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Abstract

Establishing the strong converse theorem for a communication channel confirms that the capacity of that channel, that is,
the maximum achievable rate of reliable information communication, is the ultimate limit of communication over that channel.
Indeed, the strong converse theorem for a channel states that coding at a rate above the capacity of the channel results in the
convergence of the error to its maximum value 1 and that there is no trade-off between communication rate and decoding error.
Here we prove that the strong converse theorem holds for the product-state capacity of quantum channels with ergodic Markovian
correlated memory.
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I. INTRODUCTION

Establishing the optimal communication rate at which information can be reliably transmitted over noisy quantum channels is
a question of central importance in quantum information theory. The achievability, or direct part, of a channel coding theorem,
establishes a rate of communication below which the decoding error tends to zero in the limit of large block length. This raises
the natural question of whether a larger rate can be achieved with a decoding error which is not equal to zero but less than 1.
In other words, the question of whether an error-rate trade-off is possible emerges. The strong converse theorem addresses this
question and when established for a particular channel, confirms that there can be no such error-rate trade-off for that channel.

Traditionally, noisy communication is modelled by the repeated application of a particular channel to an encoded message.
This type of channel is referred to as memoryless, and this assumption of independent successive channel uses is considered
to be unrealistic.

In this work we establish the strong converse theorem for the communication of classical information encoded into product
quantum states and transmitted over a particular class of quantum channels with memory. That is, we are concerned with
establishing the strong converse theorem corresponding to the product-state capacity of these channels with memory. The
behaviour of the quantum channels, denoted by ®("), is modelled by an ergodic Markov chain, on a finite state space I,
specified by an invariant distribution {7; };cs and transition matrix {g; ; }ic; over a finite set of quantum channels {®;};c;.
Indeed this invariant distribution initiates the channel sequence, with the transition matrix {q; i };c; governing the subsequent
behaviour. Moreover we consider the particular case where the overall behaviour of the channel ®(™) is determined by an
ergodic Markov chain. That is, a Markov chain which is a periodic and irreducible, resulting in the convergence of the n-step
transition probability qz(rz,) to equilibrium in the asymptotic limit, i.e. qz(rz,) — i, as n — oo. In this case the quantum channel
®(") is considered to be forgetful.

To provide some background on this type of quantum channel with memory, we note that Macchiavello and Palma
were the first to consider a Markovian noise correlation model for communication over quantum channels. Here they study
the entanglement-assisted classical capacity for a quantum channel with so-called partial memory, where the channel is written
as a convex combination of a sequence of uncorrelated depolarising channels, i.e. a memoryless depolarising channel, and a
sequence of correlated depolarising channels. They showed a higher mutual information can be achieved by entangling two
successive uses of this channel.

Bowen and Mancini considered a more general model for noise correlation which includes Markovian noise correlations
as a special case. In particular, taking the set of possible channels to be those which can be written as unitary Kraus operators,
with error probabilities given by steady-state probabilities for the underlying Markov chain, they recover the HSW (Holevo-
Schumacher-Westmoreland) [3]], [4] capacity bound. In Datta and Dorlas generalise this result to arbitrary Markov chains,
generalising the HSW capacity.
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Previously, Datta and Dorlas [6]] had established the coding theorem and weak converse for the product-state capacity of a
class of channels with so-called long-term memory, given by a convex combination of memoryless channels. Later Dorlas and
Morgan also considered another type of channel with long-term memory, namely the periodic channel and showed that for
a particular realisation of this channel in terms of amplitude damping channels, the strong converse in fact does not hold.

On the other hand, the strong converse theorem has been shown to hold for the product-state capacity for all memoryless
quantum channels. This result was proved independently by Winter using the so-called method of types, generalising the
technique of Wolfowitz [9] for classical channel coding, and by Ogawa and Nagaoka [[10] generalising Arimoto’s method [T1]].

Indeed, it is notable that the non-commutative generalisation of Arimoto method and it’s connection to Rényi entropy and
divergence, has also lead to successes in the attempt to establish a strong converse theorem for certain memoryless quantum
channels with arbitrary input states. We point to Koénig and Wehner [[12] for the first such proof and for a treatment of the
general open problem.

In this article, we follow similar lines to Winter to prove that the strong converse holds for the product-state capacity
of channels with ergodic Markovian correlated memory. We note that proving this result using the alternative Arimoto method
might also be of interest, as well as establishing a strong converse theorem for this noise model in the case where restrictions
on the input states and/or on the type of memory are lifted. In the latter case quantum memory, considered by Bowen and
Mancini [2]] and, more generally by Kretschmann and Werner [[14]], could be considered.

II. DEFINITION OF THE CHANNEL AND STATEMENT OF THE THEOREM

We consider quantum channels with Markovian memory as first introduced by Macchiavello and Palma [1]. The general
classical capacity of such channels was derived in [3].

Let there be given a Markov chain on a finite state space I with transition probabilities {q;i }:.er and let {7;}ier be an
invariant distribution for this chain, i.e.

Vi =Y Vigiir- @2.1)
i€l

Moreover, let ®; : B(H) — B(K) be given completely positive trace-preserving (CPT) maps for each i € I, where H and
K are finite-dimensional Hilbert spaces. We also consider the tensor product algebras A, = B(H®") and the infinite tensor
product C*-algebra obtained as the strong closure

Ao = Ej An, 2.2)
n=1

where we embed A, into A, 11 in the obvious way. Similarly, we define B,, = B(K®") and B.. A state on an algebra A
is a positive linear functional ¢ on A with ¢(I) = 1, where T denotes identity operator. If A4 is finite-dimensional then there
exists a density matrix p, € A such that ¢(A4) = Tr(pyA), for any A € A. We denote the states on A, by S(A), those on
A, by S(A,,).etc.
We now define a quantum channel with Markovian-correlated noise by the CPT map @, : S(A) — S(Bo) on the states
of A by
(@) (@)(A) = D VirGiria - Gin_yin Tr[(Bi, @+ @ D3 )(pg,,) A (2.3)

for A € B,. Here, ¢, is the restriction of ¢ to A, and pg, its density matrix. It is easily seen, using the property (2.1),
that this definition is consistent and defines a CPT map on the states of 4., and moreover, that it is translation-invariant
(stationary).

We denote the transpose action of the restriction of @, to S(A,) by &) : B(H®") — B(K®"), i.e.,

Tr (2 (pg) A) = (Poo(9))(A),
for a density matrix p, € B(H®"), ¢ € S(A,).
Thus
M (pM)y = 3" YiGiiy - Gii, (P, @ @05 ) (™). (2.4)

01 yeenyin €1

In the following we assume that the Markov chain (g;;/) is irreducible and aperiodic. The quantum channel is then forgetful
in the terminology of Kretschmann and Werner [14]]. In that case it was proved in [5] (and in a more general setting in [14])
that the classical capacity of the channel is given by

1 n n n
XH(@) = lim —  sup  x({p{™, @™ (p{")}) 2.5)



where

J(n) J(n)
XS, @ (pi)} Zp"’<b<" Wy =3 s @m(pmy) 2.6)
Jj=1

is the Holevo quantity for a finite chain. Analogously, the product-state capacity is given by the same expression but where
the supremum in (2.3) is restricted to product states p;"
Here we prove the strong converse for product states of such a channel, analogous to Winter’s theorem, [13]], Theorem II.7.

Theorem 11.1 (Strong Converse). Let (f(™), D(")) en be a sequence of product-state codes given by maps f™ : M, —
S(H®™) and decoding operator maps D™ = M, — B(K®™) with D weM, D™ (w) < 1. Here M,, is a collection of
codewords for each n containing N(n) = |M,,| codewords. Suppose that the code has error probability less than \ € (0,1).
Then, for all € > 0 there is ng = no(\, €) such that for every n > ny,

log N(n) < n(x*(®) +e€). (2.7)

Proof: Let (f, D) be an (n, \)-code, where f is the encoding map f : M — L(H)®" with f(w) = fi(w) @@ fr(w)
and D = (D(w))wem, such that the error probability
e(f, D) = max [1 = (9 (f(w)) D(w)) | <\

(We suppress the dependence on n.)
Fix €,0 > 0 and let [p € N be so large that

gl — | < 8% (2.8)

for all 4,7 € I, where we define, for general n € N,

ql(Jn) Z Viig Vizis - - - Qin—17- (2.9)

Then let ng > [y be large enough so that
X0 < no(x*(®) + €), (2.10)

where x("0) is the supremum (over product state ensembles) on the right-hand side of (2.3).
Given 6 > 0, consider a f-fine partition Z = (Z;)7_, of the compact space S(K®"™), and fix 0]("0)
je{l,...,J}. Consider the states

€ Z; for each

o) (p™) (w)) € S(K™), @.11)
where k = 1,...,m with m = [n/(ng + lp)] and where
Pea(0) = fng410)(6-1)41(w) and o () = pre1 (1) @ -+ @ prng (w). 2.12)
Given a ‘class’ T, that is, a subset of {1,---,J}, let
_ . &(no) ( ,(no) :
It = {k : ") (p,""’ (w)) has class I'}, that is
Ir={k<m:{j:3weM: 3" (") () e 2} =T}. (2.13)

For each T', we define the type of f(w) on I to be the probability measure P on {1,...,J} such that forall j € {1,...,J},
#{k €T M) (") (w)) € 2;} = |Ir] P(j). 2.14)

Consider the Z-types of the product states &), Q)("O)(p,(cno)(w)) over the positions in /. The number of types of these
states is bounded by (|Ir|+1)”. For each I # (), we can therefore select a type Pr which is realised for at least (|Ir|+1)~7| M|
of the codewords, and reduce the code to these codewords. The resulting code M’ then has a unique type Pr for each T, and
the following bound on the number of codewords holds

2]
M| = [T+ D7 IM] = (mot 1772 M), (2.15)

y=1

For each k € It we choose a state 0("0) ®(m0) (p{™) (w)) € Z; and define

ot = ZPF (s (2.16)



We also put
o =3 Pe()a,
J

where &]("0) is the reference state in Z; chosen above.

Classes I' are considered large if
|IF| 2 m2_‘]e.

For large classes I' we define, given § > 0, the typical projection f[p,(; by

s =1;my ;= E ® (W

(Pr)kern €Trs kelr

(no)

~ 0 ~ . . . . ~ . = . .
where algno) = Zzzl Ar,p 7r,p is the diagonalisation of 6./, and the typical set Tr s is given by

Trs = {(Pe)ker © |#{k € Ir : pr = p} — [Ir|Arp| < [Ir]6} .
Then, by Lemma [I1]
9 IIRl(S(Gr)+e) < . (g,gm))@”r‘ flp s < 2~ lrlSGr)-0),

Now we can write
Ty ((I)(n)(f(n) (w))ﬁm) _

= Z Vix Tr (Ugn())(ila i2) @ ® Uggo)(imv im+1) ﬁF,é) >

il ..... Tm41
where
. l
D Z/) = Z Qi,izQizis - - - Qing—1,ing qgn(;)yi,
X®i(pr,1 (W) ® - @ iy, (Png (W)
Notice that

o) = Y o)

i'el

z qi77:2 quiS e qinoflxino

7;2)~~~77:n0

X(I)i(pk71(UJ)) Y (I)ino (pk,no (’LU))

is a state since the trace equals

Moreover,

.o l
Z Vi Tr(o'l(qn[)) (Z’ Z/)) = Z Vi1 iy i Qisis - - - Qing—1,ing ngn(;)i’ = Y-
il i1

vvvvv ino
Also, the condition
o (i) < (1L+ 6%y a (" (i)
follows from (2.8). It therefore follows from Lemma that
Tr (q><">( FO (w)) (T 540 ® 11)) >1 - 26

We now define
;= X (Irs @I®) &) Iroto) g n-minotio),

I'large I"small

It then follows from

®(H_HF) ZH_Z(HF@)HIpca

r r

that -
Tr (q><”>(f(w)) H5+9) >1- 27+,

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)



By Lemmam
TrﬁF.5+9 < 2‘1F|(S(&1£"0))+€)

if |Ir| is large enough. Since
T

<40
1

it follows from Lemma that
(no))+2€
Trp 549 < H 2@
kelr

if |Ip| is large and d™°n(0/d™) < e. Taking products we have
Trls. g < H H olIr|(S(a (")) +26) gn—mnotne
I'large kelp

Now consider the code (f’, D'), where f’ = f| , and where

D’(w) = 1:15+9D(w)1:15+9 for w € M.

By Lemma [[L.4 and 2.26),
|20 (£w)) = Tisso (2O (F @) Tss0 )| < 4V275.
Therefore
e(f', D) = max [1—Tr (2 (f(w))D,)]
< mag (1= Tr(@)(f(w)) Dun)| +4V275

<A+4V275 = N,

Clearly, if ¢ is small enough, \ < 1.
It follows from Lemma that
T‘T (f(w) Hent,ls) > 1 — 5

We also have

Hent,5 (I)(n) (f(w))Hent,5 S H 2_5(@("0)(,);"0)))_’_25 Hent,é-

k=1
By the Shadow bound (Lemma [[L.6)), it follows that

D) 2 (4 av) [[ 270 04

2S<<1><"°><p;"°)>>—e

Y

Y

ﬂ:j s

H 7y Pr(i)S(o"0))—2¢
kel

for m large enough and d"°n(0/d™), e
Combining this with (2.29) we have

MI<T] [ 2 2= B 0seEh e 3 (w)

I kelr weM!
0) —
< H H 2 Zim Prste AR V31 P
T kelr

<H H 2~ EJ 1 Pr(5)S(o 0))+2€ H H 2S(U("0))+2edn mno+ne

I' kelp I'large k€ Ip
H H 25 U,(cnli’) J | (j)S(U,(:]Q))+4edn—mn0+ne'
T large keI

This yields
|M| < 27O (@) +(4+5log d)e)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)



since (no) 7 (n0)
—(n . . n
H 95,2~y Pr()S(0})) < olIrx"
kelr
and
dn—mng-{-ne < H 256 log d
Tlarge
since
E [Ir] > (1 —€)n
T'large
and we can take
e n —mno

)
1—e+ (1—¢€)n =0

by taking m large and ng > lo.
Finally, using (2.13) we have

M| < (m+ 1) |M| (2.35)
so that for m large enough
|M| < on(x" (®)+5(1+logd)e) (2.36)
|
A. Lemmata
Lemma I1.1. For every state p and 6,¢ > 0 if n is large enough,
TriTy 5 < 2n(S)+e), (2.37)
Lemma 1.2 (Generalised weak law). Let o (i,i"), where k = 1,...,m and i,i’ € I be positive operators on a finite-
dimensional Hilbert space H (dim(H) = d) such that
Z% Tr(og(i,1')) = vir (2.38)
il
for all k and all i € I, and such that for all k and i € I, oy, (i) defined by
or(i) =Y oli,i') (2.39)
irel
is a state. Moreover, assume that
(1= 8%)ywon(i) < on(i,i') < (1+6%)yiron(i) (2.40)
for all k and all i,i’ € I. Define the states o™ on H®™ by
o™ = S vno(iniz) @+ @ O (imy imi1)- (2.41)
Ul geney Gy bm1 €1
Given a subset S C {1,...,m}, set .
7= 3t D)
icl keS
and suppose that
[lo — G]o < 6.
Diagonalising ¢ = Zzzl dp Tp, define the typical projection
Oes= Y. <® m) ® Ise, (2.42)
(Pk)kesE%s,a kes

where

Ts.s = {(Pr)res : |[#{k € S pr =p} — |S|dp| < |58}

Then, if |S| is large enough,
Tr (U(m)nsﬁ_,_g) >1—20.



Proof: For a state p on H let k(p) = 22:1 7, pmp and let kg = x5, ie. for a state p(™ on HZ™,

H(p(m) Z <® Ty, ®]ISC> (m) <®7Tpk ®H5c> )

(Pr)kes \kES kes
Put
5m — KS(U(m)),
Then, since Ks(ns)(;) = Hs)(;, Tl“(o(m)ns)(;) = T‘r(ﬁ(m)HS7§), and
&(m) = > YiG1(i1,02) @+ @ G (i, imt1),
i1;~~~7im7im+1el

where

ok (i,1) = k(ok(i,i")) k(i3 p)m

I\Mm.

is diagonal w.r.t. the & basis for k& € S, and where (i, ¢ ) = ak(i, i’) for k ¢ S. Moreover,

Z Z'Yz)\kllvp

% EI kGS
. _ d _ ~ .
are the eigenvalues of (o) = > _, m, & m, and |g, — G| < 0 since

1£(6) = Flloe < |6 = Flloc < 0.

Now
1-—"Tr (U(m)H575+9) =
= Z Z H Ak (ks Thg1 D) H Ak (ks ikt1)
il""’im’imJAEI(Pk)keSE%s,5+9 kesS kesSe
< > S T Mlininerioe) T Melinsinga),
i1 yeeerimim+1 €T (pr)kes€Ts.5 kES kese
where
)\k(i,il) = Tl“Uk(i,i/) for k §§ S,
and

Ts.s = {(pr)res : |[#{k € S: pr =p} —[Slgy| < |S|6}.

Introducing the Bernoulli variables xy , = 6, , for k£ € S and p < d, where the sequences (pk)kes are distributed according
to

P ((pr)res) = o v [ Mwlinsingaspn) TT AwGinsinsn), (243)

@1y bmyim+1 €1 kesS kesSe

=)

we have

1—Tr (a<m>r1575) <

P <LdJ {(pk Kes -

p=1

2
p=1 <|S| kezs o )
d
= 51_22 Z Z Yia H/\k(ik,ikﬂ;pk) H Me(igyips1)

p=Lli1,..im+1€l (pr)res kes kese

IN

Zxkp Slap

kesS

I
Bl =
M&

|S|2 Z Thptlp — 15| Zxk;vqﬁr%
k,leS kesS



Using the identity (2.38),we have

Z Z%‘l)\k(ilviz;p) = Vigs

i€l p

DN Mielinigip) =1 and Y Ap(i, i) = L.

ig€l p el

and from (2.39),

Hence we can write

> > v [ MGininrsoe) T )\k(ikaik+1)|_;| > wky =

i15esim+1 €1 (Pr)kes kesS kesSe kesS
1 ..
= 5] E E Yir Mk (it Tkt 15 ) = Qp-
keS i, i1 €T
Similarly,

Z Z Yix H/\k(ik,ikﬂ;m) H /\k(ik,ik—kl)# Z Tk,pTlp

i1yerimi1 €1 (pr)res k€S kese kleS; k<l

1 .
= 5P > > Vi Ak(iksikg15D)
kleS;k<lip,...,ij41€1
-1

X H A (e Trg1) N (i, 41415 D).
r=k+1

We now use the assumption (2.40) according to which
Ak (e is130) < (14 6%) iy M (iks D).
This yields

2 L
5| E E E Vi Me (Ues Tht15 D)
kJeS; k<lig,...,it41€1 (pr)res; ker<i

-1

H Ar (s 1) N (i, 1415 D)
r=k+1

2(1+46%) :
TSP Z Z Yir Ak (1% )
kleS;k<lip,...,ij41€1
-1

Yierr L] Al irgn) Meli, i p)
r=k+1

2(1 4 4° . o
- X ) Z Z Yir M (i3 )¥iy M (i, G115 D)

S 2
| | k,l€S; k<lig,ir,ii41€1

146 , ,
Z Z Yir A (k5 2) Vi A (i1 p)

2
|S| k,JleS iy, €l
= (1+ 53)(]12,.

IN

Inserting, we obtain
d d

1
1—Tr (U<m>ns75) - égqﬁ + 157 ;qp <26 (2.44)

if |S] > 4673,
- . 1
Lemma 11.3 (Continuity). Let p, o be states with ||p — o1 < 0 < 3 Then

0 0
[H(p) - H(o)| < ~0log & = d <a) | (2.45)



Lemma I1.4 (Tender operator). Let p be a state, and X a positive operator with X <1 and 1 — Tr(pX) < A < 1. Then

Hp - \/Yp\/ful N (2.46)

Lemma I1.5. Let p(no) and n,(clo) (k=1,...,m) be states on H®™ and HE" respectively, and p a state on HZ ("~ (no+lo)m),
Define, for § > 0 (and m € N), the entropy—typical projector by

Ment,s = @ (M1, ® ]I(lO)) @ @ (Tmp @ H(lO)) ® ]I(ﬂ—("o-i-lo)m)7 (2.47)

(P1s+-spm)ESs

where Ty, are the eigenprojections of ®(")(p (no)) with eigenvalues My, p, , i.e.

dmo
Pn0) (plno)y ZAM%, (2.48)

and

S5 = {(pl,...,pm): §m5}- (2.49)

3 (log A, + S(@T)(p")))
k=1

Then, for m large enough,

Tr <‘I’(") <®(p;§"0) an”)® p) cht,é) >1-6

k=1

and moreover

m n m " (n )
Mo, 5 & <®( (n0) g pllo)) ®p> Menes < J[ 25" D420 1y 5. (2.50)
k=1 k=1

Proof: Analogous to ([2.22) we have the expansion

Tr <q)(n) <®( (no) ®n(lo)) ® p> cht,é) _

k=1
= > T (i) @ © 05 iy im1) Henss)

where
Hent,s = @ Tp, @ -+ @ Tp,,,

and a,(C 0)(2 i’) are given by

TN (lo)
Z,Z) = E Qi iz Qizis - - - Qing—1,ing qzno,z

X (B ® - @By, ) ().

As in the proof of Lemma we apply the map x®™ and obtain

Tr (@) (£ (w)) .5 ) =

- Z Vix Z H Tr (ﬂ'km Ul(cno) (ik, ikH)”hm) .
i1yeensimp1 €1 (P1500sPm )ESs k=1
Introducing the probability distribution on {1,...,d" }" given by

PA) = > > HTr(wk,pka,i"‘”(z‘k,ikﬂ)mﬁpk) 2.51)

i1, im 1€ (P1,-spm)EA k=1

for AcC {1,...,d™}™, we have
Tr (<b<"><f<“><w>> Mss) = P(S5) =

-

<s).

> (1830 + 5B 11 1) 9+ i)

SIH




10

As before the sum in the expectation of log Ay, ,, telescopes, and

dmo
E(log Ak.p, ) = Z Vix Z Tr (wk pok no) (iks ik+1)) log Ak, pp

iy ip+1 €1 p=1

ano (2.52)
= 3T (7 @) (o) ) log Ay

p=1
= —S(@)(p")).
To show that P(Ss) — 0, we compute the variance of - = > e log Ak, as before. We have

2
1 m
EE (1og/\kp +S(¢("°)(pk1( )®"'®pkﬂlo)))

(2.53)
1 & 1™ .
= W Z E(log/\kmk 1Og)‘l,pl - <E Z (I)("O) ( 0))))
k,l=1 =1

The term k = [ yields

m d"0

— Z > Aep(log i p)?

k=1p=1

since the sum Y2 Ag ,(log i »)? is bounded by nZ(log d)2. For the terms k < [ we use the argument of Lemma By

the assumption (Iﬁ]])

Ak (i k415 0) < (14 0°)%i 0 Ak (ik3 D).
Writing A (¢,4'; p) = Tr(mg pox(i,4")), this yields

2
= Z E (log Ak,p, logAip,) =
1<k<i<m
d"™o

- % Z Z Z Vi, H )‘ ZTv'LTJrlypr) log Ak Pk log oy D1

1<k<i<m ig,...,i141 €I ps...,p1=1 r=k

21 + 6 o . : o
<AL S Y Y b lord i I Adliniraipd)losh,
1<k<i<m ig,..., i1+1€1 Prs--os pr=1 r=k+1
21 + 5% e
= m2 Z Z Niepy, 108 Ay, Z Z i, N (i, 41 pr) log A p,
1<k<i<m prp=1 i,941 €1 pr=1
2(1+63) no)/ (n no) [ (n
== D SIS0 (™)
1<k<I<m
m 2
<(1+6) (Z S<<I><"°><p;"°’>>> :
k=1
To prove the second bound, we write
o) <®(pl(€no) ® nl(cl[))) ® p> _
k=1
= Z %10; 0)(21,21)@)0; )(i/l,ig)@)...
Pl i1
i i;nJrl
®0'1(7?0)(ima Z;n) Y U§l°) (Zma imy1) ® o (ms1, i;n,-',-l)?
where now
(HO) Z qlll tt qinoﬂ:l ((bl ® T ® (bzno)(pl((:n())) (2'55)

12,--+ing



and
(lo) (lo)
Z Giiy - - Qirg it (P @ - - @ Dy ) (1°7)

12 ’LLO
and with [ = n — m(ng + lo),
PO = Tt (B8 B

Using the inequality

Hent,5 ® ((I)(n())(pl(cno)) ® H(lo))) ® ]I(l) Hent,5 S

< H 2_g(@(no)(pl(€no)))+6 Hent,éa
k=1
which follows from the definition of Il.ys s, together with the bound
U](gm))(i’il) <(1+ 63)%/ Z Ul(cm))(i’i/l)?
irel

we find

m

Hent,5 (I)(n) ®(p§gn0) ® n](glo)) ® p Hent,6
k=1

< (146%™ em@( ) (o)) @ T1)) ) & 1 Meng,5 <

m
no) [ (10)
< H 2—5(‘1’( 0 (p,"07))+25 et s,

Lemma I1.6 (Shadow bound). Suppose that 0 < A <1 and p is a state such that for constants A, i1, j12 > 0,

Tr(pA) > 1 — X and A < A2 pAY2 < A,

then
(1 =Mzt <TrA <pgt

and for B > 0,
Tr(pB) >n = TrB > (n— V8\)u; "
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