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Abstract. Using the Bethe ansatz we obtain the determinant expression for the time

dependent transition probabilities in the totally asymmetric exclusion process with

parallel update on a ring. Developing a method of summation over the roots of Bethe

equations based on the multidimensional analogue of the Cauchy residue theorem,

we construct the resolution of the identity operator, which allows us to calculate the

matrix elements of the evolution operator and its powers. Representation of results

in the form of an infinite series elucidates connection to other results obtained for the

ring geometry. As a byproduct we also obtain the generating function of the joint

probability distribution of particle configurations and the total distance traveled by

the particles.
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1. Introduction

The present paper can be viewed as a continuation of the paper [1], where the transition

probabilities for the totally asymmetric simple exclusion process (TASEP) with parallel

update have been obtained for the 1D infinite lattice, generalizing well-known result of

Schütz [2] for the continuous time TASEP. The analytic method, developed in the first

half of that paper, was based on the use of Bethe eigenvectors of the evolution operator

obtained in [3]. The problem was to find a continuous spectrum, i.e. the integration

measure, which would allow one to construct the solutions of the master equation out of

the Bethe eigenvectors, and in particular would give a resolution of the identity operator

in the integral form. The proof of the formula for the resolution of the identity operator,

was the main technical result of the paper which yielded the final determinant formula

for the transition probability.

A peculiarity of the finite ring is that the spectrum becomes discrete due to

the periodic boundary conditions, being defined by the system of the algebraic Bethe

equations (BE). These equations usually cannot be solved exactly. Most attempts to

extract any information from them are related to the thermodynamic limit, where they

can be reinterpreted in terms of a single integral equation. For the finite lattices, not

only the exact form of the spectrum but even the issue of its completeness are far from

being well understood for most of the integrable models.

Fortunately, for the TASEP the situation is a bit better due to a very special

factorization property possessed by the BE. This property was observed already in one

of the first works on the continuous time TASEP by Gwa and Spohn [4], where it was

used to get the asymptotical behaviour of the spectral gap. One of the most impressive

results exploiting the special structure of the BE in TASEP was the exact derivation

of the largest eigenvalue of the equation for the generating function of the integrated

particle current, due to Derrida and Lebowitz [5]. Using the Cauchy residue theorem,

they managed to evaluate explicitly the sum over roots of the BE for the particular

solution corresponding to the groundstate of the evolution operator. Recently, some

peculiar details of the spectrum structure for the continuous time TASEP have been

also studied in [6].

The solution of the Cauchy problem, i.e. finding the solution, given the initial

conditions, for the master equation for the TASEP on the ring in continuous time, and

also with backward ordered update, has been recently proposed by one of the authors

[7]. To our knowledge, this is still the only example of full solution to the Cauchy

problem for an integrable model that cannot be reduced to free fermions. The method

of the solution is based on a geometric approach to the Bethe ansatz (BA), which treats

trajectories of the interacting particles as free, noninteracting, but supplied with the

additional statistical weights in such a way that the interaction is taken into account.

The idea of the solution on a ring was to represent it as an infinite line with periodic

patterns of synchronously moving interacting particles. As in the geometric formulation

one works only with the ensembles of particle trajectories of a finite length, the issues
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related to the structure of the eigenspace of the evolution operator can be by-passed.

Motivated by the geometric solution, its analytic counterpart called the detailed BA

has been also proposed [8]. Being defined on the infinite lattice, the detailed BA has

a form of the infinite formal sum, and can be considered as a generating function of

particle trajectories. As a result, the problem becomes infinite lattice-like and one can

again use integration over the continuum to reconstruct the transition probabilities. The

mathematical meaning of the term-by-term integration of the infinite formal series was

not yet well understood, and, as we will see below, it is just equivalent to summation

over the discrete spectrum given by the BE.

The geometric method was applied to the TASEP with parallel update on the

infinite lattice in the second half of our first paper [1]. Its generalization to the ring

geometry follows in line with the continuous time version and as such is straightforward.

Therefore, the aim of this paper is not only to obtain the solution of the Cauchy problem

for the TASEP with parallel update, but also to establish a bridge between existing

solutions on a ring and the standard BA techniques. Namely, we show that the idea of

Derrida and Lebowitz exploiting the Cauchy residue theorem to obtain the roots of the

BE corresponding to the groundstate solution can be developed much further and used

to perform an exact summation over the whole spectrum of solutions. In such a way

we obtain the integral representation for the resolution of the identity operator and, as

a consequence, for the solution of the Cauchy problem for the master equation as well.

Then we show that the expression under the integral can be expanded into a uniformly

converging power series, equivalent to the detailed BA, which being integrated term by

term yields finally the multiple infinite sums coming from the geometric solution and

from the detailed BA.

The paper is organized as follows. In section II, we formulate the dynamical rules

of the model and announce the final result. In section III, we describe the BA for the

infinite lattice and give the BE for the ring. In section IV, we discuss the details of the

analytic structure of the BE solutions. In section V we develop a technique of evaluation

of sums over the Bethe roots. In section VI, we prove a formula for the resolution of

the identity operator and obtain a formula for transition probabilities in the form of

infinite sums. Then, to show that the sums are actually finite, we estimate the number

of nonzero terms they contain. In the last section VII, we discuss the results obtained

and subsequent perspectives.

2. Formulation of the model and results

We consider P particles on the 1D ring consisting of L sites. The notation

ρ = P/L (1)

is used for the density of particles. The model has totally asymmetric dynamics, i.e.

all particles jump only in one direction, which we refer to as forward. At each step of

discrete time t, a particle from each occupied site,
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i takes one step forward with probability v

or

ii stays with probability (1 − v),

provided that the target site is vacant. When the next site is occupied,

iii a particle stays with probability 1.

All sites are updated simultaneously. We define a configuration X of particles by

the set of their coordinates X = {x1, x2, . . . , xP}, written in strictly increasing order,

x1 < x2 < · · · < xP . (2)

The finite ring geometry implies also that the coordinates are confined to the values

from 1 to L.

x1 ≥ 1, xP ≤ L (3)

The probability Pt(X) for the system to be in a configuration X at time t obeys the

Markov equation

Pt+1(X) =
∑

{X′}

T (X, X ′)Pt(X
′), (4)

where T (X, X ′) is the probability of the transition from X ′ to X for one time step. The

transition probability T (X, X ′) defined by the above dynamical rules is a product of

factors, each corresponding to a particular cluster of particles in the initial configuration

X ′. The word ”cluster” refers to a group of particles, which has no empty sites between

occupied sites and two empty sites at the ends. The value of these factors is either v or

(1 − v) depending on whether or not the first particle of a given cluster jumps during

the transition from X ′ to X.

T (X, X ′) =

Nc(X′)
∏

i=1

(1 − v)1−mi vmi (5)

Here mi = 0, 1 is the number of particles hopping from i-th cluster of X ′, and Nc (X ′)

is the number of clusters in X ′.

It has been shown in [1] that in the case of the infinite lattice, when constraint

(3) is omitted, the conditional probability, P (X; t|X0; 0), for the system to be in

a configuration X = {x1, x2, . . . , xP} at time t, given it was in a configuration

X0 = {x0
1, x

0
2, . . . , x

0
P} at time 0, is the following quotient

P (X; t|X0; 0) =
F∞ (X, X0, t)

F∞ (X, X, 0)
. (6)

The function F∞ (X, Y, t) depending on two particle configurations X = {x1, x2, . . . , xP}

and Y = {y1, y2, . . . , yP} and on time t is given by the determinant of P × P matrix

F∞ (X, Y, t) = det [f(i − j, xi − yj, t)]1≤i,j≤P , (7)
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where the matrix elements are defined in terms of a single function f (a, b, t) expressed

via the Gauss hypergeometric functions:

f(a, b, t) = (1 − v)t























(

v
v−1

)b (−t−a)b

b! 2F1

(

a,−t − a + b

b + 1
; v

v−1

)

b > 0

(a)
−b

(−b)! 2F1

(

a − b,−t − a

−b + 1
; v

v−1

)

b ≤ 0

. (8)

The notation (a)n is for the shifted factorial (a)n = a(a + 1) · · · (a + n − 1).

The aim of the present article is to show that on the ring of size L the same quantity

P (X; t|X0; 0) is also given by similar quotient of two terms, both expressed as a single

function FL (X, Y, t) of particle configurations X, Y and time t,

P (X; t|X0; 0) =
FL (X, X0, t)

FL (X, X, 0)
(9)

with the arguments in the numerator and the denominator taken as in (6). However,

for the finite ring, the function FL (X, Y, t) is the P -tuple sum of determinants

FL (X, Y, t) =
∞
∑

n1=−∞

· · ·
∞
∑

nP =−∞

(−1)(P−1)
∑P

i=1
ni

× det

[

f

(

i − j + Pni −
P
∑

k=1

nk, xi − yj + niL, t

)]

1≤i,j≤P

, (10)

unlike the single determinant in the case of infinite lattice. The matrix elements of the

corresponding matrices are still given in terms of the function f (a, b, t) defined in (8),

but its arguments depend now not only on the matrix indices i, j but also on summation

indices nk. Below we argue that though formally the sums are infinite, they contain only

a finite number of nonzero terms for any finite time t. Furthermore, the denominators

of (6) and (9) depend only on the number of clusters in the corresponding configuration

X being equal to

F∞ (X, X, 0) = FL (X, X, 0) = (1 − v)Nc(X)−P (11)

Remark 1 One has to define Nc (X) in (11) as a function of X separately for the

infinite and finite lattices. Indeed, the particles, which occupy the sites 1 and L on the

ring, belong to the same cluster, while on the infinite lattice they do not. Therefore,

the value of Nc(X) can be different for these two cases, even though the coordinates of

particles formally coincide.

3. Bethe ansatz.

3.1. Infinite lattice.

We first remind the reader of the technique used to deal with the infinite lattice case

[1]. Consider P particles on the infinite lattice. The particle configurations are given
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by P−tuples of particle coordinates which are unbounded integers being selected from

the set

Z
P
< ≡

{

X ∈ Z
P ; x1 < x2 < · · · < xP

}

. (12)

Let us introduce the infinite dimensional vector space V∞ over the field of complex

numbers C given by the linear span of the basis

X∞ =
{

|X〉 : X ∈ Z
P
<

}

, (13)

i.e. the set of the vectors labelled by the particle configurations. In addition one

introduces the basis of the dual space V ∗
∞, which is the span of the dual basis,

X ∗
∞ =

{

〈X| : X ∈ Z
P
<

}

, (14)

with the inner product defined by

〈X|X ′〉 = δ(X, X ′). (15)

Below the bases X ,X ∗ will be referred to as the configurational left and right bases

respectively, unlike the left and right eigenbases of the evolution operator to be

considered. The evolution operator T is defined in terms of the transition probabilities

T (X, X ′) defined in (5)

T =
∑

X∈X∞,X′∈X ∗

∞

|X〉T (X, X ′) 〈X ′| . (16)

The problem under consideration is to find the transition probability P (X; t|X0; 0)

from a configuration X0 to X for t steps, which is nothing but the corresponding matrix

element of the operator Tt

P (X; t|X0; 0) =
〈

X|Tt|X0

〉

.

It was shown in [3], [1] that the evolution operator T has the left and right

eigenvectors |BZ〉,
〈

BZ

∣

∣ parametrized by P -tuple complex parameter

Z ≡ {z1, . . . , zP} ∈ C
P .

The eigenvectors corresponding to the same value of Z solve the left and right

eigenproblems,

T |BZ〉 = Λ(Z) |BZ〉 ,
〈

BZ

∣

∣T = Λ(Z)
〈

BZ

∣

∣ , (17)

associated with the same eigenvalue

Λ (Z) = (1 + λ)−P
P
∏

i=1

(1 + λzi) , (18)

where we introduce the parameter λ

λ =
v

1 − v
. (19)

The projection 〈X|BZ〉 of the right eigenvector |BZ〉 to the configuration X is given by

the Bethe ansatz

〈x1, . . . , xP |BZ〉 = W (X)
∑

{σ}

Aσ1...σP
z−x1

σ1
. . . z−xP

σP
, (20)
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supplied with the additional configuration-dependent factor W (X). The latter is

proportional to the stationary measure of the configuration X and is defined in terms

of the number of clusters Nc (X) in the configuration X

W (X) = (1 + λ)Nc(X)−P . (21)

The amplitudes Aσ, are indexed by the permutations σ = {σ1, · · · , σP} of the integers

1, . . . , P . An elementary transposition of two indices (ij) results in the amplitude Aσ

being multiplied by the scattering factor −S (zi, zj),

A...ij... = −S (zi, zj) A...ji..., (22)

of the following form

S (zi, zj) ≡
1 − 1/zi

1 − 1/zj

1 + λzj

1 + λzi
. (23)

A remarkable property of the scattering factor S (zi, zj) is that it is a product of two

factors, each being dependent only on one of the two parameters zi, zj . This property

allows one to represent the amplitude Aσ in a simple product form

Aσ1...σP
= (−1)|σ|

P
∏

i=1

(

1 + λzσi

1 − 1/zσi

)i−σi

, (24)

where each multiple depends only on one of the parameters z1, . . . , zP . Unlike the right

eigenvector, the left one,
〈

BZ

∣

∣ , has no factor W (X), while the Bethe part can be

obtained from that of (20) by the change Aσ → A−1
σ , xi → −xi.

〈

BZ |x1, . . . , xP

〉

=
∑

{σ}

A−1
σ1...σP

zx1

σ1
. . . zxP

σP
. (25)

Then, that the projection of the eigenvectors
〈

BZ |X
〉

and 〈X|BZ〉 to the basis vectors

corresponding to a particular configuration X can be represented in the form of

determinants

〈X|BZ〉 = W (X) detB, (26)
〈

BZ |X
〉

= detB, (27)

where the matrix elements Bij and Bij are given by

Bij = 1/Bij =

(

1 + λzj

1 − 1/zj

)i−j

z−xi

j . (28)

One of the main results of [1] is the proof of the formula for the resolution of the identity

operator,
∫

|BZ〉
〈

BZ

∣

∣ dµ(Z) = E, (29)

where E is the identity operator, dµ(Z) = (P !)−1∏P
i=1 (dzi/2πizi) is the integration

measure, and the integration is performed independently over each zi along the contour

Γ∞ encircling the points z = 0 and z = 1, while the point z = −1/λ stays outside
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-1/� λ 1

Figure 1. Shape of the contour Γ∞. It must encircle the points z = 1 and z = 0 while

the point z = −1/λ stays outside.

(figure 1). Practically the proof was given by the direct evaluation of the integral in the

configurational basis,
∫

〈X ′|BZ〉
〈

BZ|X
〉

dµ(Z) = δX,X′ . (30)

As soon as the equality (29) is established, one can insert the identity operator into the

matrix elements,

〈X|Tt
∣

∣X0
〉

=

∫

〈

X|Tt|BZ

〉 〈

BZ |X
0
〉

dµ(Z) (31)

=

∫

Λt (Z) 〈X|BZ〉
〈

BZ|X
0
〉

dµ(Z) (32)

so that the final result (6-8) immediately follows from the explicit form of the eigenvalues

and the eigenvectors.

One of the observations made in [1] was that there is no any obvious procedure of

choosing a contour and a measure of integration. However, validity of a particular choice

can be verified a posteriori by proving the resolution of the identity operator, which is

fulfilled by a direct evaluation of l.h.s. of (30). It will be clear below that the form of

the contour can be validated directly by considering the infinite lattice as a limiting case

of the ring of the size L, which grows to infinity. Then, the Z−spectrum of the model

is obtained as a continuous limit of the discrete spectrum for the finite system.
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3.2. The ring.

What does change when one confines the system to the ring of finite length L?

Apparently, the total number of particle configurations becomes finite. The same must

be true for the dimension of vector space VL defined as the span of the basis

XL =
{

|X〉 : X ∈ Z
P
<,L

}

, (33)

where ZP
<,L is the domain for particle coordinates on the ring.

Z
P
<,L ≡

{

X ∈ Z
P ; 1 ≤ x1 < x2 < · · · < xP ≤ L

}

. (34)

As before, the dual space V ∗
L is spanned by the dual basis

X ∗
L =

{

〈X| : X ∈ Z
P
<,L

}

, (35)

with the inner product defined by

〈X|X ′〉 = δ(X, X ′).

Obviously, the dimensions of the spaces are equal to the total number of the basis

vectors, which is equal to the number of particle configurations:

dim (VL) = dim (V ∗
L ) =

(

L

P

)

. (36)

The solution of the eigenproblem turns out to be analogous to the infinite lattice case.

The only though important difference is that, due to the finite dimension of the vector

space, a finite number of independent eigenvectors can exist. Technically this follows

from the fact that vectors |BZ〉 and
〈

BZ

∣

∣ are now the eigenvectors of T only for a finite

discrete set of the values of the parameter Z. This set is to be defined from the system

of algebraic equations, which follow from imposing the periodic boundary conditions.

This is the set one has to sum over, when constructing the resolution of the identity

operator similar to (29). Of course the latter is correct provided that this set is large

enough to ensure that the corresponding eigenvectors to form the complete bases of VL

and V ∗
L

For further convenience we slightly generalize the problem. Consider the generating

function F γ
t (X; t|X0; 0) of the joint probability Pt(X, J ; t|X0, 0; 0) for the system to be

in a configuration X at time t, the total distance travelled by particles being J , given

the initial configuration X0.

F γ
t (X; t|X0; 0) = 〈exp (γyt)〉X =

∞
∑

J=0

eγJPt(X, J ; t|X0, 0; 0), (37)

The evolution equation for F γ
t (X, t|X0, 0) is similar to the original equation (4) for the

probability, with the only minor change: the transition probabilities must be multiplied

by the factor eγ per each jumping particle:

Tγ(X, X ′) =

Nc(X′)
∏

i=1

(1 − v)1−mi (eγv)mi . (38)
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Apparently, the limit γ → 0 restores the original Markov equation for the probability

of a configuration

Pt(X; t|X0; 0) = lim
γ→0

F γ
t (X; t|X0; 0). (39)

All elements of the above Bethe ansatz technique can be directly extended to the case

of nonzero γ yielding a minor change in the eigenvalue (18)

Λγ (Z) = (1 + λ)−P
P
∏

i=1

(1 + eγλzi) (40)

and in the scattering factor (23)

Sγ (zi, zj) ≡
eγ − 1/zi

eγ − 1/zj

1 + eγλzj

1 + eγλzi
(41)

which in turn changes the BA amplitudes, (24)

Aγ
σ1...σP

= (−1)|σ|
P
∏

i=1

(

1 + λzσi
eγ

eγ − 1/zσi

)i−σi

. (42)

These amplitudes being substituted to the the BA for the right and left

eigenvectors(20,25) yield an expression for the eigenvectors of Tγ. All the expressions

obtained for the infinite lattice are valid for the ring geometry, until the coordinates

of particles take values at the boundary of the domain (34). For the expressions to be

valid at the boundary as well, one has to impose periodic boundary conditions

{x1, x2, . . . , xP} = {x2, . . . , xP , x1 + L} . (43)

Applied to the Bethe ansatz (20,25), the boundary conditions yield a system of algebraic

Bethe equations (BE)

zL
i = (−1)P−1

P
∏

j=1

zi

zj

(zje
γ − 1)

(zieγ − 1)

(1 + eγλzi)

(1 + eγλzj)
, (44)

which fix the spectrum of the parameters z1, . . . , zP (for details see [3]). The set of

solutions Z of (44) defines the sets of left and right eigenvectors

B = {|Bγ
Z〉 , Z ∈ Z} , (45)

B =
{〈

B
γ

Z

∣

∣ , Z ∈ Z
}

. (46)

A specific feature of the integrable models is that the same eigenvectors diagonalize

also a complete set of mutually commuting operators that are as many as the degrees of

freedom. The simplest example is the translation operator τ which translates a particle

configuration one step forward acting to the right

τ |x1, . . . , xP 〉 = |x1 + 1, . . . , xP + 1〉 , (47)

while its adjoint action to the vector of the dual space is the one step backward

translation

〈x1, . . . , xP | τ = 〈x1 − 1, . . . , xP − 1| .
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Apparently the vectors from the sets B and B are the eigenvectors of τ,

τ |Bγ
Z〉 = τZ |Bγ

Z〉 , (48)
〈

B
γ

Z

∣

∣ τ = τZ

〈

B
γ

Z

∣

∣ , (49)

with the eigenvalue

τZ = (z1 · · · zP )−1 . (50)

The translation by L steps returns the system to itself, i.e.

τL = E, (51)

where E is the identity operator. As a result τZ must be an L-th root of unity.

(z1 · · · zP )L ≡ 1. (52)

The same result can be obtained by multiplying all L BE (44).

Assume that the sets B and B are dual to each other,
〈

B
γ

Z |B
γ
Z′

〉

=
〈

B
γ

Z |B
γ
Z

〉

δZ,Z′,
〈

B
γ

Z |B
γ
Z

〉

6= 0 for any Z, Z ′ ∈ Z (53)

and complete (i.e. their cardinalities are as big as the dimension of the original space

(36)). Then, the resolution of the identity relation holds

∑

Z∈Z

|Bγ
Z〉
〈

B
γ

Z

∣

∣

〈

B
γ

Z |B
γ
Z

〉 = E, (54)

which in the configurational basis reads as follows

∑

Z∈Z

〈Y |Bγ
Z〉
〈

B
γ

Z |X
〉

〈

B
γ

Z|B
γ
Z

〉 = δX,Y . (55)

This allows us to derive the matrix element we are looking for.

F γ
t (X, t|X0, 0) =

〈

X|Tt
γX

0
〉

=
∑

Z∈Z

〈

X|Tt
γB

γ
Z

〉 〈

B
γ

Z |X
0
〉

〈

B
γ

Z |B
γ
Z

〉

=
∑

Z∈Z

Λt
γ(Z)

〈X|Bγ
Z〉
〈

B
γ

Z |X
0
〉

〈

B
γ

Z |B
γ
Z

〉 . (56)

However the proof of completeness and orthogonality is a separate difficult problem. An

alternative way, which allows one to obtain the final formula (56) without discussing

these issues, is to prove the resolution of the identity relation by a direct evaluation of

the sum on the l.h.s. of (55). In our case, this problem turns out to be solvable without

explicit knowledge of the spectrum Z.

4. Location of the solutions of the Bethe equations in complex plane.

Let us consider the system of BE (44). We introduce for notational convenience a new

variable

znew
i = zie

γ . (57)
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Below we will work only with these variables, so we omit the superscript ”new” at zi

avoiding an abuse of notations.

Let us gather up into a single constant those parts of the equations (44), which

have no explicit dependence on the index i,

C = (−1)P−1 eγL
P
∏

j=1

(zj − 1)

zj (1 + zjλ)
, (58)

Then the system of BE (44) takes form of a unique polynomial equation of degree L

zL−P (z − 1)P − C (1 + zλ)P = 0. (59)

For specific values of C, those P of L roots of the polynomial, which match the constraint

(58), give a solution of the Bethe equations. The formal procedure of finding the solution

was described in [4], [6]. First, all L roots of the polynomial equation (59) ought to be

found as functions of the parameter C. Then one substitutes any P of them into the

equation (58), obtaining a single equation. By solving this equation one obtains the

solution of the BE corresponding to a given set of the chosen roots.

Let us consider the analytic structure of the solutions in more detail. One can

rewrite (59) in the form

w(z)L = C, (60)

where the function w(z) is

w(z) =
z1−ρ (z − 1)ρ

(1 + zλ)ρ . (61)

Equivalently one can write

w(z) = exp (2πik/L)C1/L, (62)

where the integer k is any integer chosen from the range 1 ≤ k ≤ L specifying a

particular choice of the branch. The branch of C1/L is implied to be fixed, e.g.

0 ≤ arg(C1/L) <
2π

L
.

We use the notation z+, z− for the two solutions of the equation

∂w (z)

∂z
= 0, (63)

which yields

z± =
−1 + λ − 2λρ ±

√

(1 + λ)(1 + λ(1 − 2ρ)2))

2λ(1 − ρ).
. (64)

We define the domain Dz, (figure 2a), as the extended complex plane cut along

the segments [0, 1] and [−∞,−1/λ] of the real axis and punctured at the points
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Figure 2. The domains Dz (a) and Dw (b).

{0, 1,−1/λ,∞, z+, z−}, and also the domain Dw, ( figure 2b), as the extended complex

plane punctured at the points 0, ∞, and at four points

w1
+ = |w(z+)| eiπρ, (65)

w2
+ = |w(z+)| e2πi−iπρ, (66)

w1
− = |w(z−)| eπi−iπρ, (67)

w2
− = |w(z−)| eπi+iπρ, (68)

and cut along the straight segments:
[

0, w1
+

]

,
[

0, w2
+

]

,
[

w1
−,∞

]

,
[

w2
−,∞

]

. If we define

Dz as a domain of w(z), such that the value of arg [w(z)] is πρ, π (2 − ρ), and π (1 − ρ) ,

π (1 + ρ) at the upper and lower banks of the first and second branch cuts of Dz

respectively, then the mapping w(z) : Dz → Dw is the monovalued analytic mapping.

Going around the branch cut [0, 1] the value of arg [w(z)] changes by 2π exactly once.

Therefore, no repetition in the value of w(z) can occur, i.e. the mapping w(z) is schlicht

(one-sheet). Hence the mapping w(z) is bijective and one can construct an analytic,

monovalued, schlicht mapping w−1(·) : Dw → Dz, inverse of w(z). Then, given a complex

number a ∈ Dw, the equation w(z) = a has a unique simple root z(a) ∈ Dz, being an

analytic function of a in Dw.

Thus, given a value of C, each root of (60) is the unique simple root of (62) for

some k, and all the roots are different for different k-s. To solve the Bethe equations

one formally can choose P integers k1, . . . , kP from the set 1, . . . , L. Then, substituting

zj = w−1
[

exp (2πikj/L) C1/L
]

(69)

into the constraint (58) for all j = 1, . . . , P , one obtains a unique equation for the

parameter C. Solving the equation for C, we obtain the solutions corresponding to
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given set k1, . . . , kP . Going through all the possible sets of integers k1, . . . , kP we obtain

all the solutions of the Bethe equations.

It is easily seen that the eigenvectors (20,25) identically vanish on the solutions

corresponding to the sets k1, . . . , kP containing a pair of two equal integers, ki = kj,

which result in zi = zj . Therefore one has to look over only those sets k1, . . . , kP , where

all the numbers are different. If we assume that for any set the equation for C has

exactly one solution we obtain just as many solutions as we need (36) to obtain the

complete set of linearly independent eigenvectors. The direct proof of this fact however

is beyond the aims of present article and will be considered elsewhere.

Remark 2 For generic values of the parameter γ, and hence of the parameter C, the

r.h.s. of (62) is away from the branch points of w−1(z), which ensures that the root of

(62) is simple. However, for specific values of γ this can be not the case. This does not

create a problem as this situation can be considered as the limiting case of the generic

one. In particular, a double root can appear at z+ or z−, as a consequence of square root

singularities of w−1(z). In this case, one can think of it as a pair of roots at different

banks of the branch cut. This in fact specifies the way in which it evolves when the

value of γ changes. Also the limit C → 0, which implies γ → 0, corresponds to P roots

meeting at z = 1. Then, the choice of different integers ki for different roots zi removes

the degeneracy as the arguments of (zi − 1) are different.

Let us consider the curve Γc defined by the equation

|w (z)| = c, (70)

where c is a real, positive number. All the roots are located on curves where c =
∣

∣C1/L
∣

∣,

for some discrete set of values of C related to the solution via the equation (58). The

particular case λ = 0 of Γc was named in [6] as the generalized Cassini oval. To describe

the form of this curve, let us first look at the behaviour of |w (z)| at the real axis. It

is easily seen that |w (z)| has two zeroes at the points z = 0 and z = 1, and diverges

for z → ±∞ and z → −1/λ. There are also two extremums: z+ and z− given by

(64), which are a minimum and a maximum respectively. As ρ varies from 0 to 1, the

point z+ monotonously moves from 1 to 0 and z− from −1/λ to −∞. At the same

time |w (z+)| increases from zero for 0 < ρ < 1/2, reaches the maximum at ρ = 1/2

and then decreases back to zero for 1/2 < ρ < 1, while |w (z−)| decreases from infinity

for 0 < ρ < 1/2, reaches the minimum at ρ = 1/2 and then increases back to infinity

for 1/2 < ρ < 1. Note that the values of |w (z+)| and |w (z−)| meet only in one point

ρ = 1/2 approaching its values from below and above respectively. Let us look at the

cross points of the plots y = |w (x)| and y = c as the constant c grows starting from

zero. The following stages exist (see figure 3):

c < |w(z+)| For small c there are four cross points {−1/λ < z1 < 0, 0 < z2 < z3 < 1,

1 < z4}, which corresponds to two ”ovals” encircling the origin and the point z = 1.

In the limit c → 0 the form of the contours approaches circles of vanishing radius
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Figure 3. Schematic picture of the stages of the evolution of the contour Γc as c grows

from zero to infinity. At the lower plots the the graphs y = |w(x)| and y = c are shown

for each stage, which cross points define the cross points of Γc with the real axis.

collapsing to the points z = 0, 1. As the value of c increases the point z2 and z3

move towards each other, and the radius of the ”ovals” increases .

c = |w(z+)| When the value of c reaches |w(z+)|, the points z2 and z3 merge at z+, i.e.

the two ”ovals” develop cusps meeting at z+. Then the shape of the curve resembles

the lemniscate. This form survives, when one considers the thermodynamic limit.

Specifically, the right part of the curve is the one considered in studies of low lying

eigenstates [3].

|w(z+)| < c < |w(z−)| As c exceeds |w(z+)| the crosspoints z2,z3 disappear after merging

at z+such that only the two, {−1/λ < z1 < 0, 1 < z4} remain. These are two

crosspoints with the horizontal axis of the ”big oval”, which appears after the

two ”smaller ovals” merge. The big oval contains the points z = 0, 1 inside, while

the point z = −1/λ stays outside. As c increases z1, z4 move along the real axis

towards −1/λ and +∞ respectively. As the point z1 is confined between 0 and

−1/λ, while the effective radius of the ”oval” is unbounded, it finally starts to bend

around −1/λ and approaches the real axis from below and above at the right of

the point −1/λ.

c = |w(z−)| At this stage the two points at the parts of the ”oval” bending around −1/λ

meet at z−, so that two ”ovals” appear, one inside the other. They have sharp cusps

at their only common point z− . The bigger ”oval” goes around −1/λ, 0, 1 while

the smaller encircles only −1/λ.
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c > |w(z−)| After forming two ovals at previous stage, they detach from each other by

splitting the common cross point with the real axis at z− into two new cross points

z′2, z
′
3, which then move along the real axis to −∞ and −1/λ respectively as c go

on growing. The form of the contours then approach two circles of infinite and zero

radia, the latter collapsing to the point −1/λ.

In the case ρ = 1/2, when the values of |w (z+)| and |w (z−)| are equal, the second

and the fourth stages coincide while the third one does not take place.

An important point of the above analysis is the limiting shape of the curves under

consideration as c goes to zero or infinity. Specifically, one can always choose a value

of c so small that the contour Γc separates a small neighborhood of the points 0 and 1

from the rest of the complex plane. For c large, the same is valid for the points −1/λ

and ∞. This fact will be used in the next section to evaluate the sum over the Bethe

roots.

5. Summation over the Bethe roots.

Let us rewrite the Bethe equations in terms of the variables {zi}, given by(57), in

polynomial form

Pi(Z) = 0, (71)

where it is convenient to write the polynomials Pi(Z) as a difference of two other

polynomials

Pi(Z) ≡ gi (Z) − hi (Z) (72)

which read as follows

gi (Z) = e−LγzL−P
i (zi − 1)P

P
∏

j=1

zj (1 + zjλ) , (73)

hi (Z) = (−1)P−1 (1 + ziλ)P
P
∏

j=1

(zj − 1) . (74)

The aim of the present section is to evaluate the sum of the analytic functions over the

roots of the system (71). Two remarks are necessary. First, we imply that the roots are

bounded from infinity, as otherwise the eigenvectors and eigenvalues would be singular.

Second, the polynomial equations can be satisfied with the solutions constructed from

the roots from the set {0,−1/λ, 1}. Furthermore, it is easy to see that if one of the

roots zi is taken from this set, the other P − 1 roots must belong to this set as well.

However, solutions constructed in this way obviously do not match the constraint (52)

for γ 6= 0, and, therefore, must be excluded. Appearance of extra solutions is due to

multiplication of the BE by an expression that itself can be zero, when transforming

it to the polynomial form. In the case γ = 0 one such a solution exists. Namely it is

z1 = · · · = zP = 1, which corresponds to the ground state of the evolution operator,

i.e. the stationary state of the stochastic process. As will be seen below, this case can
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be treated as a limiting case of the generic situation and does not require a special

consideration.

Let us define the domain D ⊂ C of the complex plane by the inequalities

D = {z : a ≤ |w(z)| ≤ A} , (75)

where a and A are two real positive constants, such that a < A. Denote by Γc the

contour discussed in the previous section, defined by (70)

Γc = {z : |w(z)| = c} . (76)

Then the domain D is between Γa and ΓA, and its boundary

∂D = {z : Γa ∪ ΓA} (77)

is oriented in such a way that going along it in positive direction one keeps the interior

of D left. Then we form a polycylinder domain Ω ⊂CP as a cartesian product of P

copies of D

Ω = D1 × · · · × DP . (78)

The skeleton Γ of Ω is the subset of its boundary ∂Ω consisting of points, which are at

the boundary of every D1, . . . , DP :

Γ = ∂D1 × · · · × ∂DP .

The definition (75) of D guarantees that all the points Z = (z1, . . . , zP ), such that

zi ∈ {0,−1/λ, 1,∞} for some i, are outside of Ω. On the other hand, the dimension of

the complement of Ω approaches P − 1 as a and A go to zero and infinity respectively,

i.e. their Lebesgue measure in CP vanishes. Thus, it is natural to expect that for a

small and A large enough all the roots of the system (71) fall into Ω. Then, the sum of

an analytic in Ω function f(Z) over the roots of BE which fall into Ω can be evaluated

with the aid of the multi-dimensional logarithmic residue theorem [9].

Theorem 3 Let Ω⊂ C
P be a polycylinder domain with piecewise smooth boundary ∂Ω

and Γ be its skeleton. Let the mapping {Pi(Z), i = 1, . . . , P} : Ω → CP be holomorphic

in Ω and have no zeroes at the boundary ∂Ω. Then, for any function f(Z) analytic in

Ω, the sum of its values over the set Z = {Z ∈ Ω :Pi (Z) = 0, i = 1, . . . , P} is given by

the following integral

∑

Z∈Z

f(Z) =
1

(2πi)P

∫

Γ

f(Z)
dP1(Z)

P1(Z)
∧ · · · ∧

dPP (Z)

PP (Z)

=

∫

Γ

f(Z)
∏P

i=1 Pi (Z)
det

[

∂Pi (Z)

∂zj

]

1≤i,j≤P

P
∏

i=1

dzi

2πi
. (79)

Every zero is counted as many times as its multiplicity is.

The theorem is a particular case of the Caccippolly, Martinelly, Bishop, Sorani

theorem, see [9]. The original theorem is proved for the domain called special analytic

polyhedra, which in particular ensures the absence of zeroes of the mapping at the
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boundary of domain, which in turn guarantees that all zeroes inside the domain are the

isolated ones. In our case the absence of zeroes at the boundary ∂Ω of the domain Ω,

is provided by the following lemma.

Lemma 4 Let Ω be defined as above. Let λ < 1. Then in the range of γ :

(ρ−1 |ln λ| > γ > 0), there exist constants a0 and A0, such that for any a < a0 and

A > A0 the mapping {P1(Z), . . . , PP (Z)} has no zeroes on ∂Ω.

Proof. Suppose there is a point Z = {z1, . . . , zP} ∈ ∂Ω, such that Pi(Z) = 0 for

i = 1, . . . , P . It implies that
∣

∣

∣

∣

gi(Z)

hi (Z)

∣

∣

∣

∣

≡ e−Lγ |w(zi)|
L

∣

∣

∣

∣

z1 · · · zP

w(z1) · · ·w(zP )

∣

∣

∣

∣

1/ρ

= 1. (80)

The point Z being at the boundary ∂Ω of the domain Ω means that at least one

coordinate zi from the set z1, . . . , zP is at the boundary of Di, i.e. is either on Γa or ΓA.

Let first

zi ∈ Γa (81)

for some i. As zi enters into (80) only via |w(zi)|
L, while the other factors do not

depend on the index i at all, |w(zi)|
L does not depend on i either, i.e. (81) holds for all

i = 1, . . . , P, which immediately yields

|z1 · · · zP |
1/ρ = eLγ . (82)

Recall that a always can be chosen small enough such that Γa belongs to small

neighborhoods of the points z = 0 and z = 1. In other words for any small ε > 0

one can choose a small a0 such that for any a < a0

sup
{z∈Γa}

|z| < 1 + ε. (83)

Taking ε < (eγρ − 1) we obtain

|z1 · · · zP |
1/ρ < eγL, (84)

which contradicts (82).

Consider now the case when zi ∈ ΓA for some i. Analogously to the previous case

one needs to satisfy (82) with the set of solutions z1, . . . , zP , which are on ΓA, i.e. either

go to infinity or to (−1/λ), as A increases. Thus, for any ε > 0 one can always choose

a large A0 such that for any A > A0

inf
{z∈ΓA}

|z| >

∣

∣

∣

∣

1

λ

∣

∣

∣

∣

− ε. (85)

Taking ε < (|1/λ| − eγρ) we obtain

|z1 · · · zP |
1/ρ > eγL, (86)

which also contradicts with 82.

This lemma in particular ensures that the constants a and A always can be chosen

small and large respectively, so that all the solutions of BE, are inside Ω. Indeed,
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according to the previous section the solutions always belong some contour Γc for a

particular value of c. Hence they would belong to the boundary of Ω defined with c = a

or c = A. As follows from the above lemma no such solutions exist for a < a0 and

A > A0. Therefore all the solutions are in Ω defined with such a and A.

The next lemma provides a condition for evaluating the integral in (79) in the form

of infinite series.

Lemma 5 Let the domain Ω and its skeleton Γ be defined as above. Let the range of

parameters be

0 ≤ λ < 1, (87)

ρ−1 |ln λ| < γ < 0 (88)

and

ρ ≤
1

2
. (89)

Then, one can choose the constants a and A such that for any Z ∈ Γ the following

conditions hold:
∣

∣

∣

∣

gi(Z)

hi (Z)

∣

∣

∣

∣

< 1 (90)

if zi ∈ Γa and
∣

∣

∣

∣

gi(Z)

hi (Z)

∣

∣

∣

∣

> 1 (91)

if zi ∈ ΓA Furthermore the limits a → 0 and A → ∞ can be taken simultaneously, in

such a way, that these inequalities hold.

Proof. It follows from the explicit form of w(z) that for any ε > 0 one can choose a so

small that

inf
z∈Γa

|z| > (1 − ε) a
1

1−ρ (92)

sup
z∈Γa

|z| < (1 + ε) . (93)

On the other hand for any ε > 0 one can choose A so large that

inf
z∈ΓA

|z| >
(1 − ε)

λ
(94)

sup
z∈ΓA

|z| < (1 + ε)λ
ρ

1−ρ A
1

1−ρ . (95)

Let us write ci = a if zi ∈ Γa and ci = A if zi ∈ ΓA. Then we have
∣

∣

∣

∣

gi(Z)

hi (Z)

∣

∣

∣

∣

= e−LγcL
i

∣

∣

∣

∣

z1 · · · zP

c1 · · · cP

∣

∣

∣

∣

1/ρ

, (96)

Now we can use the inequalities (92) and (94) to estimate the bounds for the ratios

|zi/ci|, which yield
[

(1 − ε) min

(

a
ρ

1−ρ ,
1

λA

)]P

<

∣

∣

∣

∣

z1 · · · zP

c1 · · · cP

∣

∣

∣

∣

1/ρ

<

[

(1 + ε)max

(

(λA)
ρ

1−ρ ,
1

a

)]P

. (97)
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If we choose A and a such that

(λA)
ρ

1−ρ ≤
1

a
, (98)

then for ci = a we have

e−LγcL
i

∣

∣

∣

∣

z1 · · · zP

c1 · · · cP

∣

∣

∣

∣

1/ρ

< (1 + ε)L e−Lγ < 1, (99)

which is (90). At the same time if we choose them such that

a
ρ

1−ρ ≥
1

λA
, (100)

then for ci = A we have

e−LγcL
i

∣

∣

∣

∣

z1 · · · zP

c1 · · · cP

∣

∣

∣

∣

1/ρ

> e−Lγ

(

1 − ε

λ

)L

> 1, (101)

which is (91). The only what we need is to satisfy both conditions (98) and (100)

simultaneously, which implies

(λA)−1 ≤ a
ρ

1−ρ ≤ (λA)−( ρ
1−ρ)

2

. (102)

This is possible if ρ ≤ 1/2.

Remark 6 The limit γ → 0 in two above lemmas can be considered after the limits

a → 0 and A → ∞ are taken. This particularly solves the problem of the groundstate

mentioned above. While for γ > 0 the roots corresponding to the groundstate are away

from Z = (1, . . . , 1), they approach this point when γ approaches zero. However due to

the order of limits described they still remain separated from this point by the boundary

of Ω.

Using lemma 5, we can represent the factor 1/Pi(Z) under the integral in (79) in

the form of infinite sum. Indeed, for zi ∈ Γa we have

1

Pi(Z)
=

1

gi (Z) − hi (Z)
= −

1

hi (Z)

∞
∑

n=0

(

gi (Z)

hi (Z)

)n

, (103)

while for zi ∈ ΓA

1

Pi(Z)
=

1

gi (Z) − hi (Z)
=

1

hi (Z)

−1
∑

n=−∞

(

gi (Z)

hi (Z)

)n

. (104)

Thanks to (99,101), the series are absolutely and uniformly convergent, and, as such,

can be integrated term by term. Note that the summands have no singularities in

Ω. Therefore the contours Γa and ΓA can be deformed into a single contour. With

respect to singularities of the expression under the integral, it has the same form as the

contour Γ∞ described in the Section 3, which was used to construct the resolution of

the identity operator in the case of infinite lattice. Thus, both the contours Γa and ΓA

can be deformed into Γ∞ and the term corresponding to the integral over Γa brings a

minus sign due to the opposite orientation. The final expression has no dependence on

the values of a and A. Therefore, assuming the limit a → 0, A → ∞ one can think of
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Ω as of product of P complex plains punctured in four points {0, 1,−1/λ,∞}, which

clearly contains all the necessary solutions of the BE. As a result we have the following

expression for the sum over the roots of the Bethe equations.

Theorem 7 The sum of the values of a function f(Z) analytic in the whole complex

plane, except maybe the points {0, 1,−1/λ,∞}, over the roots of the Bethe equations is

given by the following P -tuple absolutely converging sum.

∑

Z∈Z

f(Z) =

∞
∑

n1=−∞

· · ·
∞
∑

nP =−∞

∫

Γ∞

1
×···×Γ∞

P

f(Z)
∏P

i=1

(

hi(Z)

gi(Z)

)ni

× det

[

∂ (ln gk(Z) − ln hk(Z))

∂zj

]

1≤k,j≤P

P
∏

l=1

dzl

2πi
, (105)

Note that we write ∂ (ln gk(Z)) /∂zj ≡ (∂gk(Z)/∂zj) /gk(Z) in the determinant

instead of (∂gk(Z)/∂zj) /hk(Z), because the equality hk(Z) = gk(Z) holds on the roots

of BE, which are the only contributing the integral.

6. Proof of the resolution of the identity and formula for the transition

probability

Now, we are in a position to write the sum in (55) in the integral form (105) substituting

f(Z) =

〈

X|Bγ
Ze−γ

〉 〈

B
γ

Ze−γ |Y
〉

〈

B
γ

Ze−γ |B
γ
Ze−γ

〉 . (106)

To this end we need the expression for the norm
〈

B
γ

Ze−γ |B
γ
Ze−γ

〉

. The hypothesis about

the form of the norms of Bethe vectors was first proposed by Gaudin [10, 11]. Later

it was proved by Korepin [12] within the quantum inverse scattering method for XXX

and XXZ type models. Those results can be applied to our model with minor changes.

However, they require developing the quantum inverse scattering method, which is not

a subject of the present article, and will be done elsewhere. Here we use the formulas as

they are given in the Korepin’s article. Note that the proof below and of the final result

do not rely on the validity of the formula for the norm. The latter serves as a hint for

writing the expression under the integral, while the validity of the results follows from

the resolution of the identity proof made independently. Written in the the transformed

variables (57), Gaudin formula yields

〈

B
γ

Ze−γ |B
γ
Ze−γ

〉

= det

[

zi
∂

∂zi

ln
gj(Z)

hj(Z)

]

i,j=1,...,P

, (107)

which being in the denominator of the expression under the integral cancels the Jacobian

in the numerator, yielding only the factor (z1 · · · zP )−1. Substituting the explicit form

of the eigenvectors (20,25) and the functions g(z) and h(z), (73,74), and performing one

summation over the permutations, which is trivial due to the permutation symmetry of
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the summands, we come to the following expression.

∑

Z∈Z

〈X|Bγ
Z〉
〈

B
γ

Z |Y
〉

〈

B
γ

Z |B
γ
Z

〉 = W (X)

∞
∑

n1=−∞

· · ·
∞
∑

nP =−∞

(−1)(P−1)
∑P

k=1
nk

∑

σ∈SP

(−1)|σ| (108)

×
∏P

i=1

∫

Γ∞

(

1 + λzi

1 − 1/zi

)i−σi+Pni−
∑P

l=1
nl
(

e−γzi

)−xi+yσi
−Lni dzi

2πizi

.

Though there is an infinite P -tuple sum, it turns out that only few terms in each sum

contribute. The following lemma establishes which summands are nonzero.

Lemma 8 Let X, Y ∈ ZP
<,L be two particle configurations, σ be a permutation

(σ1, . . . , σP ) of the integers 1, . . . , P , {n1, . . . , nP} ∈ ZP be a set of integers. Then,

the necessary conditions for the product

∏P

i=1

∫

Γ∞

(

1 + λzi

1 − 1/zi

)i−σi+Pni−
∑P

k=1
nk
(

e−γzi

)−xi+yσi
−Lni dzi

2πizi

(109)

to be nonzero are

ni ∈ {−1, 0, 1} (110)

for i = 1, . . . , P . Furthermore, the cases when ni = ±1 for some i = 1, . . . , P, suggest

that
P
∑

i=1

ni = 0

and there are clusters in the configurations X and Y , which in particular contain the

sites 1 and L.

Proof. To evaluate the integrals over Γ∞ under the product we expand the expression

under the integral into the Laurent series in the ring 1 < |z| < 1/λ, implying λ > 1,

and look for the coefficient coming with z−1. Let us for brevity introduce the notations

aij = i − j + Pni −
P
∑

k=1

nk, (111)

bij = xi − yj + Lni. (112)

Then, the integrals to be nonzero, the following conditions must be met:

a. if aiσi
= 0, then biσi

= 0; (113)

b. if aiσi
> 0, then biσi

≤ aiσi
; (114)

c. if aiσi
< 0, then biσi

≥ aiσi
. (115)

Given particle configurations X, Y and a permutation σ, every element from the set

{ni}i=1,...,P fall into one of three classes (a),(b) or (c) depending on the sign of aiσi
.

Then the inequalities (113-115) determine which restrictions on ni must be imposed, all

the integrals in the product to be nonzero simultaneously.

First we note that as the coordinates of particles on the finite lattice satisfy

|xi − yj| < L, the only way to satisfy the equality biσi
= 0 is to put ni = 0. Therefore,

this is always the case for the numbers ni, which belong to the class (a).
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One can use a similar argument to consider a particular case of the set {ni}i=1,...,P

with all components equal.

n1 = n2 = . . . = nP ≡ n. (116)

Then for such i that aiσi
= (i − σi) > 0, class (b), (114) requires n ≤ 0, while for such j

that ajσj
= (j − σj) < 0, class (c), (115) implies n ≥ 0. Apparently for any permutation

σ, where for some i there is a number σi which satisfies (i − σi) ≥ 0, there must be at

least one j such that (j − σj) ≤ 0. Thus we necessarily have n = 0.

To study the other sets we estimate the bounds of their maximal and minimal

elements. Consider the sets {ni}i=1,...,P , where not all components are equal. From such

set a maximal element can be chosen

nmax ≡ max{n1, . . . , nP}. (117)

Of course, in general several numbers from the set can attend the maximum. The proof

below consists of two steps. We first show that at least one of them falls either into

the class (a) or into the class (b), i.e. satisfies either the first equality in (113) or the

first inequality in (114). Then we find which restrictions on nmaxfollow from the second

equality of (113) or the second inequality (114).

To proceed with the first step we note that for any k such that nk = nmax at least

a part of akσk
is always positive

Pnk −
P
∑

l=1

nl > 0. (118)

The remaining term (k − σk), which also enters into akσk
, is either positive or negative.

In the case when it is positive or it is negative, but its absolute value is smaller then one

of the other terms, we have akσk
≥ 0. It can happen, however, that (k − σk) is negative

and its absolute value is large enough to turn akσk
to be negative. This is possible when

Pnk −
P
∑

k=1

nk ≤ |k − σk| ≤ P − 1. (119)

Let s be an integer, 1 ≤ s ≤ P , such that

Pnmax −
P
∑

k=1

nk = P − s. (120)

The last equation suggests that the number elements in the set {ni}i=1,...,P equal to nmax

is at least s, i.e. there exists at least s integers 1 < k1, < · · · < ks,≤ P such that

nk1
= · · · = nks = nmax. (121)

Let us now check the sign of aiσi
for i chosen from k1, . . . , ks and an arbitrary permutation

σ. At worst we have σk1
= P − s + 1, . . . , σks = P , in which case for i = k1,

aiσi
= [k1 − (P − s + 1)] + (P − s) ≥ 0. For any other σ either σi can be taken

smaller or i bigger, so the inequality becomes strict. Thus, we conclude that there is

always at least one maximal element belonging either to the class (a) or (b), which

finishes the first step of the proof.
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According to the above arguments for the class (a) we get nmax = 0. Let now

ni = nmax be in the class (b). Combination of the second inequality (114) and the finite

lattice restriction on the difference of the particle coordinates

|(xi − yj) − (i − j)| ≤ L − P (122)

give the upper bound for nmax.

nmax ≤ 1 −
1

L − P

P
∑

k=1

nk. (123)

All the above arguments can be applied also to the minimal element as well

nmin ≡ min{n1, . . . , nP},

so we conclude that it belongs either to the class (a), where nmin = 0 or to the class (c),

where (115) and (122) yield

nmin ≥ −1 −
1

L − P

P
∑

k=1

nk. (124)

It follows from (123) that if
∑P

k=1 nk is positive, then nmax must be strictly less than

1 and hence nonsensitive. At the same time, one sees from (123) that if
∑P

k=1 nk is

negative then nmin must be strictly greater than −1 and hence nonnegative. Thus the

only possibility is to have

P
∑

k=1

nk = 0. (125)

Substituting this back into (123,124) we conclude that there are only three possible

values of the elements of the set {ni}i=1,...,P

ni ∈ {−1, 0, 1}, i = 1, . . . , P, (126)

the numbers +1 and −1 appearing in the set {ni}i=1,...,P equally many times.

Consider now the case when not all ni are equal to zero, i.e.

nmin = −1, nmax = 1 (127)

If we return to the inequalities (114,115) and repeat the derivation of (123,124) using

(125), we obtain that the case (127) is realized when the weak inequality (122) turns

to the equality. Specifically, deriving the estimate for ni = nmax = 1, the necessary

condition for nmax to be equal to 1 is

yσi
− xi − (σi − i) = L − P. (128)

This means that the particles with coordinates xi and yσi
belong to the clusters in X

and Y , which spread to the last and the first sites respectively, i.e. the particle at xi

belongs to the cluster of X, which starts with x1 = 1 and the particle at yσi
belongs to

the cluster of Y , which ends with yL = L. Similarly, for nj = nmin = −1 we have

yσj
− xj − (σj − j) = − (L − P ) ,



Determinant solution for the TASEP with parallel update II. Ring geometry 25

i.e. the particle at xj belongs to the cluster of X, which ends with xL = L and the

particle at yσj
belongs to the cluster of Y , which starts with y1 = 1. Thus we conclude

that in both X and Y there exist the clusters, which cover at least the sites at the

positions 1 and L. This proves the last statement of the lemma.

Of course the choice of the reference point at the ring has a conventional character.

One can get reed of the terms ni = ±1 by simple rotation, which places any hole of one

of the configurations X or Y either into the site 1 or L. This fact is useful for the proof

of the resolution of the identity relation.

Theorem 9 The resolution of the identity operator is given by l.h.s of (54).

Proof. Consider the integral representation (108) of the sum in (54). According to the

pervious lemma if one of the configurations X and Y are such that any of the sites 1 and

L is empty the only term of the sum that remains corresponds to n1 = · · · = nP = 0.

This term coincides with the resolution of the identity operator for the infinite lattice.

For the proof of the infinite lattice case we refer the reader to the Proposition 1 from

our first paper [1].

The cases where in both configurations X and Y there is a cluster containing the

sites 1 and L can be reduced to the previous situation by translation. Specifically we

note that the product 〈X|Bγ
Z〉
〈

B
γ

Z |Y
〉

is invariant under the translations, i.e.

〈x1 + 1, . . . , xP + 1|Bγ
Z〉
〈

B
γ

Z|y1 + 1, . . . , yP + 1
〉

=
〈

Xτ−1|Bγ
Z

〉 〈

B
γ

Z|τY
〉

= τZτ−1
Z 〈X|Bγ

Z〉
〈

B
γ

Z |Y
〉

= 〈x1, . . . , xP |B
γ
Z〉
〈

B
γ

Z|y1, . . . , yP

〉

.

Hence we can repeatedly apply the translation operators τ and τ−1 until a hole comes

either to the site 1 or L. In this way the problem is reduced to the proved one.

Since we have proven the formula for the resolution of the identity operators, we

can apply it to find the matrix element we are looking for. To this end, as shown in (56)

we must insert the eigenvalue of Tt
γ under the integral. Then the integral representation

of F γ
t (X, t|Y, 0) is

〈

X|Tt
γY
〉

= (1 + λ)−Pt W (X)
∑

σ∈SP

(−1)|σ|

×

∫

Γ

∏P

i=1

(e−γzi)
−xi+yσi (1 + λzi)

i−σi+t

(1 − 1/zi)
i−σi

hi (Z)

Pi (Z)

dzi

2πizi

. (129)

Going to the form of the P -tuple sum we have

〈

X|Tt
γY
〉

= W (X)
∞
∑

n1=−∞

· · ·
∞
∑

nP =−∞

eγ
∑P

j=1
(xj−yj+Lnj) (−1)(P−1)

∑P
l=1

nl

×
∑

σ∈SP

(−1)|σ|
∏P

i=1
f(i − σi + Pni −

P
∑

k=1

nk, xi − yσi
+ Lni, t), (130)

where

f(a, b, t) = (1 + λ)−t

∫

Γ∞

(1 + λz)t

(

1 + λz

1 − 1/z

)a

z−b dz

2πiz
. (131)
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The integral for f(a, b, t) is evaluated in terms of the hypergeometric functions (8). The

sum over the permutations leads us to the determinant, given in (10). By putting γ = 0

we obtain the result for conditional probability announced.

Like the sum obtained for the resolution of the identity operator, which is the

particular case of the sum (130) at t = 0, the latter sum being formally infinite, however

contains finitely many nonzero terms. The analysis similar to one of the lemma 8 shows

that at time t the upper bound for the maximal element nmax(t) of the set {ni}i=1,...,P ,

which ensures corresponding summand to be nonzero, is

nmax(t) ≤ 1 −
1

(L − P )

P
∑

k=1

nk +
t

(L − P )
, (132)

while that for minimal one, nmin(t), is still like it was for the t = 0 case

nmin (t) ≥ −1 −
1

(L − P )

P
∑

k=1

nk. (133)

The bounds for the sum
∑P

k=1 nk can be obtained from the following arguments. Suppose

that
∑P

k=1 nk > t. Then (132) requires nmax(t) ≤ 0, which contradicts the assumption.

Thus we have
P
∑

k=1

nk ≤ t. (134)

Another argument can be given, based on the fact that
∑P

k=1 nk ≤ Pnmax(t). Then

using (132) we obtain

P
∑

k=1

nk ≤ P +
t − P

L
. (135)

The first upper bound is lower than the second, when t < P, and vice versa when t > P .

For the lower bound we suppose that
∑P

k=1 nk < 0, which contradicts (133) and results

in
P
∑

k=1

nk ≥ 0. (136)

Finally we can use these inequalities to estimate the range of the summation indices

corresponding to the summands, which give nonzero contribution.

Lemma 10 For the summands of the sum (130) to be nonzero it is necessary that

ni ≤ 1 +
t

(L − P )
,

P
∑

k=1

nk ≥ 0 (137)

and

ni ≥ −1 −
t

(L − P )
,

P
∑

k=1

nk ≤ t (138)
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if P ≤ t and

ni ≥ −1 −
P (L − P + t)

L (L − P )
,

P
∑

k=1

nk ≤ P +
t − P

L
. (139)

if P > t, for i = 1, . . . , P . In the cases, when the expressions in r.h.s. are not integer,

the inequalities are strict.

From the definition of the generating function F γ
t (X, t|Y, 0) one concludes that the

coefficient of eγJ for some nonnegative integer J is the probability Pt(X, J ; t|Y, 0; 0)

for the total distance travelled by particles for time t and the final configurations X,

given the initial configuration is Y . One can see that in (130) the similar term is

e
∑P

i=1
(xi−yi+Lni), while the probability for the travelled distance to be J is the sum of

the coefficients of terms, where the sum n1 + · · ·+nP is fixed,
∑P

i=1 (xi − yi + Lni) = J .

Thus, the sum (n1 + · · ·+nP ) has a meaning of the total number of windings around the

lattice all the particles made. By this reason, the sum is always nonnegative unlike the

individual numbers n1, . . . , nP . The meaning of the latter is well understood in frame of

the geometric approach to the BA [1]. These are the winding numbers of ”virtual” free

trajectories, which being weighted with corresponding weights can be used to reconstruct

the TASEP dynamics.

7. Conclusion and discussion

To conclude we have obtained the probability of the transition from one configuration

to another for arbitrary time for the TASEP with parallel update on a ring. To this end

we developed the method of summation over the solutions of the Bethe equations, which

is based on the multidimensional version of Cauchy residue theorem. In this way the

integral representation of the solution is obtained. The expressions under the integral

can be expanded into the uniformly convergent power series, which being integrated

term by term, yields the result in form of multiple and formally infinite sum of the

terms, each having the determinant form. It is shown that only finitely many terms of

this sum are nonzero. Note that though the convergence of the series under the integral

is proved for the domain 0 ≤ ρ ≤ 1/2, the behaviour of the final finite sums have no

singularities at the point ρ = 1/2 as well as for any values of ρ. Therefore we expect

that arguments of analytic continuation exist which extend the proof for any value of

density, 0 ≤ ρ ≤ 1. On the other hand the case 1/2 ≤ ρ ≤ 1 is related to 0 ≤ ρ ≤ 1/2 by

particle hole symmetry. It is an interesting exercise to find an explicit relation between

the final formulae of the transition probabilities for these two cases.

There are several directions of possible development of the result. First, it looks

possible to generalize the method to extract not only the sum over the solutions of

the BE, but also to extract the contribution of particular solutions. In this way

one could obtain closed exact expressions for particular eigenvalues and eigenvectors,

rather than only the asymptotic behaviour studied before. Second, the integral
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representation obtained can be useful to study the large time asymptotics for the growth

phenomena with time. Many similar results where obtained recently for the infinite

lattice, due to the observed parallels with the theory of random matrix ensembles

[13, 14, 15, 16, 17, 18, 19]. The Bethe ansatz, giving the integral representations of

the physical quantities like particle current probability distribution, could also be a

starting point of such an asymptotical analysis. Particularly, the result of present paper

could be used to make an advance for the ring geometry where not much results have

been obtained yet.
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