP , nP L) FsP2+1(aP , 1 + nP L) · · · FsPP +1(aP , P − 1 + nP L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.18)

Consider the determinant D2. Using the property

Fm(a, x) =
∞

∑

k=0

Fm−1(a, x + k) (2.19)
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we can write the i-th element of the first column as

Fsi1+1(ai, niL) = Fsi1
(ai, niL) + Fsi1+1(ai, 1 + niL) (2.20)

for all i = 1, 2, ..., P . We now prove that the contribution from the first term
of Eq.(2.20) into the sum

∞
∑

n=N+1

∑

{ni}n

(−1)(P−1)n det D2 (2.21)

vanishes.
Expanding the determinant in (2.21), we select among terms containing

the first summand in (2.20) those which contain the j-th element of the last
column: Fsi1

(ai, niL) × FsjP +1(aj, L + njL). Consider the unique ”mirror”
terms which coincide with the selected terms except two factors, one from
the j-th element of the first column and the second from the i-th element
of the last column: Fsj1

(aj, n
′

jL) × FsiP +1(ai, L + n
′

iL), where n
′

i = ni − 1

and n
′

j = ni + 1. The indices sjk = sjk(n) are functions of the vector n =

(n1, n2, . . . , nP ). We denote by n
′

the vector obtained from n by replacement
ni and nj by n

′

i and n
′

j Taking into account that

sj1(n
′

) = Pn
′

j−
P

∑

k=1

n
′

k +1−j = Pnj−
P

∑

k=1

nk +P −j+1 = sjP (n)+1 (2.22)

and

siP (n
′

) = Pn
′

i −
P

∑

k=1

n
′

k + P − i = Pni −
P

∑

k=1

nk − i = si1(n) − 1, (2.23)

we see that the two selected terms are equal and enter into (2.21) with op-
posite signs because the sum

∑

nk =
∑

n
′

k and the sign of the permutation
of indices 1 and P is always negative. Thus, the set of terms containing the
first summand in (2.20) splits into two subsets cancelling one another.

As the contribution from the first term of (2.20) vanishes, we obtain
instead of D2 a determinant where the first two columns have the same
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arguments:

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) Fs12+1(a1, 1 + n1L) · · ·
Fs21+1(a2, 1 + n2L) Fs22+1(a2, 1 + n2L) · · ·

...
...

FsP1+1(aP , 1 + nP L) FsP2+1(aP , 1 + nP L) · · ·
· · · Fs1,P−1+1(a1, P − 2 + n1L) Fs1P +1(a1, L + n1L)
· · · Fs2,P−1+1(a2, P − 2 + n2L) Fs2P +1(a2, L + n2L)

...
...

· · · FsP,P−1+1(aP , P − 2 + nP L) FsPP +1(aP , L + nP L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.24)

Again, using (2.19)

Fsi2+1(ai, niL) = Fsi2
(ai, niL) + Fsi2+1(ai, 1 + niL) (2.25)

for all i = 1, 2, ..., P , we obtain the sum of determinants

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) Fs12(a1, 1 + n1L) Fs13+1(a1, 2 + n1L) · · ·
Fs21+1(a2, 1 + n2L) Fs22(a2, 1 + n2L) Fs23+1(a2, 2 + n2L) · · ·

...
...

...
FsP1+1(aP , 1 + nP L) FsP2

(aP , 1 + nP L) FsP3+1(aP , 2 + nP L) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.26)

and
∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) Fs12+1(a1, 2 + n1L) Fs13+1(a1, 2 + n1L) · · ·
Fs21+1(a2, 1 + n2L) Fs22+1(a2, 2 + n2L) Fs23+1(a2, 2 + n2L) · · ·

...
...

...
FsP1+1(aP , 1 + nP L) FsP2+1(aP , 2 + nP L) FsP3+1(aP , 2 + nP L) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.27)

Two columns in the first determinant coincide because si1 + 1 = si2 for
all i = 1, 2, ..., P and D2 gets reduced to the determinant (2.27) with equal
arguments in the second and third columns. Continuing this procedure, we
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obtain finally

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) · · ·
Fs21+1(a2, 1 + n2L) · · ·

...
FsP1+1(aP , 1 + nP L) · · ·
· · · Fs1(P−1)+1(a1, P − 1 + n1L) Fs1P +1(a1, L + n1L)

· · · Fs2(P−1)+1(a2, P − 1 + n2L) Fs2P +1(a2, L + n2L)
...

...
· · · FsP (P−1)+1(aP , P − 1 + nP L) FsPP +1(aP , L + nP L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.28)

We expand the determinant (2.28) by the last column and consider the sum

∞
∑

n=N+1

∑

{ni}n

(−1)(P−1)
P

nk

P
∑

i=1

(−1)i+P FsiP +1(ai, (1 + ni)L)MiP , (2.29)

where MiP is a minor of the matrix in Eq.(2.28). Given the i-th element
of the sum Eq.(2.29), we introduce a vector n

′

= (n
′

1, n
′

2, . . . , n
′

P ) with n
′

1 =
n1, . . . , n

′

i−1 = ni−1, n
′

i = ni + 1, n
′

i+1 = ni+1, . . . , n
′

P = nP , so that

P
∑

i=1

n
′

i =
P

∑

i=1

ni + 1. (2.30)

We have

siP (n) = Pni −
∑

nk + P − i = Pn
′

i −
∑

n
′

k + 1 − i = si1(n
′

) (2.31)

and

sjm(n) = Pnj−
∑

nk+m−j = Pn
′

j−
∑

n
′

k+1+m−j = sj(m+1)(n
′

) (2.32)

for j 6= i. Then the sum (2.29) becomes

∞
∑

n=N+2

(−1)P−1

P
∑

i=1

∑

{n′

i}n

(−1)(P−1)
P

n
′

k(−1)i+P Fsi1+1(ai, (n
′

i)L)MiP =

∞
∑

n=N+2

(−1)(P−1)
∑

{n′

i}n

(−1)(P−1)
P

n
′

k×
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∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs12+1(a1, 1 + n
′

1L) · · · Fs1P +1(a1, P − 1 + n
′

1L) Fs11+1(a1, n
′

1L)
Fs22+1(a2, 1 + n

′

2L) · · · Fs2P +1(a2, P − 1 + n
′

2L) Fs21+1(a2, n
′

2L)
...

...
...

FsP2+1(aP , 1 + n
′

P L) · · · FsPP +1(aP , P − 1 + n
′

P L) FsP1+1(aP , n
′

P L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.33)

Performing a cyclic permutation in Eq.(2.33), we see that the sum (2.33) is
similar to the sum ∞

∑

n=N+1

∑

{ni}n

(−1)(P−1)nD1, (2.34)

where D1 is given by Eq.(2.18). The only difference is in the ranges of
summation over n. Remembering that D1 and D2 have opposite signs, we
see that only terms obeying

∑

nk = N + 1 remain and we obtain

Prob[Qt(0) > N ] =
∑

n1+···+nP =N+1

(−1)(P−1)(N+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, n1L)
Fs21+1(a2, n2L)

...
FsP1+1(aP , nP L)

Fs12+1(a1, 1 + n1L) · · · Fs1P +1(a1, P − 1 + n1L)
Fs22+1(a2, 1 + n2L) · · · Fs2P +1(a2, P − 1 + n2L)

...
...

FsP2+1(aP , 1 + nP L) · · · FsPP +1(aP , P − 1 + nP L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(2.35)

where sij = Pni − N + j − i − 1.
To proceed with (2.35), it is convenient to use the integral representation

of functions Fm(a, x) (see, e.g. [11]),

Fm(a, x) =
1

2π

∫ 2π

0

dq
eiq(x−a)−εqt

(1 − eiq)m
(2.36)

where εq = 1 − e−iq and the pole in the integrand is defined by q → q + i0.
We introduce the generating functions

Gij(z, t) =
∞

∑

ni=−∞
Fsij+1(ai, j + niL − 1)zni (2.37)

and

g(z, q) =
∞

∑

n=−∞

zneiqLn

(1 − eiq)Pn
. (2.38)
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Using (2.5),(2.36) and performing independent summations by n1, . . . , nP ,
we can write (2.37) and (2.35) as

Gij(z, t) =
1

2π

∫ 2π

0

dq
eiq(j−ai−1)e−(1−e−iq)t

(1 − eiq)j−i−N
g(z, q) (2.39)

and

Prob[Qt(0) > N ] =
1

2πi

∮

dz

zN+2
(−1)(P−1)(N+1) detG (2.40)

where G is the matrix with elements (2.39).
For specific but commonly used initial conditions a1 = 0, a2 = 1, . . . , aP =

P−1, matrix G has the Toeplitz form Gij ≡ G(i−j). Using notations ω = eiq

and ω̄ = 1 − eiq, we obtain the elements of the Toeplitz matrix

Gij(z, t) =
1

2πi

∮

ω̄Ng(z, ω) exp(
ω̄

ω
t)(

ω̄

ω
)i−j dω

ω
(2.41)

where

g(z, ω) =
∞

∑

n=−∞
(
zωL

ω̄P
)n (2.42)

and the integration contour is a small circle around 0.
The solution (2.40) with (2.41,2.42) has a fairly cumbersome form. To

check it, we consider in Section 4 the simplest case N = 0 which can be com-
puted independently by elementary probabilistic means. However, we first
show that the solution can be brought into a form similar to that obtained
by Johansson [16] ( see also [14] and [13]) for the infinite lattice. In this way,
we obtain a generalization of the known result of [16] to the case of finite
periodic lattice which can be used for evaluation of finite-size effects.

3 Generalization of Johansson’s formula

To obtain a generalization of the formula found by Johansson [16], we recall
the particular case of the TASEP considered there. Consider P particles
initially fixed at sites a1 = 0, a2 = 1, ..., aP = P − 1 of the infinite lattice.
The problem is to find the probability P(M, P, t) that the particle initially at
position a1 = 0 has moved at least M steps in time t. Johansson’s formula
reads [16]:

P(M,P, t) =
P

∏

i=1

1

i!(M − i)!

∫

[0,t]P
dP τ

P
∏

i=1

τM−P
i e−τi

∏

1≤i<j≤P

(τi − τj)
2 (3.1)
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To get P(M,P, t) for the ring from (2.35), we change notations for the initial
coordinates and put a1 = −νL, a2 = −νL + 1, ..., aP = −νL + P − 1, so
that the minimal distance travelled by the first particle is M = νL and the
minimal number of particles crossing the bond (L − 1, 0) is N + 1 = νP .
For the sake of simplicity, we take ν integer. For this choice of ai, all ni,
i = 1, ..., P are shifted by ν, ni → ni + ν and formula (2.35) can be written
as

P(M, P, t) =
∑

n1+···+nP =0

(−1)(P−1)νP det |Fsij+1(ai, niL + j − 1)| (3.2)

with sij = Pni + j − i or, equivalently,

P(M,P, t) =
∑

n1+···+nP =0

(−1)(P−1)νP

∣

∣

∣

∣

∣

∣

∣

∣

∣

FPn1+1(n1L + M)
FPn1+2(n1L + M + 1)

...
FPn1+P (n1L + M + P − 1)

FPn2(n2L + M − 1) · · · FPnP−P+2(nP L + M − P + 1)
FPn2+1(n2L + M) · · · FPnP−P+3(nP L + M − P + 2)

...
...

FPn2+P−1(n2L + M + P − 2) · · · FPnP +1(nP L + M)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(3.3)

where we transposed the matrix and put Fm(a, x) ≡ Fm(x − a).
Using (2.38) we introduce a new function

F̃m(x) =
1

2π

∫ 2π

0

dq
eiqx−εqt

(1 − eiq)m
g(z, q) (3.4)

The function F̃m(x) obeys several useful relations similar to those for Fm(x)

F̃m(x|t) =

∫ t

0

F̃m−1(x − 1|τ)dτ (3.5)

and
F̃m(x|t) = F̃m+1(x|t) − F̃m+1(x + 1|t) (3.6)

or, more generally,

F̃m(x|t) =

∫ t

0

dτ1 . . .

∫ τn−1

0

dτnF̃m−n(x − n|τn) (3.7)
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and

F̃m(x|t) =
n

∑

k=0

(−1)k

(

n
k

)

F̃m+n(x + k|t) (3.8)

Performing summation over ni in each column i = 1, 2, . . . , P , we can con-
tinue (3.3) as

P(M, P, t) =
1

2πi

∮

dz

z
×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F̃1(M |t) F̃0(M − 1|t) · · · F̃−P+2(M − P + 1|t)
F̃2(M + 1|t) F̃1(M |t) · · · F̃−P+1(M − P + 2|t)

...
...

...

F̃P (M + P − 1|t) F̃P−1(M + P − 2|t) · · · F̃1(M |t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.9)

The resulting determinant expression coincides with that in [14] where it is
written for functions Fm(x|t). Similarity between properties (3.7), (3.8) of
F̃m(x|t) and Fm(x|t) means that P(M, P, t) can be represented in integral
form [13],[14]:

P(M,P, t) =
1

2πi

∮

dz

z
(−1)[P

2
]

P−1
∏

i=1

1

i!

∫

[0,t]P
dP ττ 0

1 τ 1
2 . . . τP−1

P ×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F̃0(M − 1|τ1) F̃0(M − 2|τ1) · · · F̃0(M − P |τ1)

F̃0(M − 1|τ2) F̃0(M − 2|τ2) · · · F̃0(M − P |τ2)
...

...
...

F̃0(M − 1|τP ) F̃0(M − 2|τP ) · · · F̃0(M − P |τP )

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.10)

or, after anti-symmetrization of the product τ 0
1 τ 1

2 . . . τP−1
P ,

P(M,P, t) =
1

2πi

∮

dz

z

P
∏

i=1

1

i!

∫

[0,t]P
dP τ

∏

1≤i,j≤P

(τi − τj)×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F̃0(M − 1|τ1) F̃0(M − 2|τ1) · · · F̃0(M − P |τ1)

F̃0(M − 1|τ2) F̃0(M − 2|τ2) · · · F̃0(M − P |τ2)
...

...
...

F̃0(M − 1|τP ) F̃0(M − 2|τP ) · · · F̃0(M − P |τP )

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.11)
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Returning back from functions F̃m(x|t) to Fm(x|t) we finally get

P(M,P, t) =
1

2πi

∮

dz

z

∫

[0,t]P
dP τ

∏

1≤i,j≤P

(τi − τj)
P

∏

i=1

1

i!
×

∞
∑

ni=−∞
zni

∞
∑

ki=0

(

ki + Pni − 1
Pni − 1

)

τM−P
i e−τi

(M + Lni + ki − i)!
×

∣

∣

∣

∣

∣

∣

∣

∣

∣

τP−1+k1+Ln1
1 τP−2+k2+Ln2

1 · · · τ kP +LnP

1

τP−1+k1+Ln1
2 τP−2+k2+Ln2

2 · · · τ kP +LnP

2
...

...
...

τP−1+k1+Ln1
P τP−2+k1+Ln2

P · · · τ kP +LnP

P

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.12)

where the binomial coefficient is defined by the Γ-function. For the infinite
lattice where ni = 0, ki = 0, i = 1, 2, . . . , P , we obtain Johansson’s formula
(3.1) as the determinant then has the Vandermonde form.

4 Minimal current probability

The probability of the non-zero current through bond (L − 1, 0) depends
on the initial configuration of particles. This probability is minimal for the
ordered initial conditions a1 = 0, a2 = 1, . . . , aP = P − 1 because the particle
at site 0 has a maximal obstacle to clear this site and the first particle which
can cross the bond (L−1, 0) has a maximal distance to the target site 0 ≡ L.

In the following, let E (P )
t denote the event that before time t at least

one particle crosses the bond (L − 1, 0) given the initial conditions a1 =
0, a2 = 1, . . . , aP = P −1. In this section we obtain an explicit expression for
Prob[Et(P )] = Prob[Qt(0) > 0]. This quantity serves as a testing example
for the general theory because it can be obtained by direct probabilistic
calculations. Indeed, the whole process of the motion from the initial state
to the first crossing of the bond (L − 1, 0) can be divided into three stages.

The first stage is the step of P -th particle from the site P − 1 to the site
P with the exponentially distributed time of rest. The second stage is the
motion of P -th particle from the site P to the site L−1 and the independent
motion of the hole from the site P − 1 to the site 0. If the P -th particle
reaches the site L − 1 first, it waits for the arrival of the hole to the site
0 and, vice versa, if the hole reaches the target site 0 first, it waits for the
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arrival of the P -th particle. Therefore, the distribution of time of the second
stage is

f(t) = gL−P−1(t)

∫ t

0

gP−1(τ)dτ + gP−1(t)

∫ t

0

gL−P−1(τ)dτ (4.1)

where

gn(t) =
tn−1

(n − 1)!
e−t = F0(n − 1, t) (4.2)

is the distribution of the sum of n independent exponentially distributed
times of rest preceding n consecutive steps.

The last stage is simply the step of the P -th particle from the site L − 1
to the empty site 0. The distribution function of the whole process is

Prob(E (P )
t ) =

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3e
−t1−t3f(t2). (4.3)

To simplify notations, we use the fact that functions Fm(a, x) depend
only on the difference of their arguments and write Fm(a, x) ≡ Fm(x − a).

Below, we obtain Prob(E (P )
t ) from the general formula (2.35) to see how

the exact P -particle dynamics produces the correct probabilistic distribution.
However, first, let us express the integrals in (4.3) in terms of functions
F0(x, t) and F1(x, t). Notice that, since

∫ t

0
F0(x − 1, t1)dt1 = F1(x, t) and

gn(t) = F0(n − 1, t), we have

f(t) = F0(P − 2, t)F1(L − P − 1, t) + F1(P − 1, t)F0(L − P − 2, t)

=
d

dt
[F1(P − 1, t)F1(L − P − 1, t)]. (4.4)

Inserting into (4.3) we get

Prob[E (P )
t ] =

∫ t

0

dt1e
−t1F1(P − 1, t − t1)F1(L − P − 1, t − t1)

−e−t

∫ t

0

dt1

∫ t−t1

0

dt2e
t2

d

dt2
[F1(P − 1, t2)F1(L − P − 1, t2)]

= e−t

∫ t

0

dt1

∫ t−t1

0

dt2e
t2F1(P − 1, t2)F1(L − P − 1, t2)

= e−t

∫ t

0

dt1

∫ t1

0

dt2e
t2F1(P − 1, t2)F1(L − P − 1, t2), (4.5)
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where we used integration by parts. Next we use the formula

∫

etF1(x − 1, t)dt = etF1(x − 1, t) −
∫

etF0(x − 2, t)dt

= etF1(x − 1, t) −
∫

tx−2

(x − 2)!
dt

= etF1(x − 1, t) − tx−1

(x − 1)!
= etF1(x, t) (4.6)

to rewrite this as

Prob[Qt(0) > 0] = e−t

∫ t

0

dt1e
t1F1(P, t1)F1(L − P − 1, t1)

−e−t

∫ t

0

dt1
tL−P−1
1

(L − P − 1)!
F1(P, t1)

+e−t

∫ t

0

dt1

∫ t1

0

dt2
tL−P−1
2

(L − P − 1)!
F0(P − 1, t2)

= e−t

∫ t

0

dt1e
t1F1(P, t1)F1(L − P − 1, t1)

−e−t tL−P

(L − P )!
F1(P, t)

+e−t

∫ t

0

dt1
tL−P
1

(L − P )!
F0(P − 1, t1)

+e−t

(

L − 2

P − 1

)
∫ t

0

dt1F1(L − 1, t1)

= e−t

∫ t

0

dt1e
t1F1(P, t1)F1(L − P − 1, t1)

−e−t tL−P

(L − P )!
F1(P, t) +

(

L − 1

P − 1

)

e−tF1(L, t)

+

(

L − 2

P − 1

)

e−tF2(L, t). (4.7)
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Using (4.6) again, now with x = L − P , we have for the first term:

e−t

∫ t

0

dt1e
−t1F1(P, t1)F1(L − P − 1, t1) =

= F1(P, t)F1(L − P, t) − e−t

∫ t

0

dt1e
t1F0(P − 1, t1)F1(L − P, t1)

= F1(P, t)F1(L − P, t) − e−t

∫ t

0

dt1
tP−1
1

(P − 1)!
F1(L − P, t1)

= F1(P, t)F1(L − P, t) − e−t t
P

P !
F1(L − P, t)

+e−t

∫ t

0

dt1
tP1
P !

F0(L − P − 1, t1)

= F1(P, t)F1(L − P, t) − F0(P, t)F1(L − P, t) +

(

L − 1

P

)

e−tF1(L, t).

(4.8)

The final result is thus

Prob[E (P )
t ] = F1(P, t)F1(L − P, t)

−F0(P, t)F1(L − P, t) − F1(P, t)F0(L − P, t)

+

(

L

P

)

e−tF1(L, t) +

(

L − 2

P − 1

)

e−tF2(L, t). (4.9)

Notice that this is manifestly invariant under particle-hole interchange.
To evaluate the same using the general formula (2.35), notice first of all

that only the terms with n1 = n2 = · · · = ni−1 = ni+1 = · · · = nP = 0,
ni = 1, i = 1, . . . , P do not vanish in (2.35). Indeed, assume that ni < 0 for
some i, 1 ≤ i ≤ P . Then, the i-th row in (2.35)

Fsi1+1(ai, niL), . . . , FsiP +1(ai, P − 1 + niL) (4.10)

vanishes owing to the condition F−m(a, x) = 0 if x − a < −m, m ≥ 0 and
the inequalities sik + 1 = Pni + k − i > niL + k − 1 − ai and ai ≥ i − 1.

Inserting the initial conditions a1 = 0, a2 = 1, . . . , aP = P − 1 and the
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possible values of n1, . . . , nP in (2.35) we obtain

Prob(E (P )
t ) =

P
∑

i=1

(−1)P−1

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F0(0) F1(1) · · · FP−1(P − 1)
F−1(−1) F0(0) · · · FP−2(P − 2)

...
...

...
FP−i+1(L − i + 1) FP−i+2(L − i + 2) · · · F2P−i(L + P − i)

...
...

...
F−P+1(−P + 1) F−P+2(−P + 2) · · · F0(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.11)

Using the fact that F−p(−p) = (−1)pF0(0) and performing simple column
operations, we can write this as

Prob(E (P )
t ) =

P
∑

i=1

(−1)P−1∆
(i)
P , (4.12)

where

∆
(i)
P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1(0) F2(1) · · ·
0 F1(0) · · ·
...

...
FP−i+2(L − i + 1) FP−i+3(L − i + 2) · · ·

...
...

0 0 · · ·

· · · FP−1(P − 2) FP−1(P − 1)
· · · FP−2(P − 3) FP−2(P − 2)

...
...

· · · F2P−i(L + P − 1 − i) F2P−i(L + P − i)
...

...
· · · F1(0) F1(1)
· · · 0 F0(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(4.13)

This can be further simplified to

Prob(E (P )
t ) = (−1)P−1

[

e−t

P−1
∑

i=2

∆∗
i + ∆

(1)
P + ∆

(P )
P

]

, (4.14)
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where
∆

(1)
P = e−tFP+1(L). (4.15)

We now evaluate the determinant ∆∗
i using the fact that

Fn+1(n) =
tn

n!
. (4.16)

Writing xk = FP−i+k+1(L − i + k) we have

∆∗
i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t · · · 1
(i−2)!

ti−2 1
(i−1)!

ti−1

0 1 · · · 1
(i−3)!

ti−3 1
(i−2)!

ti−2

...
...

...
...

0 0 · · · 1 t
x1 x2 · · · xi−1 xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.17)

Applying row operations this can be reduced to

∆∗
i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0 (−1)i

(i−1)!
ti−1

0 1 · · · 0 (−1)i−1

(i−2)!
ti−2

...
...

...
...

0 0 · · · 1 t
x1 x2 · · · xi−1 xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.18)

Indeed, after the bottom rows from i−k+1 down to i−1 have been cleared,
we subtract these rows tr/r! times from the (i− k)-th row (r = 1, . . . , k − 1)
to get

tk

k!
+

k−1
∑

r=1

tr

r!

(−t)k−r

(k − r)!
= −(−t)k

k!
(4.19)

in the last column. (The sum is the coefficient of tk in the expansion of ete−t

except for the terms r = 0 and r = k.) The determinant now easily evaluates
to

∆∗
i =

i−1
∑

k=0

(−t)k

k!
FP+1−k(L − k). (4.20)

This sums to

P−1
∑

i=2

∆∗
i = (P − 2)FP+1(L) +

P−2
∑

k=1

(−t)k

k!
(P − k − 1)FP−k+1(L − k). (4.21)
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The determinant ∆
(P )
P can be treated similarly. It is given by

∆
(P )
P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t · · · tP−2

(P−2)!
FP−1(P − 1)

...
...

...
...

0 0 · · · t F2(2)
0 0 · · · 1 F1(1)

F2(L − P + 1) · · · · · · FP (L − 1) FP (L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.22)

The entries in the last column are given by

Fn+1(n + 1) =
n

∑

k=0

(−1)k tn−k

(n − k)!
+ (−1)n+1e−t. (4.23)

A similar row reduction as for ∆∗
i now yields

∆
(P )
P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0 F1(P − 1)
...

...
...

...
0 0 · · · 0 −F1(2)
0 0 · · · 1 F1(1)

F2(L − P + 1) · · · · · · FP (L − 1) FP (L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.24)

Indeed, the reduction of the k-th row from the bottom leads to

Fk(k) +
k−1
∑

r=1

(−1)r tk−r

(k − r)!
F1(r) = −(−1)kF1(k). (4.25)

The result is

∆
(P )
P = FP (L) +

P−1
∑

k=1

(−1)kF1(k)FP−k+1(L − k). (4.26)

Using the relation

P−1
∑

k=r+1

(−1)kFP−k+1(L − k) = (−1)P−1F1(L − P + 1) + (−1)r−1FP−r(L − r),

(4.27)
this can be written as

∆
(P )
P = (−1)P−1F1(L − P + 1) +

−e−t

P−2
∑

r=0

tr

r!

[

(−1)P−1F1(L − P + 1) + (−1)r−1FP−r(L − r)
]

.

(4.28)
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Inserting into (4.14) we obtain the following expression for the probability of

E (P )
t :

Prob(E (P )
t ) = F1(P − 1)F1(L − P + 1)

+(−1)P−1e−t

P−2
∑

k=0

(−t)k

k!
[(P − k − 1)FP−k+1(L − k) + FP−k(L − k)] .

(4.29)

Using the properties of functions Fp(n) and several combinatoric identities
(see Appendix ), we obtain finally

Prob(E (P )
t ) = F1(P − 1)F1(L − P + 1)

−e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

−r

(

L − 2

P − 1

)

+

(

r + 1

P

)]

.

(4.30)

A equivalence of (4.30) and (4.9) is not entirely obvious. We elaborate on
this in the following section.

5 Analysis of the minimal current probability

Figure 1 shows a plot of Prob(E (P )
t ) for P = 2 and a number of values of

L. It is clear that the probability increases from 0 to 1 as t increases, as it
should.

We can rewrite (4.30) in a more symmetric way as follows:

F1(P − 1)F1(L − P + 1) = (5.1)

=

(

F1(P ) +
tP−1

(P − 1)!
e−t

)(

F1(L − P ) − tL−P

(L − P )!
e−t

)

= F1(P )F1(L − P ) +
tP−1

(P − 1)!

∞
∑

k=L−P

tk

k!
e−2t

− tL−P

(L − P )!

∞
∑

k=P

tk

k!
e−2t

= F1(P )F1(L − P ) +
∞

∑

r=L

tr

r!

[(

r

P − 1

)

−
(

r

L − P

)]

. (5.2)
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Figure 1: The probability of at least one of two particles reach-
ing the end of an interval of length L = 4, 6, 8, 10 and 12, as
a function of time.

Inserting this, we get

Prob(E (P )
t ) = (5.3)

= F1(P )F1(L − P ) − e−2t

∞
∑

r=L

tr

r!
×

[(

P (L − P )

L
− 1 − P (L − P )

L(L − 1)
r

)(

L

P

)

+

(

r

P

)

+

(

r

L − P

)]

.

(5.4)

This formula is manifestly symmetric under exchange of particles and holes,
i.e. P ↔ L − P . As a particular case we have

Prob(E (L−1)
t ) = Prob(E (1)

t ) = F1(L). (5.5)

The formula (5.4) also reveals the equivalence with (4.9). Indeed,

e−t

∞
∑

r=L

tr

r!

(

r

P

)

= e−t t
P

P !

∞
∑

k=L−P

tk

k!
= F0(P, t)F1(L − P, t), (5.6)

and similarly for the last term in (5.4). The term

e−2t

∞
∑

r=L

tr

r!

(

L

P

)

=

(

L

P

)

e−tF1(L, t) (5.7)

22



The remaining two terms can be written as

(

L − 2

P − 1

)

e−2t

∞
∑

r=L

(r − L + 1)
tr

r!
=

(

L − 2

P − 1

)

e−tF2(L, t). (5.8)

It is clear from (4.30) that Prob(E (P )
t ) is bounded by 1. In fact,

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

− r

(

L − 2

P − 1

)

+

(

r

P

)

+

(

r

L − P

)

> 0 (5.9)

for r ≥ L. This is easily seen by induction, as it is zero for r = L − 1 and
increases in r. The same relation is also useful to prove that Prob(E (P )

t ) is
increasing. Indeed, the derivative is given by

F0(P − 1)F1(L − P ) + F1(P )F0(L − P − 1)

+
∞

∑

r=L

e−2t

(

2
tr

r!
− tr−1

(r − 1)!

) [

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

− r

(

L − 2

P − 1

)

+

(

r

P

)

+

(

r

L − P

)]

= e−2t

∞
∑

r=L−1

tr

r!

[(

r

P − 1

)

+

(

r

L − P − 1

)]

+e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

− (r − 1)

(

L − 2

P − 1

)

+

(

r

P

)

−
(

r

P − 1

)

+

(

r

L − P

)

−
(

r

L − P − 1

)]

−e−2t tL−1

(L − 1)!

[

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

− L

(

L − 2

P − 1

)

+ 2

(

L

P

)]

= e−2t

∞
∑

r=L

tr

r!

[(

r

P

)

+

(

r

L − P

)

− (r − L)

(

L − 2

P − 1

)]

+e−2t tL−1

(L − 1)!

(

L − 2

P − 1

)

. (5.10)

It is now clear that Prob(E (P )
t ) must increase from 0 at t = 0 to 1 as

t → ∞.
It is natural to scale the time with L. It is not difficult to see that at

constant P , Prob(E (P )
Lt ) tends to a step function as L → ∞. Indeed, the
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maximum term in

F1(L − P + 1, Lt) =
∞

∑

k=L−P+1

(Lt)k

k!
e−Lt (5.11)

is attained for k = L − P + 1 if t < 1 and for k ≈ Lt for t > 1 so that

lim
L→∞

F1(L − P + 1, Lt) =

{

0 if t < 1,
1 if t > 1.

(5.12)

Moreover, F1(P − 1, Lt) → 1 and the second term tends to zero.
A more interesting limit is the thermodynamic limit, where both t and P

scale with L. This can be analysed roughly as follows. We write t = Lτ and
P = ρL. Clearly, F1(P − 1) ∼ 1{τ>ρ} and F1(L − P + 1) ∼ 1{τ>1−ρ} so

F1(P − 1)F1(L − P + 1) ∼ 1{τ>ρ∨1−ρ}. (5.13)

In analysing the second term of (4.30), we may assume L−P ≥ P . We have
seen that the second term is positive and therefore bounded by

e−2t

∞
∑

r=L

tr

r!

(

r + 1

P

)

∼ e−2t

(

tP

P !
+

tP−1

(P − 1)!

) ∞
∑

r=L−P

tr

r!

∼ e−t

(

tP

P !
+

tP−1

(P − 1)!

)

→ 0 (5.14)

if τ > 1 − ρ. Otherwise, the convergence is even faster.
The next interesting question is, what happens in the neighbourhood of

τ = 1 − ρ (assuming ρ < 1
2
). The correct scaling is then presumably with√

L. The following figure shows graphs of Prob(EρL

(1−ρ)L+
√

Lτ
) as a function of

τ for ρ = 1/3 and a number of values of L.
It suggests that there exists a constant ξ (depending on ρ) such that

Prob(EρL

(1−ρ)L+
√

Lτ
) →

∫ τ

−∞
e−t2/2ξ dt√

2πξ
. (5.15)

Assuming ρ > 1
2
, we insert t = Lρ +

√
Lτ into F1(P − 1)F1(L − P + 1).

The second factor is very close to 1. The first factor can be approximated as
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Figure 2: The probability Prob(Et) for L = 6 (right-most
curve), 30 (middle curve) and 90 (left-most curve), as a func-
tion of τ where t = Lρ +

√
Lτ and P = L/3.

follows:

e−t

P
∑

k=0

tk

k!
≈ e−Lρ−

√
Lτ

Lρ
∑

n=0

(Lρ +
√

Lτ)Lρ−n

(Lρ − n)Lρ−ne−Lρ+n
√

2π(Lρ − n)

=

Lρ
∑

n=0

(

Lρ +
√

Lτ

Lρ − n

)Lρ−n
e−n−

√
Lτ

√
2πLρ

≈
Lρ
∑

n=0

exp

[

(Lρ − n)

(

τ

ρ
√

L
+

n

ρL
− τ 2

2ρ2L
+

n2

2ρ2L2

)]

e−n−
√

Lτ

√
2πρL

≈ 1√
2πρL

∞
∑

n=0

exp

[

− nτ√
Lρ

− n2

2Lρ
− τ 2

2ρ

]

≈
∫ ∞

τ

e−x2/2ρ dx√
2πρ

. (5.16)

The second term in (4.30) still does not contribute in this limit, so (5.15)
holds with ξ = ρ.

Notice that there is one exception: if ρ = 1
2

the both factors behave like

(5.16), so the result for Prob(EρL

(1−ρ)L+
√

Lτ
) is the square of the error function.
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6 Appendix

Using the general formula

Fp(n) =

p−1
∑

k=0

(−1)p−k+1 tk

k!

(

n − k − 1

p − k − 1

)

+(−1)pe−t

n−p
∑

k=0

(

n − k − 1

p − 1

)

tk

k!
, (6.1)

valid for n ≥ p, we can rewrite the second term in (4.29) in a more convenient
form. We have

(−1)P−1

P−2
∑

k=0

(−t)k

k!
(P − k − 1)FP−k+1(L − k)

= −
P−2
∑

k=0

tk

k!
(P − k − 1)

P−k
∑

l=0

(−t)l

l!

(

L − k − l − 1

P − k − l

)

+e−t

P−2
∑

k=0

tk

k!
(P − k − 1)

L−P−1
∑

l=0

tl

l!

(

L − k − l − 1

P − k

)

= −
P

∑

r=0

tr

r!

(

L − r − 1

P − r

) r∧(P−2)
∑

k=0

(−1)r−k(P − k − 1)

(

r

k

)

+e−t

P
∑

k=0

tk

k!
(P − k − 1)

L−P−1
∑

l=0

tl

l!

(

L − k − l − 1

P − k

)

+
tP

P !

L−P−1
∑

l=0

tl

l!
.

(6.2)

In the first term we now use the simple identities

r
∑

k=0

(−1)r−k

(

r

k

)

= 0 (6.3)

if r > 0, and
r

∑

k=0

(−1)r−kk

(

r

k

)

= 0 (6.4)
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if r > 1 to write (for P ≥ 2)

(−1)P−1

P−2
∑

k=0

(−t)k

k!
(P − k − 1)FP−k+1(L − k)

= −(P − 1)

(

L − 1

P

)

+

(

L − 2

P − 1

)

t − tP

P !

+e−t(P − 1)
L−1
∑

r=0

tr

r!

P∧r
∑

k=0∨(P+r+1−L)

(

r

k

)(

L − r − 1

P − k

)

−e−t

P
∑

k=1

tk

(k − 1)!

L−P−1
∑

l=0

tl

l!

(

L − k − l − 1

P − k

)

+
tP

P !

L−P−1
∑

l=0

tl

l!
. (6.5)

Rewriting the last but one term as

L−2
∑

r=0

tr+1

r!

r∧(P−1)
∑

k′=0∨(P+r+1−L)

(

r

k′

)(

L − r − 2

P − k′ − 1

)

, (6.6)

and using the identity

r∧p
∑

k=0∨(p+r−n)

(

n − r

p − k

)(

r

k

)

=

(

n

p

)

(6.7)

we obtain

(−1)P−1

P−2
∑

k=0

(−t)k

k!
(P − k − 1)FP−k+1(L − k)

= −(P − 1)

(

L − 1

P

)

+

(

L − 2

P − 1

)

t − tP

P !

+e−t

L−1
∑

r=0

tr

r!

[

(P − 1)

(

L − 1

P

)

− r

(

L − 2

P − 1

)]

+
tP

P !

L−P−1
∑

l=0

tl

l!
.

(6.8)

A similar analysis yields

(−1)P−1

P−2
∑

k=0

(−t)k

k!
FP−k(L − k) =

(

L − 1

P − 1

)

− tP−1

(P − 1)!

−e−t

L−1
∑

r=0

tr

r!

(

L − 1

P − 1

)

+
tP−1

(P − 1)!

L−P
∑

l=0

tl

l!
.

(6.9)
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The complete result for the second term of (4.29) is

(−1)P−1e−t

P−2
∑

k=0

(−t)k

k!
[(P − k − 1)FP−k+1(L − k) + FP−k(L − k)]

= −e−t

{

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

−
(

L − 2

P − 1

)

t +
tP−1

(P − 1)!
+

tP

P !

}

+e−2t

L−1
∑

r=0

tr

r!

[

(P − 1)

(

L − 1

P

)

− r

(

L − 2

P − 1

)

−
(

L − 1

P − 1

)]

+
tP−1

(P − 1)!

L−P
∑

l=0

tl

l!
+

tP

P !

L−P−1
∑

l=0

tl

l!
. (6.10)

Next we expand the e−t term:

−e−t

{

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

−
(

L − 2

P − 1

)

t +
tP−1

(P − 1)!
+

tP

P !

}

= −e−2t

(

L−1
∑

r=0

tr

r!
+

∞
∑

r=L

tr

r!

)

[

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)]

+e−2t

(

L − 2

P − 1

)

(

L−2
∑

r=0

tr+1

r!
+

∞
∑

r=L

tr

(r − 1)!

)

−e−2t t
P

P !

(

L−P−1
∑

r=0

tr
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+

∞
∑

r=L−P

tr
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−e−2t tP−1
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(

L−P
∑

r=0

tr
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+

∞
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r=L−P+1

tr

r!

)

. (6.11)

It is clear that the terms up to order L− 1 cancel the e−2t contribution, and
we find

Prob(E (P )
t ) = F1(P − 1)F1(L − P + 1)

−e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L − 1

P

)

−
(

L − 1

P − 1

)

−r

(

L − 2

P − 1

)

+

(

r + 1

P

)]

.

(6.12)
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