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Comment on the higher derivative Lagrangians in relativistic theory

Mathieu Beau
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4∗

(Dated: August 20, 2013)

We discuss the consequences of higher derivative Lagrangians of the form α1Aµ(x)ẋ
µ, α2Gµ(x)ẍ

µ,

α3Bµ(x)
...
xµ, α4Kµ(x)

....
x µ, · · · , U(n)µ(x)x

(n)µ in relativistic theory. After establishing the equations
of the motion of particles in these fields, we introduce the concept of the generalized induction
principle assuming the coupling between the higher fields U(n),µ(x), n ≥ 1 with the higher currents

j(n)µ = ρ(x)x(n)µ, where ρ(x) is the spatial density of mass or of electric charge. In addition, we
discuss the analogy of the field Gµ(x) with the gravitational field and its inclusion in the general
relativity framework in the last section. This letter is an invitation to reflect on a generalisation of
the concept of inertia and we also discuss this problem in the last section.

I. HIGHER DERIVATIVE LAGRANGIANS AND

DYNAMIC EQUATIONS OF A PARTICLE

Ostrogradsky introduced the idea of higher deriva-
tive Lagrangians in classical mechanics [1], and there
is a series of articles published about this topic, see
[2],[3],[4],[5],[6]. However, to my knowledge, there is
no article dealing with relativistic higher derivative La-
grangians of this type:

L̃(ẋ, ẍ, · · · , x(n))

= α1Aµ(x)ẋ
µ + α2Gµ(x)ẍ

µ + · · ·+ αnU(n)µ(x)x
(n)µ

(1)

where x(n)(s) ≡ dnx(s)/dsn are the n-derivatives of the
position (ds = cdτ , where τ is the proper time), and
U(n)µ(x), n = 1, 2, 3, .. are the generalized vectorial fields
coupling linearly with the n-derivatives. Here we denote
the field U(1)µ(x) = Aµ(x) to refer to the electromagnetic
potential. Also we denote U(2)µ(x) = Gµ(x) because of
the analogy with the geodesic equations that we will see
in the equation (3). From (1), we set the action:

S =

∫
dsL0(ẋ) +

∫
dsL̃(ẋ, ẍ, · · · , x(n)) ,

where L0(ẋ) ≡ mc2

2 ẋµẋ
µ. We will not give an explicit

general dynamic theory for a given n, we consider only
n = 2 for the moment and we will discuss the general
case later. An integration by part for n = 2 gives the
equivalent action [4]:

S̃ = α1

∫
dsAµ(x)ẋ

µ
− α2

∫
ds ∂νGµẋ

µẋν ,

and one can see that the first part of the action S̃ is simi-
lar to the electrodynamic action whereas the second part
is similar to the gravitational action. Indeed, from the
generalized Euler-Lagrange equations (see [1],[2],[3],[5]):

d2

ds2
(
∂L

∂ẍµ
)−

d

ds
(
∂L

∂ẋµ
) +

∂L

∂xµ
= 0 , (2)
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with L = L0 + L̃, we get:

mc2ηµν ẍ
ν
− α2εµν ẍ

ν
− α2∆µνσ ẋ

ν ẋσ = −α1Fµν ẋ
ν (3)

where εµν and ∆µνσ are:

εµν ≡ ∂µGν + ∂νGµ

∆µνσ ≡ ∂ν∂σGµ = 1
2 (∂νεµσ + ∂σεµν − ∂µενσ)

(4)

and where Fµν = ∂µAν − ∂νAµ. One sees the anal-
ogy with the equations of the motion of a charged par-
ticle in a gravitational field and in an electromagnetic
field. However, the fixed metric (or background metric)
is Minkowskian. Then, the quadrivector field Gµ(x) can
be seen as a displacement vector field and εµν can be
viewed as an infinitesimal strain tensor by analogy with
the deformation theory of a continuous medium [7].
Now, let us take n = 3, we denote U(3)µ ≡ Bµ. From

−
d3

ds3
(
∂L

∂
...
xµ ) +

d2

ds2
(
∂L

∂ẍµ
)−

d

ds
(
∂L

∂ẋµ
) +

∂L

∂xµ
= 0 (5)

one has:

mc2ηµν ẍ
ν + α3Hµν

...
x ν

− α3Υµνσρẋ
ν ẋσ ẋρ

− 3α3Σµνσẍ
ν ẋσα2εµν ẍ

ν
− α2∆µνσ ẋ

ν ẋσ = −α1Fµν ẋ
ν

(6)

where

Hµν ≡ ∂µBν − ∂νBµ

Σµνσ ≡ ∂ν∂σBµ

Υµνσρ ≡ ∂ν∂σ∂ρBµ (7)

We can see that this field generalizes the idea of the elec-
tromagnetic field because of the antisymmetry of Hµν .
However, in (6) there are some other fields, similar to
∆µνσ, coupling with the combinations of the odd deriva-
tives of xµ, i.e. ẍν ẋσ and ẋν ẋσẋρ.
We can also discuss the higher derivative terms. For

n = 4, we denote the field Kµ(x) ≡ U(4)µ(x). The dy-
namic equations have a similar structure to the one we
get for Gµ(x) (i.e. for n = 2). As it has been shown
that in the non-relativistic theory [4], we notice that
the Lagrangian α4xµ

....
x µ is equivalent to this Lagrangian

α4ẍµẍ
µ and the quantity α2ẋ

2+α4ẍµẍ
µ−2α4ẋµ

...
xµ could

http://arxiv.org/abs/1305.5759v2
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be interpreted as a more general kinetic energy [5]. Here
the problem is similar: the Lagrangian α4Kµ(x)

....
x µ is

equivalent to α4∂µKν ẍ
µẍν + α4∂σ∂µKνẍ

µẋν ẋσ and so
is obviously more complicated than the equivalent La-
grangian that we get for the special case Kµ(x) = xµ.
To finish this section, let us now consider the gener-

alized fields U(n)µ(x), n ≥ 1. By the generalized Euler-
Lagrange equations:

n∑

k=0

(−1)k
dk

dsk
∂L

∂x(k)µ
= 0

we get terms of the form ∂µ1
· · · ∂µp

U(n), p =
1, · · · , n multiplied by the combination of the derivatives
x(l1)µ1x(l2)µ2 · · ·x(lp)µp ,

∑p
j=1 lj = n. One can see that

the “even” n-fields are analogous to the ”gravitational
field” as the “odd” n-fields are to the ”electromagnetic
field”, since, in the dynamic equations, the derivatives
x(n)µ are multiplied by the symmetric (if n is even) /
antisymmetric (if n is odd) part of the first derivative of
the field:

(∂µUν + (−1)n∂νUµ)x
(n)ν ,

here we denote the n-field by Uµ. We will see the conse-
quences of this remark in the next section.

II. GENERAL FIELDS HYPOTHESIS

The point is to relate the possible existence of these
fields with a generalized induction phenomenon. We will
suppose that there exists new physical couplings with
higher currents, yet unkown, and we will generalize the
electromagnetic field theory.

A. Construction of the n = 2-field equations by

analogy with the vectorial electromagnetic field

In the Lagrangian (1) for n = 2 we notice that the
field Gµ is coupled with the acceleration of the particle
as the field Aµ is coupled with the velocity of the particle.
By analogy with the construction of the electromagnetic
field theory, we suggest the following field equations:

∂µε
µν(x) = −κj(2)ν(x) , (8)

where the acceleration current density j(2)ν (generally
non-conserved) is:

j(2)ν(x) ≡ ρm(x)c2
duν

ds
, (9)

where ρm(x) is the density of particles and duν

ds
is the

4-acceleration. Let us rewrite the coupling constant κ as
follows

κ =
8πGλ2

c4

where λ has the dimension of a length.
To complete the system of field equations, we need ten

equations:

∂σ∂
σεµν + ∂µ∂νε

σ
σ = ∂µ∂

σεσν + ∂ν∂
σεσν , (10)

The equations (10) are analogous to the compatibility
equations for the strain tensor in the three-dimensional
non-relativistic theory of deformation of continuous me-
dia [7].
Hence we get the following wave equations:

�ενσ(x) + ∂ν∂σε
µ
µ(x) = −κξ(2)νσ (x) (11)

with ξ
(2)
νσ (x) ≡ ∂σj

(2)
ν (x) + ∂νj

(2)
σ (x) . Also, the trace of

εµν follows this equation

�εµµ(x) = −κ∂µj
(2)µ(x) , (12)

this means that εµµ is a non-massive scalar field. In the
linear theory of the deformation of a continuous medium,
the trace of the strain tensor is interpreted as the con-
traction/dilation of the volume [7]. Here we observe a
similar property and by the equation (12) we conclude
that the relativistic deformation of the volume of the
four dimensional continuous medium is related to the
non-conservation of the current j(2).

B. Generalisation to the n-field equations

With respect to the analogy that we have already dis-
cussed above between the even fields and the gravita-
tional field and between the odd fields with the electro-
magnetic field and using the field theory developed for the
case n = 2, we can construct the general field theory via
a more general induction principle. Following this rule,
we rewrite the constants in (1) as α2n = mc2(λn)

2n−2

and α2n−1 = (ξn)
2n−2

c2n−2 , n ≥ 1, where λn and ξn are fun-
damental ’length’ constants and G is the gravitational
constant.
It comes naturally that for so-called gravitational type

fields U(2n) ≡ G(n), n ≥ 1, the coupling has the form:

−
8πG

c2
(λn)

2n

c2n
G(n)µ(x)j

(2n)µ(x) , (13)

whereas for the so-called electromagnetic type fields

U(2n−1) ≡ A(n), n ≥ 1, the coupling has the form:

µ0
(ξn)

2n−2

c2n−2
A(n)µ(x)j

(2n−1)µ(x) , (14)

where A(n)µ has the dimension of N.A−1 (N is the New-
ton and A the Ampère), µ0 is the vacuum permeabil-
ity (µ0 = 4π × 10−7 N.A−2), and where G(n)µ has the
dimension of a length. The generalized currents for
n = 1, 2, 3, .. are constructed as follows:

j(n)ν ≡

{
ρm(x)d

nxν

dτn , if n is even

ρe(x)
dnxν

dτn , if n is odd
(15)
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where ρm(x) is the mass density and ρe(x) the electric
charge density. Similar to (8), we construct an (2n− 1)-
order linear differential theory to relate the sources and
the fields:

O(n)
µ (λn)ǫ

µν

(n)(x) = −
8πG

c2
λ2n
n

c2n
j(2n)ν(x), n ≥ 1 , (16)

and

Q(n)
µ (ξn)f

µν

(n)(x) = −µ0
ξ2n−2
n

c2n−2
j(2n−1)ν(x), n ≥ 1 , (17)

where O
(n)
µ (λn) and Q

(n)
µ (ξn) are two (2n− 1)-order dif-

ferential operators and where εµν(n)(x) ≡ ∂µGν
(n) + ∂νGµ

(n)

and fµν

(n)(x) ≡ ∂µAν
(n) − ∂νAµ

(n).

From those rules we could obtain similar wave equa-
tions to (11) and (12) but with a higher order differential
operator (λn)

2k
�� · · ·�︸ ︷︷ ︸
k times

, k = 1, · · · , n. For example,

for the 4-field we can take O
(4)
µ (λ) = (λ2

� + 1)∂µ and
then we get the wave equation for the trace of the tensor
ζµν ≡ ∂µKν + ∂νKµ:

(
λ2

�+ 1
)
�ζµµ (x) = −

8πGλ4

c6
∂µj

(4)µ(x) , (18)

and then ζµµ is a massive scalar field.
Notice that for the electromagnetic type fields, the

choice of the fields A(n)µ (due to the antisymmetry of
the fields fµν

(n)) is not unique whereas for the gravitational

type fields all of the components of the fields G(n)µ are
physical.
This project is at an early stage and the construction

of these operators O
(n)
µ and Q

(n)
µ has to be understood,

even for n = 2.

C. Unitary fields

Physically, we can understand the generalized vecto-

rial fields theory as perturbative corrections of the first
order theory (i.e. A(2)µ ≡ Bµ(x) is a correction of the
Minkowskian theory of Electromagnetism field A(1)µ ≡

Aµ). Therefore, it is natural to unify the gravity type
fields as well as the electromagnetic type fields. Then,
we construct the dimensionless unification constants:

γjl =
λj

λl

, θjl =
ξj
ξl
, j, l = 1, 2, 3, · · ·

where the constants λn, n ≥ 1 and ξn, n ≥ 1, were
introduced in section II.B.
For example, if we suppose that Aµ(x) = Bµ(x), we

get the coupling:

µ0Aµ(x)

(
j(1)µ(x) +

ξ2

c2
j(3)µ(x)

)

where we put ξ2 = ξ (remind that α1 = 1 and α3 =
ξ22/c

2). Phenomenologically, this means that for an elec-
tric circuit with an intensity of this type I(t) = I0t

2/τ2,

where τ is a time constant, the third derivative of the
electrons in the current is non-zero (this kinematic quan-
tity is called the Jerk, see [8]) and so that the electromag-
netic field would be modified by the jerk current j(3). We
mention that in the generalized theory of Electrodynam-
ics [6] the relation with the higher derivatives currents
has not been suggested.
Similarly, we can construct the unified coupling for the

even fields. for example, if we suppose that Gµ(x) =
Kµ(x) ≡ G(2)µ(x), we can reconstruct the unified cou-
pling for n = 2, 4 in the following way:

−
8πG

c2
λ2

c2
Gµ(x)

(
j(2)µ(x) + γ4λ

2

c2
j(4)µ(x)

)

where we put λ1 = λ, γ = γ21 and where we introduce

the effective current j̃(2)µ = j(2)µ + γ4 λ2

c2
j(4)µ. So the

effective deformation ǫµν to the Minkowski metric is also
induced by the second derivative of the acceleration of
the particles moving in the space.

III. COMMENTS

• Microscopic Physics and generalized currents

The effect of gravitation at the microscopic scale is
not yet well known. We wonder if the current j(2) of
the acceleration of masses will be significant. There is
no current proof that gravitation can be viewed as a
metric field at this scale. It might also be a challenge
to see whether the higher derivative fields play a role
in particle physics. We gave the interpretation of the
2n-fields (ex Gµ and Kµ) and between the (2n− 1)-fields
(ex Aµ and Bµ) as the generalisation of the gravitational
and electromagnetic field for higher currents. Hence,
formulating a perturbative quantum field theory includ-
ing these fields is an open question.

• Generalized kinematic model and special relativity
theory

After introducing the higher derivative fields and the
higher currents, we naturally wonder if it is possible to
extend the Lorentzian kinematic theory to a more gen-
eral inertial concept where the higher derivatives of the
quadri vector position appear in the free Lagrangian. For
example, following the discussion in section I, we propose
the following Lagrangian:

Lλ;α(ẋ, ẍ) =
mc2

2

(
ẋµẋ

µ + αλ2ẍµẍ
µ
)
, (19)

where m is the mass of the particle, λ is a universal con-
stant and α = ±1. For this model the free motion is not
determined by ẍµ = 0 but by the equations:

....
x µ = −

α

λ2
ẍµ (20)
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independently to the mass of the particle. We question
whether the model (19) is consistent with the special
theory of relativity. One problem concerns the simul-
taneity. Consider an observer in an inertial reference
frame, i.e. ẍµ(s) = 0. If we imagine that a photon
is emitted from an accelerated massive particle (the
equation of motion are given by (19) with the initial
conditions

...
xµ(0) = 0 and ẍµ(0) = aµ), is the photon

accelerated with respect to the inertial reference frame
observing the motion of the particle or does its velocity
remain constant and equal to c ? Behind this question is
a more fundamental problem of the equivalence between
the accelerated reference frames. This requires further
study.

• Strain and stress tensor in General Relativity

We will discuss only the n = 2-field model of the sec-
tion II.A and we consider αn≥3 = 0. In a future project,
it will be interesting, as a first step, to formulate the Gµ-
field theory as a perturbative gravitational field arising
from the metric field and to then to look at the possible
effects for particle physics and/or cosmology.
We will give here the idea to construct the covariant

strain/stress field theory. Let us consider the covariant
derivative for a Riemannian metric space εµν = DµGν +
DνGµ. Now, we construct a stress tensor

σµν(x) = ρGc
2εµν(x) (21)

where ρGc
2 = c4

8πGλ2 is the density of energy constant,
and analogous to the Young modulus for an isotropic

medium [7]. The stress tensor could be added to the
Einstein field equations of gravity and then we get the
relation:

Dµσ
µν(x) +DµT

µν(x) = 0 (22)

where Tµν is the energy-momentum tensor in the Ein-
stein field equation. This equation means that the total
energy in the universe is conserved but that the “visi-
ble” energy can be accelerated. This variation of inertia
is compensated by the divergence of the stress energy of
the continuous medium. There is no contradiction with
Einstein theory of gravitational fields and this gives a new
perspective on the Mach principle revisiting the “abso-
lute” acceleration concept as a natural motion in space-
time deformed by the matter-energy contained therein.
We refer the reader to the paper of Einstein on a related
topic [9]. The relativistic theory of an Aether was dis-
cussed several times, see for e.g. [10], [11]. In this paper,
our hypothesis is different and gives a relativistic theory
of the deformation of continuous media (for which the
geometry is still described by the metric field whereas
the strain tensor is an additional field). Then, we could
construct a more general stress tensor:

σµν(x) = Cµναβ(x)ε
αβ(x) (23)

with the elasticity tensor Cµναβ(x). In fact, a consis-
tent theory should give the equations for the elasticity
tensor (which gives the mechanical property of the four
dimensional continuous medium) and we think it might
be related to the metric tensor as well as its derivatives
(i.e. to the Ricci tensor).
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