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Abstract

Establishing the strong converse theorem for a communication channel confirms that the capacity of that channel, that is,
the maximum achievable rate of reliable information communication, is the ultimate limit of communication over that channel.
Indeed, the strong converse theorem for a channel states that coding at a rate above the capacity of the channel results in the
convergence of the error to its maximum value 1 and that there is no trade-off between communication rate and decoding error.
Here we prove that the strong converse theorem holds for the product-state capacity of quantum channels with ergodic Markovian
correlated memory.
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Quantum channels with memory, product-state capacity, strong converse theorem.

I. INTRODUCTION

Establishing the optimal communication rate at which information can be reliably transmitted over noisy quantum channels is

a question of central importance in quantum information theory. The achievability, or direct part, of a channel coding theorem,

establishes a rate of communication below which the decoding error tends to zero in the limit of large block length. This raises

the natural question of whether a larger rate can be achieved with a decoding error which is not equal to zero but less than 1.

In other words, the question of whether an error-rate trade-off is possible emerges. The strong converse theorem addresses this

question and when established for a particular channel, confirms that there can be no such error-rate trade-off for that channel.

Traditionally, noisy communication is modelled by the repeated application of a particular channel to an encoded message.

This type of channel is referred to as memoryless, and this assumption of independent successive channel uses is considered

to be unrealistic.

In this work we establish the strong converse theorem for the communication of classical information encoded into product

quantum states and transmitted over a particular class of quantum channels with memory. That is, we are concerned with

establishing the strong converse theorem corresponding to the product-state capacity of these channels with memory. The

behaviour of the quantum channels, denoted by Φ(n), is modelled by an ergodic Markov chain, on a finite state space I ,

specified by an invariant distribution {γi}i∈I and transition matrix {qi,i′}i∈I over a finite set of quantum channels {Φi}i∈I .

Indeed this invariant distribution initiates the channel sequence, with the transition matrix {qi,i′}i∈I governing the subsequent

behaviour. Moreover we consider the particular case where the overall behaviour of the channel Φ(n) is determined by an

ergodic Markov chain. That is, a Markov chain which is a periodic and irreducible, resulting in the convergence of the n-step

transition probability q
(n)
i,i′ to equilibrium in the asymptotic limit, i.e. q

(n)
i,i′ → γi, as n → ∞. In this case the quantum channel

Φ(n) is considered to be forgetful.

To provide some background on this type of quantum channel with memory, we note that Macchiavello and Palma [1]

were the first to consider a Markovian noise correlation model for communication over quantum channels. Here they study

the entanglement-assisted classical capacity for a quantum channel with so-called partial memory, where the channel is written

as a convex combination of a sequence of uncorrelated depolarising channels, i.e. a memoryless depolarising channel, and a

sequence of correlated depolarising channels. They showed a higher mutual information can be achieved by entangling two

successive uses of this channel.

Bowen and Mancini [2] considered a more general model for noise correlation which includes Markovian noise correlations

as a special case. In particular, taking the set of possible channels to be those which can be written as unitary Kraus operators,

with error probabilities given by steady-state probabilities for the underlying Markov chain, they recover the HSW (Holevo-

Schumacher-Westmoreland) [3], [4] capacity bound. In [5] Datta and Dorlas generalise this result to arbitrary Markov chains,

generalising the HSW capacity.

http://arxiv.org/abs/1602.08362v1
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Previously, Datta and Dorlas [6] had established the coding theorem and weak converse for the product-state capacity of a

class of channels with so-called long-term memory, given by a convex combination of memoryless channels. Later Dorlas and

Morgan [7] also considered another type of channel with long-term memory, namely the periodic channel and showed that for

a particular realisation of this channel in terms of amplitude damping channels, the strong converse in fact does not hold.

On the other hand, the strong converse theorem has been shown to hold for the product-state capacity for all memoryless

quantum channels. This result was proved independently by Winter [8] using the so-called method of types, generalising the

technique of Wolfowitz [9] for classical channel coding, and by Ogawa and Nagaoka [10] generalising Arimoto’s method [11].

Indeed, it is notable that the non-commutative generalisation of Arimoto method and it’s connection to Rényi entropy and

divergence, has also lead to successes in the attempt to establish a strong converse theorem for certain memoryless quantum

channels with arbitrary input states. We point to König and Wehner [12] for the first such proof and for a treatment of the

general open problem.

In this article, we follow similar lines to Winter [13] to prove that the strong converse holds for the product-state capacity

of channels with ergodic Markovian correlated memory. We note that proving this result using the alternative Arimoto method

might also be of interest, as well as establishing a strong converse theorem for this noise model in the case where restrictions

on the input states and/or on the type of memory are lifted. In the latter case quantum memory, considered by Bowen and

Mancini [2] and, more generally by Kretschmann and Werner [14], could be considered.

II. DEFINITION OF THE CHANNEL AND STATEMENT OF THE THEOREM

We consider quantum channels with Markovian memory as first introduced by Macchiavello and Palma [1]. The general

classical capacity of such channels was derived in [5].

Let there be given a Markov chain on a finite state space I with transition probabilities {qii′}i,i′∈I and let {γi}i∈I be an

invariant distribution for this chain, i.e.

γi′ =
∑

i∈I

γiqii′ . (2.1)

Moreover, let Φi : B(H) → B(K) be given completely positive trace-preserving (CPT) maps for each i ∈ I , where H and

K are finite-dimensional Hilbert spaces. We also consider the tensor product algebras An = B(H⊗n) and the infinite tensor

product C∗-algebra obtained as the strong closure

A∞ =

∞
⋃

n=1

An, (2.2)

where we embed An into An+1 in the obvious way. Similarly, we define Bn = B(K⊗n) and B∞. A state on an algebra A
is a positive linear functional φ on A with φ(I) = 1, where I denotes identity operator. If A is finite-dimensional then there

exists a density matrix ρφ ∈ A such that φ(A) = Tr(ρφA), for any A ∈ A. We denote the states on A∞ by S(A∞), those on

An by S(An),etc.

We now define a quantum channel with Markovian-correlated noise by the CPT map Φ∞ : S(A∞) → S(B∞) on the states

of A∞ by

(Φ∞)(φ)(A) =
∑

i1,...,in∈I

γi1qi1i2 . . . qin−1in Tr [(Φi1 ⊗ · · · ⊗ Φin)(ρφn
)A] (2.3)

for A ∈ Bn. Here, φn is the restriction of φ to An and ρφn
its density matrix. It is easily seen, using the property (2.1),

that this definition is consistent and defines a CPT map on the states of A∞, and moreover, that it is translation-invariant

(stationary).

We denote the transpose action of the restriction of Φ∞ to S(An) by Φ(n) : B(H⊗n) → B(K⊗n), i.e.,

Tr
(

Φ(n)(ρφ)A
)

= (Φ∞(φ))(A),

for a density matrix ρφ ∈ B(H⊗n), φ ∈ S(An).
Thus

Φ(n)(ρ(n)) =
∑

i1,...,in∈I

γi1qi1i2 . . . qin−1in(Φi1 ⊗ · · · ⊗ Φin)(ρ
(n)). (2.4)

In the following we assume that the Markov chain (qii′ ) is irreducible and aperiodic. The quantum channel is then forgetful

in the terminology of Kretschmann and Werner [14]. In that case it was proved in [5] (and in a more general setting in [14])

that the classical capacity of the channel is given by

χ∗(Φ) = lim
n→∞

1

n
sup

{p
(n)
j ,ρ

(n)
j }

χ({p(n)j ,Φ(n)(ρ
(n)
j )}) (2.5)
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where

χ({p(n)j ,Φ(n)(ρ
(n)
j )}) = S





J(n)
∑

j=1

p
(n)
j Φ(n)(ρ

(n)
j )



 −
J(n)
∑

j=1

p
(n)
j S(Φ(n)(ρ

(n)
j )) (2.6)

is the Holevo quantity for a finite chain. Analogously, the product-state capacity is given by the same expression but where

the supremum in (2.5) is restricted to product states ρ
(n)
j .

Here we prove the strong converse for product states of such a channel, analogous to Winter’s theorem, [13], Theorem II.7.

Theorem II.1 (Strong Converse). Let (f (n), D(n))n∈N be a sequence of product-state codes given by maps f (n) : Mn →
S(H⊗n) and decoding operator maps D(n) : Mn → B(K⊗n) with

∑

w∈Mn
D(n)(w) ≤ I. Here Mn is a collection of

codewords for each n containing N(n) = |Mn| codewords. Suppose that the code has error probability less than λ ∈ (0, 1).
Then, for all ǫ > 0 there is n0 = n0(λ, ǫ) such that for every n ≥ n0,

logN(n) ≤ n(χ∗(Φ) + ǫ). (2.7)

Proof: Let (f,D) be an (n, λ)-code, where f is the encoding map f : M → L(H)⊗n with f(w) = f1(w)⊗ · · · ⊗ fn(w)
and D = (D(w))w∈M, such that the error probability

e(f,D) = max
w∈M

[

1−
(

Φ(n)(f(w))D(w)
)]

≤ λ.

(We suppress the dependence on n.)

Fix ǫ, δ > 0 and let l0 ∈ N be so large that

|q(l0)ij − γj | < δ3γj (2.8)

for all i, j ∈ I , where we define, for general n ∈ N,

q
(n)
ij =

∑

i2,...,in−1∈I

γii2γi2i3 . . . qin−1j . (2.9)

Then let n0 ≫ l0 be large enough so that

χ(n0) < n0(χ
∗(Φ) + ǫ), (2.10)

where χ(n0) is the supremum (over product state ensembles) on the right-hand side of (2.5).

Given θ > 0, consider a θ-fine partition Z = (Zj)
J
j=1 of the compact space S(K⊗n0 ), and fix σ̃

(n0)
j ∈ Zj for each

j ∈ {1, . . . , J}. Consider the states

Φ(n0)(ρ
(n0)
k (w)) ∈ S(K⊗n0 ), (2.11)

where k = 1, . . . ,m with m = [n/(n0 + l0)] and where

ρk,l(w) = f(n0+l0)(k−1)+l(w) and ρ
(n0)
k (w) = ρk,1(w) ⊗ · · · ⊗ ρk,n0(w). (2.12)

Given a ‘class’ Γ, that is, a subset of {1, · · · , J}, let

IΓ = {k : Φ(n0)(ρ
(n0)
k (w)) has class Γ}, that is

IΓ = {k ≤ m : {j : ∃w ∈ M : Φ(n0)(ρ
(n0)
k (w)) ∈ Zj} = Γ}. (2.13)

For each Γ, we define the type of f(w) on Γ to be the probability measure P on {1, . . . , J} such that for all j ∈ {1, . . . , J},

#{k ∈ Γ : Φ(n0)(ρ
(n0)
k (w)) ∈ Zj} = |IΓ|P (j). (2.14)

Consider the Z-types of the product states
⊗

k∈IΓ
Φ(n0)(ρ

(n0)
k (w)) over the positions in IΓ. The number of types of these

states is bounded by (|IΓ|+1)J . For each IΓ 6= ∅, we can therefore select a type PΓ which is realised for at least (|IΓ|+1)−J |M|
of the codewords, and reduce the code to these codewords. The resulting code M′ then has a unique type PΓ for each Γ, and

the following bound on the number of codewords holds

|M′| ≥
2J
∏

γ=1

(|IΓ|+ 1)−J |M| ≥ (m+ 1)−J2J |M|. (2.15)

For each k ∈ IΓ we choose a state σ
(n0)
k,j = Φ(n0)(ρ

(n0)
k (w)) ∈ Zj and define

σ̄
(n0)
k,Γ =

∑

j

PΓ(j)σ
(n0)
k,j . (2.16)
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We also put

σ̃
(n0)
Γ =

∑

j

PΓ(j)σ̃
(n0)
j , (2.17)

where σ̃
(n0)
j is the reference state in Zj chosen above.

Classes Γ are considered large if

|IΓ| ≥ m2−Jǫ. (2.18)

For large classes Γ we define, given δ > 0, the typical projection Π̃Γ,δ by

Π̃Γ,δ = Π
σ̃
(n0)

Γ ,δ
=

∑

(pk)k∈IΓ
∈T̃Γ,δ

⊗

k∈IΓ

π̃Γ,pk
, (2.19)

where σ̃
(n0)
Γ =

∑dn0

p=1 λΓ,p π̃Γ,p is the diagonalisation of σ̃
(n0)
Γ , and the typical set T̃Γ,δ is given by

T̃Γ,δ =
{

(pk)k∈IΓ :
∣

∣#{k ∈ IΓ : pk = p} − |IΓ|λΓ,p

∣

∣ ≤ |IΓ|δ
}

. (2.20)

Then, by Lemma II.1,

2−|IΓ|(S(σ̃Γ)+ǫ) ≤ Π̃Γ,δ

(

σ̃
(n0)
Γ

)⊗|IΓ|

Π̃Γ,δ ≤ 2−|IΓ|(S(σ̃Γ)−ǫ). (2.21)

Now we can write

Tr
(

Φ(n)(f (n)(w))Π̃Γ,δ

)

=

=
∑

i1,...,im+1

γi1 Tr
(

σ
(n0)
1 (i1, i2)⊗ · · · ⊗ σ(n0)

m (im, im+1) Π̃Γ,δ

)

,
(2.22)

where

σ
(n0)
k (i, i′) =

∑

i2,...,in0

qi,i2qi2i3 . . . qin0−1,in0
q
(l0)
in0 ,i

′ (2.23)

×Φi(ρk,1(w)) ⊗ · · · ⊗ Φin0
(ρk,n0(w)). (2.24)

Notice that

σ
(n0)
k (i) =

∑

i′∈I

σ
(n0)
k (i, i′)

=
∑

i2,...,in0

qi,i2qi2i3 . . . qin0−1,in0

×Φi(ρk,1(w)) ⊗ · · · ⊗ Φin0
(ρk,n0(w))

is a state since the trace equals
∑

i2,...,in0

qi,i2qi2i3 . . . qin0−1,in0
= 1.

Moreover,
∑

i∈I

γi Tr(σ
(n0)
k (i, i′)) =

∑

i1,...,in0

γi1qi1,i2qi2i3 . . . qin0−1,in0
q
(l0)
in0 i

′ = γi′ .

Also, the condition

σ
(n0)
k (i, i′) ≤ (1 + δ3)γi′σ

(n0)
k (i)

follows from (2.8). It therefore follows from Lemma II.2 that

Tr
(

Φ(n)(f (n)(w)) (Π̃Γ,δ+θ ⊗ I)
)

≥ 1− 2δ.

We now define

Π̄δ =
⊗

Γ large

(Π̃Γ,δ ⊗ I
(l0))

⊗

Γ small

I
(n0+l0) ⊗ I

(n−m(n0+l0). (2.25)

It then follows from
⊗

Γ

(I−ΠΓ) ≥ I−
∑

Γ

(ΠΓ ⊗ IIΓc ,

that

Tr
(

Φ(n)(f(w)) Π̄δ+θ

)

> 1− 2J+1δ. (2.26)
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By Lemma II.1,

Tr Π̃Γ,δ+θ ≤ 2|IΓ|(S(σ̃
(n0)

Γ )+ǫ) (2.27)

if |IΓ| is large enough. Since
∥

∥

∥σ̃
(n0)
Γ − σ̄

(n0)
k,Γ

∥

∥

∥

1
< θ

it follows from Lemma II.3 that

Tr Π̃Γ,δ+θ ≤
∏

k∈IΓ

2(S(σ̄
(n0)

k,Γ )+2ǫ (2.28)

if |IΓ| is large and dn0η(θ/dn0) < ǫ. Taking products we have

Tr Π̄δ+θ ≤
∏

Γ large

∏

k∈IΓ

2|IΓ|(S(σ̄
(n0)

k,Γ )+2ǫ)dn−mn0+nǫ. (2.29)

Now consider the code (f ′, D′), where f ′ = f|M′
and where

D′(w) = Π̄δ+θD(w)Π̄δ+θ for w ∈ M′.

By Lemma II.4 and (2.26),
∥

∥

∥Φ(n)(f(w)) − Π̄δ+θ

(

Φ(n)(f(w))Π̄δ+θ

)∥

∥

∥

1
≤ 4

√
2Jδ.

Therefore

e(f ′, D′) = max
w∈M′

[

1− Tr
(

Φ(n)(f(w))D′
m

)]

≤ max
w∈M

[

1− Tr(Φ(n)(f(w)))Dm)
]

+ 4
√
2Jδ

≤ λ+ 4
√
2Jδ = λ′.

(2.30)

Clearly, if δ is small enough, λ′ < 1.

It follows from Lemma II.5 that

Tr (f(w)Πent,δ) > 1− δ. (2.31)

We also have

Πent,δ Φ
(n)(f(w))Πent,δ ≤

m
∏

k=1

2−S(Φ(n0)(ρ
(n0)

k
))+2δ Πent,δ. (2.32)

By the Shadow bound (Lemma II.6), it follows that

TrD′(w) ≥ (λ′ − 4
√
δ)

m
∏

k=1

2S(Φ(n0)(ρ
(n0)

k
))−2δ

≥
m
∏

k=1

2S(Φ(n0)(ρ
(n0)

k
))−ǫ

≥
∏

Γ

∏

k∈Γ

2
∑J

j=1 PΓ(j)S(σ
(n0)

k,j
)−2ǫ

(2.33)

for m large enough and dn0η(θ/dn0), ǫ.
Combining this with (2.29) we have

|M′| ≤
∏

Γ

∏

k∈IΓ

2−
∑J

j=1 PΓ(j)S(σ
(n0)

k,j
)+2ǫTr

∑

w∈M′

D′(w)

≤
∏

Γ

∏

k∈IΓ

2−
∑J

j=1 PΓ(j)S(σ
(n0)

k,j
)+2ǫTr Π̄δ+θ

≤
∏

Γ

∏

k∈IΓ

2−
∑J

j=1 PΓ(j)S(σ
(n0)

k,j
)+2ǫ

∏

Γ large

∏

k∈IΓ

2S(σ̄
(n0)

k,Γ )+2ǫdn−mn0+nǫ

≤
∏

Γ large

∏

k∈IΓ

2S(σ̄
(n0)

k,Γ )−
∑J

j=1 PΓ(j)S(σ
(n0)

k,j
)+4ǫdn−mn0+nǫ.

(2.34)

This yields

|M′| ≤ 2n(χ
∗(Φ)+(4+5 log d)ǫ)
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since
∏

k∈IΓ

2S(σ̄
(n0)

k,Γ )−
∑J

j=1 PΓ(j)S(σ
(n0)

k,j
) ≤ 2|IΓ|χ

(n0)

and

dn−mn0+nǫ <
∏

Γlarge

25ǫ log d

since
∑

Γlarge

|IΓ| > (1 − ǫ)n

and we can take
3ǫ

1− ǫ
+

n−mn0

(1− ǫ)n
< 5ǫ

by taking m large and n0 ≫ l0.

Finally, using (2.15) we have

|M| ≤ (m+ 1)J2
J |M′| (2.35)

so that for m large enough

|M| ≤ 2n(χ
∗(Φ)+5(1+log d)ǫ). (2.36)

A. Lemmata

Lemma II.1. For every state ρ and δ, ǫ > 0 if n is large enough,

TrΠn
ρ,δ ≤ 2n(S(ρ)+ǫ). (2.37)

Lemma II.2 (Generalised weak law). Let σk(i, i
′), where k = 1, . . . ,m and i, i′ ∈ I be positive operators on a finite-

dimensional Hilbert space H (dim(H) = d) such that
∑

i∈I

γi Tr(σk(i, i
′)) = γi′ (2.38)

for all k and all i′ ∈ I , and such that for all k and i ∈ I , σk(i) defined by

σk(i) =
∑

i′∈I

σk(i, i
′) (2.39)

is a state. Moreover, assume that

(1− δ3)γi′σk(i) ≤ σk(i, i
′) ≤ (1 + δ3)γi′σk(i) (2.40)

for all k and all i, i′ ∈ I . Define the states σ(m) on H⊗m by

σ(m) =
∑

i1,...,im,im+1∈I

γi1σ1(i1, i2)⊗ · · · ⊗ σm(im, im+1). (2.41)

Given a subset S ⊂ {1, . . . ,m}, set

σ̄ =
∑

i∈I

1

|S|
∑

k∈S

γiσk(i)

and suppose that

||σ̄ − σ̃||∞ < θ.

Diagonalising σ̃ =
∑d

p=1 q̃p πp, define the typical projection

ΠS,δ =
∑

(pk)k∈S∈T̃S,δ

(

⊗

k∈S

πpk

)

⊗ ISc , (2.42)

where

T̃S,δ =
{

(pk)k∈S :
∣

∣#{k ∈ S : pk = p} − |S|q̃p
∣

∣ ≤ |S|δ
}

.

Then, if |S| is large enough,

Tr
(

σ(m)ΠS,δ+θ

)

> 1− 2δ.
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Proof: For a state ρ on H let κ(ρ) =
∑d

p=1 πp ρ πp and let κS = κ⊗|S|, i.e. for a state ρ(m) on H⊗m,

κ(ρ(m)) =
∑

(pk)k∈S

(

⊗

k∈S

πpk
⊗ ISc

)

ρ(m)

(

⊗

k∈S

πpk
⊗ ISc

)

.

Put

σ̃(m) = κS(σ
(m)).

Then, since κS(ΠS,δ) = ΠS,δ, Tr(σ(m)ΠS,δ) = Tr(σ̃(m)ΠS,δ), and

σ̃(m) =
∑

i1,...,im,im+1∈I

γiσ̃1(i1, i2)⊗ · · · ⊗ σ̃m(im, im+1),

where

σ̃k(i, i
′) = κ(σk(i, i

′)) =

d
∑

p=1

λk(i, i
′; p)πp

is diagonal w.r.t. the σ̃ basis for k ∈ S, and where σ̃k(i, i
′) = σk(i, i

′) for k /∈ S. Moreover,

qp =
∑

i,i′∈I

1

|S|
∑

k∈S

γiλk(i, i
′; p)

are the eigenvalues of κ(σ̄) =
∑d

p=1 πp σ̄ πp and |qp − q̃p| < θ since

‖κ(σ̃)− σ̄‖∞ ≤ ‖σ̃ − σ̄‖∞ < θ.

Now

1− Tr
(

σ(m)ΠS,δ+θ

)

=

=
∑

i1,...,im,im+1∈I

∑

(pk)k∈S∈T̃S,δ+θ

∏

k∈S

λk(ik, ik+1; pk)
∏

k∈Sc

λk(ik, ik+1)

≤
∑

i1,...,im,im+1∈I

∑

(pk)k∈S∈TS,δ

∏

k∈S

λk(ik, ik+1; pk)
∏

k∈Sc

λk(ik, ik+1),

where

λk(i, i
′) = Trσk(i, i

′) for k /∈ S,

and

TS,δ =
{

(pk)k∈S :
∣

∣#{k ∈ S : pk = p} − |S|qp
∣

∣ ≤ |S|δ
}

.

Introducing the Bernoulli variables xk,p = δpk,p for k ∈ S and p ≤ d, where the sequences (pk)k∈S are distributed according

to

P ((pk)k∈S) =
∑

i1,...,im,im+1∈I

γi1
∏

k∈S

λk(ik, ik+1; pk)
∏

k∈Sc

λk(ik, ik+1), (2.43)

we have

1− Tr
(

σ(m)ΠS,δ

)

≤

≤ P

(

d
⋃

p=1

{

(pk)k∈S :

∣

∣

∣

∣

∣

∑

k∈S

xk,p − |S|qp
∣

∣

∣

∣

∣

> |S|δ
})

≤ 1

δ2

d
∑

p=1

E





(

1

|S|
∑

k∈S

xk,p − qp

)2




=
1

δ2

d
∑

p=1

∑

i1,...,im+1∈I

∑

(pk)k∈S

γi1
∏

k∈S

λk(ik, ik+1; pk)
∏

k∈Sc

λk(ik, ik+1)

×





1

|S|2
∑

k,l∈S

xk,pxl,p −
2

|S|
∑

k∈S

xk,pqp + q2p




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Using the identity (2.38),we have
∑

i1∈I

∑

p

γi1λk(i1, i2; p) = γi2 ,

and from (2.39),
∑

i2∈I

∑

p

λk(i1, i2; p) = 1 and
∑

i′∈I

λk(i, i
′) = 1.

Hence we can write
∑

i1,...,im+1∈I

∑

(pk)k∈S

γi1
∏

k∈S

λk(ik, ik+1; pk)
∏

k∈Sc

λk(ik, ik+1)
1

|S|
∑

k∈S

xk,p =

=
1

|S|
∑

k∈S

∑

ik,ik+1∈I

γikλk(ik, ik+1; p) = qp.

Similarly,

∑

i1,...,im+1∈I

∑

(pk)k∈S

γi1
∏

k∈S

λk(ik, ik+1; pk)
∏

k∈Sc

λk(ik, ik+1)
1

|S|2
∑

k,l∈S; k<l

xk,pxl,p

=
1

|S|2
∑

k,l∈S; k<l

∑

ik,...,il+1∈I

γikλk(ik, ik+1; p)

×
l−1
∏

r=k+1

λr(ir, ir+1)λl(il, il+1; p).

We now use the assumption (2.40) according to which

λk(ik, ik+1; p) < (1 + δ3)γik+1
λk(ik; p).

This yields

2

|S|2
∑

k,l∈S; k<l

∑

ik,...,il+1∈I

∑

(pr)r∈S; k<r<l

γikλk(ik, ik+1; p)

l−1
∏

r=k+1

λr(ir, ir+1)λl(il, il+1; p)

≤ 2(1 + δ3)

|S|2
∑

k,l∈S; k<l

∑

ik,...,il+1∈I

γikλk(ik; p)

γik+1

l−1
∏

r=k+1

λr(ir, ir+1)λl(il, il+1; p)

=
2(1 + δ3)

|S|2
∑

k,l∈S; k<l

∑

ik,il,il+1∈I

γikλk(ik; p)γilλl(il, il+1; p)

≤ 1 + δ3

|S|2
∑

k,l∈S

∑

ik,il∈I

γikλk(ik; p)γilλl(il; p)

= (1 + δ3)q2p.

Inserting, we obtain

1− Tr
(

σ(m)ΠS,δ

)

= δ

d
∑

p=1

q2p +
1

|S|δ2
d
∑

p=1

qp < 2δ (2.44)

if |S| > δ−3.

Lemma II.3 (Continuity). Let ρ, σ be states with ‖ρ− σ‖1 ≤ θ ≤ 1

2
. Then

|H(ρ)−H(σ)| ≤ −θ log
θ

d
= dη

(

θ

d

)

. (2.45)
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Lemma II.4 (Tender operator). Let ρ be a state, and X a positive operator with X ≤ 1 and 1− Tr(ρX) ≤ λ ≤ 1. Then
∥

∥

∥ρ−
√
Xρ

√
X
∥

∥

∥

1
≤

√
8λ. (2.46)

Lemma II.5. Let ρ
(n0)
k and η

(l0)
k (k = 1, . . . ,m) be states on H⊗n0 and H⊗l0 respectively, and ρ a state on H⊗(n−(n0+l0)m).

Define, for δ > 0 (and m ∈ N), the entropy–typical projector by

Πent,δ =
⊕

(p1,...,pm)∈Sδ

(π1,p1 ⊗ I
(l0))⊗ · · · ⊗ (πm,pm

⊗ I
(l0))⊗ I

(n−(n0+l0)m), (2.47)

where πk,p are the eigenprojections of Φ(n0)(ρ
(n0)
k ) with eigenvalues λk,pk

, i.e.

Φ(n0)(ρ
(n0)
k ) =

dn0
∑

p=1

λk,pπk,p, (2.48)

and

Sδ =

{

(p1, . . . , pm) :

∣

∣

∣

∣

∣

m
∑

k=1

(

logλk,pk
+ S(Φ(n0)(ρ

(n0)
k )

)

∣

∣

∣

∣

∣

≤ mδ

}

. (2.49)

Then, for m large enough,

Tr

(

Φ(n)

(

m
⊗

k=1

(ρ
(n0)
k ⊗ η

(l0)
k )⊗ ρ

)

Πent,δ

)

> 1− δ

and moreover

Πent,δ Φ
(n)

(

m
⊗

k=1

(ρ
(n0)
k ⊗ η

(l0)
k )⊗ ρ

)

Πent,δ ≤
m
∏

k=1

2S(Φ(n0)(ρ
(n0)

k
))+2δ Πent,δ. (2.50)

Proof: Analogous to (2.22) we have the expansion

Tr

(

Φ(n)

(

m
⊗

k=1

(ρ
(n0)
k ⊗ η

(l0)
k )⊗ ρ

)

Πent,δ

)

=

=
∑

i1,...,im+1∈I

γi1 Tr
(

(σ
(n0)
1 (i1, i2)⊗ · · · ⊗ σ(n0)

m (im, im+1)) Π̃ent,δ

)

where

Π̃ent,δ =
⊕

(p1,...,pm)∈Sδ

πp1 ⊗ · · · ⊗ πpm
,

and σ
(n0)
k (i, i′) are given by

σ
(n0)
k (i, i′) =

∑

i2,...,in0

qi,i2qi2i3 . . . qin0−1,in0
q
(l0)
in0 ,i

′

×(Φi ⊗ · · · ⊗ Φin0
)(ρ

(n0

k ).

As in the proof of Lemma II.2 we apply the map κ⊗m and obtain

Tr
(

Φ(n)(f (n)(w))ΠS,δ

)

=

=
∑

i1,...,im+1∈I

γi1
∑

(p1,...,pm)∈Sδ

m
∏

k=1

Tr
(

πk,pk
σ
(n0)
k (ik, ik+1)πk,pk

)

.

Introducing the probability distribution on {1, . . . , dn0}m given by

P(A) =
∑

i1,...,im+1∈I

γi1
∑

(p1,...,pm)∈A

m
∏

k=1

Tr
(

πk,pk
σ
(n0)
k (ik, ik+1)πk,pk

)

(2.51)

for A ⊂ {1, . . . , dn0}m, we have

Tr
(

Φ(n)(f (n)(w))ΠS,δ

)

= P(Sδ) =

= P

(∣

∣

∣

∣

∣

1

m

m
∑

k=1

(

logλk,pk
+ S(Φ(n0)(ρk,1(w)⊗ · · · ⊗ ρk,n0))

)

∣

∣

∣

∣

∣

≤ δ

)

.
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As before the sum in the expectation of logλk,pk
telescopes, and

E(log λk,pk
) =

∑

ik,ik+1∈I

γik

dn0
∑

p=1

Tr
(

πk,pσ
(n0)
k (ik, ik+1)

)

log λk,p

=
dn0
∑

p=1

Tr
(

πk,pΦ
(n0)(ρ

(n0)
k )

)

logλk,p

= −S(Φ(n0)(ρ
(n0)
k )).

(2.52)

To show that P(Sδ) → 0, we compute the variance of 1
m

∑m
k=1 logλk,pk

as before. We have

E





∣

∣

∣

∣

∣

1

m

m
∑

k=1

(

logλk,pk
+ S(Φ(n0)(ρk,1(w)⊗ · · · ⊗ ρk,n0))

)

∣

∣

∣

∣

∣

2


 =

=
1

m2

m
∑

k,l=1

E (logλk,pk
logλl,pl

)−
(

1

m

m
∑

k=1

S(Φ(n0)(ρ
(n0)
k ))

)2

.

(2.53)

The term k = l yields

1

m2

m
∑

k=1

dn0
∑

p=1

λk,p(log λk,p)
2 → 0

since the sum
∑dn0

p=1 λk,p(logλk,p)
2 is bounded by n2

0(log d)
2. For the terms k < l we use the argument of Lemma II.2: By

the assumption (2.40)

λk(ik, ik+1; p) < (1 + δ3)γik+1
λk(ik; p).

Writing λk(i, i
′; p) = Tr(πk,pσk(i, i

′)), this yields

2

m2

∑

1≤k<l≤m

E (log λk,pk
logλl,pl

) =

=
2

m2

∑

1≤k<l≤m

∑

ik,...,il+1∈I

dn0
∑

pk,...,pl=1

γik

l
∏

r=k

λr(ir, ir+1; pr) logλk,pk
logλl,pl

≤ 2(1 + δ3)

m2

∑

1≤k<l≤m

∑

ik,...,il+1∈I

dn0
∑

pk,...,pl=1

γikλk(ik; pk) logλk,pk
γik+1

l
∏

r=k+1

λr(ir, ir+1; pr) logλl,pl

=
2(1 + δ3)

m2

∑

1≤k<l≤m

dn0
∑

pk=1

λk,pk
logλk,pk

∑

il,il+1∈I

dn0
∑

pl=1

γilλl(il, il+1; pl) logλl,pl

=
2(1 + δ3)

m2

∑

1≤k<l≤m

S(Φ(n0)(ρ
(n0)
k ))S(Φ(n0)(ρ

(n0)
l ))

≤ (1 + δ3)

(

m
∑

k=1

S(Φ(n0)(ρ
(n0)
k ))

)2

.

(2.54)

To prove the second bound, we write

Φ(n)

(

m
⊗

k=1

(ρ
(n0)
k ⊗ η

(l0)
k )⊗ ρ

)

=

=
∑

i1,...,im+1

i′1,...,i′
m+1

γi1σ
(n0)
1 (i1, i

′
1)⊗ σ

(l0)
1 (i′1, i2)⊗ . . .

⊗σ(n0)
m (im, i′m)⊗ σ

(l0)
1 (i′m, im+1)⊗ σ(l)(im+1, i

′
m+1),

where now

σ
(n0)
k (i, i′) =

∑

i2,...,in0

qii1 . . . qin0 ,i
′(Φi ⊗ · · · ⊗ Φin0

)(ρ
(n0)
k ) (2.55)
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and

σ
(l0)
k (i, i′) =

∑

i2,...,il0

qii1 . . . qil0 ,i′(Φi ⊗ · · · ⊗ Φil0
)(η

(l0)
k ) (2.56)

and with l = n−m(n0 + l0),

σ(l)(i, i′) =
∑

i2,...,il

qii1 . . . qil,i′(Φi ⊗ · · · ⊗ Φil)(ρ). (2.57)

Using the inequality

Πent,δ

m
⊗

k=1

(

Φ(n0)(ρ
(n0)
k )⊗ I

(l0))
)

⊗ I
(l) Πent,δ ≤

≤
m
∏

k=1

2−S(Φ(n0)(ρ
(n0)

k
))+δ Πent,δ,

(2.58)

which follows from the definition of Πent,δ, together with the bound

σ
(n0)
k (i, i′) ≤ (1 + δ3)γi′

∑

i′′∈I

σ
(n0)
k (i, i′′),

we find

Πent,δ Φ
(n)

(

m
⊗

k=1

(ρ
(n0)
k ⊗ η

(l0)
k )⊗ ρ

)

Πent,δ

≤ (1 + δ3)mΠent,δ

m
⊗

k=1

(

Φ(n0)(ρ
(n0)
k )⊗ I

(l0))
)

⊗ I
(l) Πent,δ ≤

≤
m
∏

k=1

2−S(Φ(n0)(ρ
(n0)

k
))+2δ Πent,δ,

(2.59)

Lemma II.6 (Shadow bound). Suppose that 0 ≤ Λ ≤ I and ρ is a state such that for constants λ, µ1, µ2 > 0,

Tr(ρΛ) > 1− λ and µ1Λ ≤ Λ1/2ρλ1/2 ≤ µ2Λ,

then

(1− λ)µ−1
2 ≤ TrΛ ≤ µ−1

1

and for B ≥ 0,

Tr(ρB) ≥ η =⇒ TrB ≥ (η −
√
8λ)µ−1

2 .
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