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Abstract

In this paper we evaluate the entanglement assisted classical ca-
pacity of a class of quantum channels with long-term memory, which
are convex combinations of memoryless channels. The memory of such
channels can be considered to be given by a Markov chain which is
aperiodic but not irreducible. This class of channels was introduced
in [7] and its product state capacity was evaluated.



1 Introduction

The biggest hurdle in the path of efficient information transmission is the
presence of noise, in both classical and quantum channels. This noise causes
a distortion of the information sent through the channel. Error—correcting
codes are used to overcome this problem. Instead of transmitting the original
messages, they are encoded into codewords, which are then sent through the
channel. Information transmission is said to be reliable if the probability of
error, in decoding the output of the channel, vanishes asymptotically in the
number of uses of the channel (see e.g. [4] and [21]). The aim is to achieve
reliable transmission, whilst optimizing the rate, i.e., the ratio between the
size of the message and its correponding codeword. The optimal rate of
reliable transmission is referred to as the capacity of the the channel.

A classical communications channel has a unique capacity, the formula
for which was obtained by Shannon in 1948. A quantum channel, in contrast,
has various distinct capacities. This is because there is flexibility in the use of
a quantum channel. The particular definition of the capacity which is appli-
cable, depends on the following: (i) whether the information transmitted is
classical or quantum; (i7) whether the sender!, Alice, is allowed to use inputs
entangled over various uses of the channel or whether she is only allowed to
use product inputs; (7i7) whether the receiver, Bob is allowed to make collec-
tive measurements over various outputs of the channel or whether he is only
allowed to measure the output of each channel use separately; (iv) whether
Alice and Bob have additional resources e.g. prior shared entanglement.

The different capacities resulting from the different choices mentioned
above were evaluated intitially for memoryless? quantum channels. The ca-
pacity of a quantum memoryless channel for transmitting classical informa-
tion, obtained under the restriction that the inputs are product states and
collective measurements on the outputs, is referred to as the product state
(classical) capacity of the channel. The formula for this capacity is given by
the Holevo-Schumacher-Westmoreland (HSW) Theorem [15, 27]. The for-
mula for the quantum capacity of a memoryless channel, i.e., its capacity for
transmitting quantum information was established through a series of papers
[24, 19, 26, 10, 12]. The maximum asymptotic rate of reliable transmission of
classical information with the help of unlimited prior entanglement between
the sender and the receiver is known as entanglement assisted capacity. The
formula for this was first proved by Bennett, Shor, Smolin and Thapliyal

"'We follow the normal conventiona and refer to the sender as Alice, and the receiver
receiving it as Bob

2For such a channel, the noise affecting successive input states, is assumed to be per-
fectly uncorrelated.



[5, 6] and the proof was later simplified by Holevo [16].

For real world communication channels, the assumption that noise is un-
correlated between successive uses of a channel cannot be justified. Hence
memory effects need to be taken into account. This leads us to the consider-
ation of quantum channels with memory. The first model of such a channel
was studied by Macchiavello and Palma [20]. They showed that the trans-
mission of classical information through two successive uses of a quantum
depolarising channel, with Markovian correlated noise, is enhanced by using
inputs entangled over the two uses. An important class of quantum chan-
nels with memory consists of the so-called forgetful channels. The channel
studied in [20] falls in this class. Roughly speaking, a forgetful channel is
one for which the output after a large number of successive uses, does not
depend on the initial input state. Forgetful channels have been studied by
Bowen and Mancini [3] and more recently by Kretschmann and Werner [18].
In [18], coding theorems for arbitrary forgetful channels were proved. The
proof of the direct channel coding theorem for a class of quantum channels
with Markovian correlated noise, where the underlying Markov Chain was
aperiodic and irreducible, was sketched out in [8]. Recently Bjelakovi¢ and
Boche [2] have proved a coding theorem for causal ergodic classical-quantum
channels with decaying input memory.

The capacities of channels with long-term memory (i.e., channels which
are “not forgetful”), had remained an open problem until recently. In [7],
the classical capacity of a class of quantum channels with long-term memory,
which are given by convex combinations of memoryless channels, was evalu-
ated. In this paper we evaluate the entanglement-assisted classical capacity
of the same class of channels. For a channel ® in this class, ®™ : B(H®") —
B(KC®™) and the action of ®™ on any state p™ € B(H®") is given as follows:

M
M (pM) =>4, (p™), (1)
=1

where ®; : B(H) — B(K), (i = 1,..., M) are completely positive, trace-
preserving (CPT) maps and ; > 0, Zij\il% = 1. Here ‘H and K denote
Hilbert spaces. On using the channel, an initial random choice is made
as to which memoryless channel the successive input states are transmitted
through. A classical version of such a channel was introduced by Jacobs
[17] and studied further by Ahlswede [1], who obtained an expression for its
capacity which is analogous to one obtained in [7].

Note that the memory of the class of channels that we study, can be
considered to be given by a Markov chain which is aperiodic but not irre-
ducible. This can be seen as follows. A quantum channel (of length n) with
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Markovian correlated noise is a CPT map ®™ : B(H®") — B(K®") defined
as follows

(I)(n) (p(")) - Z Qinin—1 + - 'QiQ\i17i1((I>i1 ®.. (I)in)(p(n))a
i1 in

Here (i) g;; denote the elements of the transition matrix of a discrete-time
Markov chain with a finite state space I; (i7) {v;}, denotes the invariant
distribution of the chain, and (éii) for each i € I, ®; : B(H) — B(K) is a
CPT map. Casting the channel defined by (1). in this form yields g;; = d;;.
Hence the transition matrix of the Markov chain, in this case, is the identity
matrix. In other words, once a particular branch ¢+ = 1,..., M has been
chosen, the successive inputs are sent through this branch. The Markov
chain is therefore aperiodic but not irreducible.

We start the main body of our paper with some preliminaries in Section 2.
Our main result, giving the expression for the entanglement-assisted classical
capacity of the channels in question, is stated as a theorem in Section 3. The
proofs of the converse and direct parts of this theorem our given in Sections
3.1 and 3.2 respectively. In proving the direct part of the theorem we make
use of the expression for the product state capacity of the channel, which
was obtained in [7].

2 Preliminaries

Let B('H) denote the algebra of linear operators acting on a finite-dimensional
Hilbert space H. The von Neumann entropy of a state p, i.e., a positive op-
erator of unit trace in B(H), is defined as S(p) = —Trplogp, where the
logarithm is taken to base 2. A quantum channel is given by a completely
positive trace-preserving (CPT) map ® : B(H) — B(K), where ‘H and K
are the input and output Hilbert spaces of the channel. Let dim H = d and
dim I = d'. For any ensemble {p,, p;} of states p; and probability distribu-
tions {p;}, the Holevo x quantity is defined as

x({pj pi}) =S (ij pj) —> ;i S(py). (2)
J J
The Holevo capacity of a memoryless quantum channel ® is given by

X (@) = [nax X({ps, @(pj)}). (3)



where the maximum is taken over all ensembles {p;, p,;} of possible input
states p; € B(H) occurring with probabilities p;. It is known that the maxi-
mum in (3) can be achieved by using an ensemble of pure states, and that it
suffices to restrict the maximum to ensembles of at most d? pure states.

3 Main Result

As mentioned in the Introduction, in this paper we evaluate the entanglement-
assisted classical capacity of a class of channels with long-term memory de-
fined by (1).

Consider the following protocol for the entanglement-assisted transmis-
sion of classical information through the quantum channel defined by (1).
Suppose two parties, Alice and Bob, share indefinitely many copies of an
entangled pure state p? = [¢A7) (4P| € B(Ha ® Hp). Here the sys-
tem A (B), with Hilbert space H4 (Hp) is in Alice’s (Bob’s) possession and
dimH,4 = dimHp. Suppose Alice has a set of messages, labelled by the
elements of the set M,, = {1,2,...,M,}, which she would like to com-
municate via the quantum channel (1) to Bob, exploiting this shared en-
tanglement. For this purpose she has an ensemble {r;,;} of completely
positive trace-preserving (CPT) encoding maps &; acting on B(H4) chosen
with probabilities 7;. In order to transmit her classical messages through
the quantum channel, Alice encodes each of her messages in a quantum state
in (Ha ® Hp)®" in the following manner. To each av € M,, she assigns a
quantum state (or codeword)

Pa "= ity ® - @l € B(Ha @ Hp)®"). (4)

Here ji (o) = j with probability m; independently for every k = 1,2,...,n,
and

,OJAB =(&® idB)pAB, (5)
where idp denotes the identity map in B(Hp). Thus, the probability of
assigning the codeword pA5" to the message « is Tji(a) - - - Tjn(a), Which gen-
erates an ensemble of quantum encodings. Note that the codewords are
states shared between Alice and Bob. Alice then sends her part of these
shared states to Bob through n subsequent uses of the quantum channel (1).
Consequently, Alice’s attempt to send the classical message « to Bob results
in him having the state

OSB;" = (<I>(") ® id%n)pﬁBm. (6)

In order to infer the message that Alice communicated to him, Bob makes a
measurement (described by a set of POVM elements) on the state o/5m.
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The encoding and decoding operations, employed to achieve reliable trans-
mission of information by means of this protocol, together define an ensemble
of quantum codes. More precisely, in this case a sample code C™ of size
M,, is given by a sequence {pAB" FEn}Mn where each pAP" is a state in
B((Ha4 ® Hp)®") of the form (4) and FAB" is a positive operator acting in
Ha®Hp)®", such that M FABn < [ABn Here I4P™ denotes the identity
operator in B((Ha ®@Hp)®"). Defining Fyj " = [ABn — " Mn pABin vields a
resolution of identity in (M4 ® Hp)®". Hence, {FA%"} M defines a POVM.
An output § € M,, would lead Bob to conclude that the state (or codeword)
was pr;n’ whereas the output 0 is interpreted as a failure of any inference.
Assuming equidistribution of messages, the average probability of error for

the sample code C™ is given by

M
PC™) = =30 (1= T (@) @idi) (o5 FAE)) (1)
noa=1

where idg) denotes the identity operator in B(H5").
The expected error probability

M
PP BR(C) = - 3 (1 BT (85 @10 (05 EL5)) L (8)

n

is obtained by further averaging over the sample codes C™. If for a given
R > 0 there exists a sequence of M,,’s with

1
lim —log M,, = R,

n—oo N,

such that

lim P™ =0,

n—oo

then R is said to be an achievable rate under the choice of the ensemble
{m;,&;} and the initial shared state p*'5.
The one-shot entanglement-assisted classical capacity is then defined as

C(®):= sup sup[R: R achievable], 9)

ea
{7Tj 7gj }7PAB

where the internal supremum is over the rates achievable under the choice of
the ensemble {r;,&;} and the initial shared state pZ.
The same construction can be performed for m-shot ensembles {7T](~m), S;m)}

where S;m) is a CPT encoding map in B(H%") chosen with probabilities 7rj(.m).
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In this case Alice uses block encoding, and a message o € M,, is encoded by
the state

ABn mn
P = Pt @ -+ @ Py ayim € B((Ha ® Hp)™™)
where ji(a) = 7 with probability 7TJ(-m) independently for every k =1,2,...,n,
and
piim = (& @idg™) ("""
As before, Bob uses decoding POVM elements F;‘Z;".
The average probability of error for the resultant sample code (which we
denote by cln )) is given by
PCM) = — Z (1 ~Tr (@ @ 1d®mn)(pAB%")FAB%")) . (10)

alm alm

which is then averaged over the sample codes generated by the ensemble
{Wj(»m), S;m)} to yield

M,
J— 1 n
(n) _ n)\ __ (mn) s 1®@mn AB;n\ mAB|mn
P =ER(CY) = 31 a§1 (1—ETr((<I>A @ 1dE™) (B FAP )),

(11)
This gives rise to the m-shot entanglement-assisted classical capacity of
D :
CmM () = sup sup R : R achievable]. (12)
{r™ £0M) a8
Finally, the full entanglement-assisted classical capacity of ® is given by
1
Cla(®) := lim sup — C™(®) (13)
m—oo M
Our main result is given by the following theorem.

Theorem 3.1 The entanglement assisted classical capacity of a channel @,
with long-term memory, defined through (1), is given by

Cea(®) = m;}X [/\i]‘;[(/); (I)Z)] )

with I(p; ®;) == S(p) + S(P;(p)) — S(p; Pi), where S(p) = —Trplogp is the
von Neumann entropy of p and S(p; ®;) is the entropy exchange, defined as
follows:

S(p; ®:) = S((@f ®@id™)yy™)), (14)
with w;lR being a purification of p on R.

Here we use the standard notation /\ to denote the minimum.
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3.1 Proof of the converse part of Theorem 3.1

In this section we prove that for any rate R > C.,(®), reliable transmission of
entanglement-assisted transmission of classical information from Alice to Bob
via the quantum channel ® (eq.(1)) is impossible, regardless of the encoding
used.

Recall that under our protocol, Alice and Bob share multiple copies of
an entangled bipartite pure state pA? = |AP) (48] € B(H4 ® Hp). Then,
given m,n € Z, Alice encodes her classical messages by applying chosen m-
block encoding CPT maps, n times to her part of the shared state p%53".
Here we show that the average error probability of the corresponding code,
as defined in (7), does not tend to zero as n — oo, for any m and any choice
of encoding maps. Henceforth, for notational simplicity, the index m will be
omitted from the subscripts.

Let O'AB " denote Bob’s final state, if Alice sends the message a, and her
correspondmg codeword

PP =l @ @ pan

is transmitted through the i-th branch of the channel. Also let

ABn, ABn . 7ABn ABn
E ViC ;0 > (4)

n‘ aeEMy,

and 0y(i) = L Z ak(l)

where 0, 1,(i) = (®; ® idg)pAP.
Then the average probability of error (7) equals

7(”) =

s O_AB;nF;B;n} ) (15)

aEM

We also define the average probability of error corresponding to the i** branch
of the channel as

«

M
A= - e 0T [ o that g = Sl (16)

Let X™ be a random variable with a uniform distribution over the set
M,,, characterizing the classical message sent by Alice to Bob. Let Y;(")
be the random variable corresponding to Bob’s inference of Alice’s message,
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when the codeword is transmitted through the i branch of the channel. It
is defined by the conditional probabilities

PV, =8| X" = o] = Tr [(9F" @idg") (paP™) F1P0). (17)
By Fano’s inequality,

Mpie) + P log((Ma| = 1) 2 H(X®[Y™) = H(X™) = H(X® Y™,

| (18)
Here h(-) denotes the binary entropy and H(-) denotes the Shannon entropy.
Using the Holevo bound and the subadditivity of the von Neumann entropy
we have

n) . v (n) 1 ABin/,: 1 ABin/
H(X®™ . yMy < s<|M| > ol (z)>—|M| DA CARROD)

" aeM, " aeM,

Z [S (@j‘BW(z’)) - If\il | > s (ai’,f(i))]

E(fo) )

o }M)
; §|

_A
> S(odZ@) e @) :
The expression A; can be rewritten using Donald’s identity:

aeMn k=1
Y paSwallp) =D paS(wall@) + 5@l p), (20)

IN

i
g
2
B

where W = ) paws. We apply this with p replaced by

AP (i) n|M|ZZ (21)

k=1 aeMy,

Wa replaced by o4%(i), ps replaced by 1/|M,], and consequently @ replaced
by 728 (4). Hence

Y S aiP(@) <

"| aEM, "| aEMy,

> Sloai () 11547 (0)),

n‘ aeEMy,

Y SloaR(@)115{7) = (3P (i) 1|47 (0))

(22)



where we have used the non-negativity of the von Neumann entropy. Insert-
ing into (19) we now have:

L .y M Z > S(edR @) 1a*? )

n
k=1 aeM,

= ( LT ak(l)}(a,k). (23)

The inequality (18) now yields (cf. eq.(17) of [16])

IA

n _(n 1 )
h(p) + " log M| > log |M,| —nx Lo lB (i)
n|M,| (k)

> log |M7L| - nI(pA> (I)i)a (24)

. A
pPA = § :pa,k pa,k’
a,k

for each v and k, and pé’k ="Tr B(péﬁ). However, since

where

1
ith po i = ———
WILD Do,k n|/\/ln|

Cea(®) > /:\1x ({m pa,k}(a k)) (25)

and R = - log|M,,| > Ceo(®), there must be at least one branch ¢ such that
Ceo(®) +1/n

o > 1 - > 0. 26
Pie 2 = (26)
We conclude from (16) and (26) that
—n Coo(®)+1/n M
> (1 - %) A (27)
i=1
Hence ]52(3? does not tend to zero as n — oc. 0

3.2 Proof of the direct part of Theorem 3.1
In this section we prove that Cp,(®P), defined by (13) satisfies the lower bound

Ca(®) = max [\ (03 ®,) (28)

i=1

To prove this we employ the following result which we proved in [7]

9



Theorem 3.2 The product state capacity of a channel ®, with long-term
memory, defined through (1), is given by

c@) = sw [N\ xillm. o] (29)

{m5.05}

where x;({mj, p;}) == x ({pj, Pi(p;)}). The supremum is taken over all finite
ensembles of states p; € B(H) with probabilities ;.

Here the notation /\ denotes the minimum.
From the definition (9) of the one-shot entanglement assisted capacity
and (29) it follows that

c@) = sw [N\ xUm (@@ids)elPh], (0)
{mj,€}paB V=L
where (i) pAP is the bipartite entangled pure state, indefinitely many copies
of which are shared by Alice and Bob and (ii) £; are encoding maps acting
on B(H,), as described in Section 3.
Moreover, from the definition (12) of the m-shot entanglement assisted
capacity it follows that

c@ = s [N X @iz Th] G

AB 1=1
(g, £ 8

Now, following [16] and [6], consider a specific encoding ensemble {77'((:12), 5((:2)},
where a,b=1,2,...,¢q, and

m _ 1
2

. (m) _ yx/(m)
Tap) = 2 E =W

(a7b) a’7b ?

the discrete Weyl-Segal operators (see e.g.[16]) for a ¢g-dimensional subspace
Q,, of H%m. Further set

0w " = (W3 @idg™) (100") (i),
with [1/2B) being a maximally entangled state in Q,,. Hence,
M 1 . .
(@) = \_ XU (97" @ idg) o) (32)
From [16] it follows that

AB|m P(m)

Wz (57 9ol ) = Iyt 007): 69

10



where P(™ is the orthoprojection onto Q,,. Further, it was proved in [16]
that if Q,, is chosen to be the strongly d-typical subspace for an arbitrary
state p®" in B(HG™), and P™?° is its orthoprojection, then

Pm,é
lim lim

5—0m—oo M (Tr(Pm,5)’ i )v (p; 1) (34)

From (32), (33), (34) and the definition (13) of the full entanglement-assisted
capacity, it follows that

Coal®) > N\ 1(p:2,). (35)

[
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