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We study a black hole with a blurred mass density instead of a singular one, which could
be caused by the noncommutativity of 3-space. Depending on its mass, such object has

either none, one or two event horizons. It possesses new properties, which become im-
portant on a microscopic scale, in particular, the Hawking temperature does not increase

indefinitely as the mass goes to zero, but vanishes instead. Such frozen and extremely
dense pieces of matter are a good dark matter candidate. In addition, we introduce an
object oscillating between a microscopic black hole and a naked (and blurred) singularity,
we call it gravimond.
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1. Introduction

Noncommutative (NC) theories are built on spaces whose coordinates do not commute and
therefore one cannot localize their points with an arbitrary precision. This is believed to
be an artifact of quantum gravity and results into a plenty of novel properties, for example
a natural UV cutoff. A certain theory of NC quantum mechanics (QM) was studied in1–4

and this paper aims to analyze its possible physical consequences.
Among the objects sensible to introducing a short scale structure are microscopic

black holes. In the classical theory, as they evaporate by Hawking radiation5 their radius
eventually becomes infinitely small and their temperature becomes infinitely high. It is
interesting to study how is this behavior affected by introducing a NC structure to 3-
space. The appropriate theory to investigate this is the one of quantum gravity, which is
yet to be found, or at least properly understood. Therefore we settle for a semiclassical
description and implement some of the results from NC QM into the classical theory of
gravity.

This method was developed by Nicolini,6 who dubbed it ’NC inspired’. More details
on NC inspired cosmology and gravity could be found,7–13 the concept of generalized
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uncertainty principle in a similar context has been analyzed as well14,15.
This paper is organized as follows. In Section 2 we derive a NC delta function (which

describes a (nearly) singular matter density), complete it into stress-energy tensor Tµ
ν and

solve the Einstein field equations (EFE) for it. This solution is analyzed, focusing mostly
on the event horizon(s) and the Hawking temperature, in Section 3. Section 4 contains
physical consequences of the model and final conclusions.

2. Noncommutative space, (blurred) delta function and EFE

We will study a model of 3 dimensional rotational invariant NC space described by

[x̂i, x̂j ] = 2iλx̂kε
ijk

, (1)

where εijk is the Levi-Civita symbol and λ is a constant with the dimension of length,
describing the scale of noncommutativity. It is not fixed within our model, but could be
expected to be (approximately) the Planck length.

There are several ways how to satisfy (1), see2,16–20. We will employ the bosonic
operator approach which was previously used in1–4 and is well suited for 3 dimensional
rotational invariant problems.

Let us define two sets of bosonic creation and annihilation operators satisfying

[âα, â
+
β ] = δαβ ; α, β = 1, 2 , (2)

and acting in an auxiliary Fock space F spanned on normalized states |n1, n2〉 =
(â+

1
)n1 (â+

2
)n2

√
n1!n2!

|0, 0〉, where |0, 0〉 = |0〉 is the vacuum state annihilated by both âα. It is

convenient to define their dimensional versions as ẑα =
√
λâα, ẑ

+
α =

√
λâ+α . Using these

(and Pauli matrices σi), we can define the (Cartesian) coordinates satisfying (1) and the
radial coordinate a as

x̂i = σ
i
αβ ẑ

+
α ẑβ , r̂ = ẑ

+
α ẑα + λ . (3)

Fock space states |n1, n2〉 are r̂ eigenstates with eigenvalues of λ(n1 + n2 + 1), the
vacuum state |0, 0〉 ≡ |0〉 is the state with the minimal eigenvalue, it corresponds to the
origin of the coordinate system. Space described by NC coordinates (3) can be looked upon
as quantized Euclidean 3-space, see21.

Coherent states play an important role in the ordinary quantum mechanics and are
crucial in NC theories as well22–26. A coherent state is well localized wave packet which
minimizes the uncertainty relation and is defined as an annihilation operator eigenstate

â|α〉 = α|α〉. Such states can be generated as |α〉 = e−
|α|2

2 eαâ
+

|0〉 and used as an over-

complete sets of states in F ,27. Overlap of two such states is 〈α|β〉 = e−
|α|2+|β|2

2
+ᾱβ . We

are interested in a state well localized at the origin, which follows from

ρ̃(z) = |〈z|0〉|2 = e
− |z|2

λ = e
− r−λ

λ . (4)

Let us pause for a moment to make a few remarks here. First of all, we define taking
λ → 0 as the commutative limit (RHS of (1) vanishes, as in the ordinary QM). It is
easy to see that in this limit the RHS of (4) vanishes everywhere but at the point r = 0,
it resembles Dirac delta distribution with the source located at the coordinate origin.
It is therefore natural to call ρ̃ ∝ e−

r
λ an almost delta distribution or a blurred delta

distribution (located at the coordinate origin).

aTheir relation is r̂2 − x̂2 = λ2, as can be easily checked.
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Note that ρ̃ in (4) is dimensionless, a dimensional one will be denoted ρ. Since the rest
of calculations will be done using the ordinary (not NC) calculus, we will normalize ρ with
respect to ordinary integration instead of trace norm, yielding

ρ(r) =
M

8πλ3
e
− r

λ . (5)

In the paper by P. Nicolini,6 which served as a main inspiration for ours, a similar line of
reasoning was used. The starting point was a two dimensional NC space and the resulting

density was generalized into three dimensional only afterwards, yielding ρ ∝ e
− r2

λ2 . As we
have shown, a direct three dimensional derivation based on (1) gives different result.

We will take (5) as the matter density of a (blurred) point and complete it into stress-
energy tensor. We focus on uncharged nonrotating black holes, so we expect the solution to
become Schwarzschild-like in the λ → 0 limit. This encourages us to use a diagonal ansatz
for the metric tensor with g00 = −g−1

rr , therefore we seek only a single function f(r)

such that gµν = diag
(

f,−f−1, r2, r2 sin2 θ
)

(with coordinates (0, r, θ, ϕ) and signature

(−,+,+,+). We often set uninteresting constants equal to 1 and omit writing arguments).
For the same reason we are expecting a diagonal Tµ

ν with T 0
0 = −ρ and T r

r = T 0
0

(which follows from the EFE). Because of the chosen ansatz, T r
r = T 0

0 is fixed as well (this
also can be seen from the EFE). The other two components follow from the conservation
law Tµν

;ν = 0. For µ = θ we get T θ
θ = T

ϕ
ϕ =: p⊥, for µ = r we get p⊥ = − r

2 (∂rρ+ 2
r ρ) =

−ρ− r
2∂rρ. Adding this we obtain T

µ
ν = (−ρ, pr, p⊥, p⊥), where pr = −ρ and p⊥ defined

above.
Since we are looking for a single function f(r) we only need one of the EFE, let us

take G0
0 = 8πT 0

0 . From it the solution follows as

1 + f(r) + rf ′(r)
r2

=
M

λ3
e
− r

λ → f(r) = −1− e
− r

λ
M

r

(
r2

λ2
+

2r

λ
+ 2

)

+
C

r
. (6)

Recall that g00 = f , therefore if we want the solution to approach Schwarzschild
solution for r ≫ λ, we need to set C = 2M . For the rest of this paper we will be needing
only the time component of the metric tensor,

g00(r;λ,M) = −1 +
2M

r
− e

− r
λ
M

r

(
r2

λ2
+

2r

λ
+ 2

)

. (7)

Let us pause for a brief comment. The stress-energy tensor violates the weak energy
condition (see28) for r < 2λ, which signalize a quantum repulsion (preventing the matter
from collapsing into a singularity). The strong energy condition is violated between black
hole horizons. This might either be an artifact of the semiclassical approach, or a signal
of negative energies present. In29 it is argued that the energy conditions are becoming
obsolete, being violated even in classical theory; namely, local conditions are not satisfied
for scalar fields with nonminimal coupling to gravity, and even averaged conditions do not
always hold if the field reaches transplanckian values.

The particular form of the stress-energy tensor followed from the postulate of T00 and
from the requirement of Schwarzschild-like form of gµν . However since we will be using
only the g00 component our results hold also for different completions of Tµν , which might
be free of (strong condition) violations.

3. Event horizon(s) and Hawking radiation

Event horizons are solutions of the equation g00(r) = 0. For an ordinary Schwarzschild
black hole there is only a single solution r = 2M , now there are two, one or zero solutions,
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depending on the value of M (see Figure 1). In the case there are two, let us denote them
r−, r+ (r− < r+).

When the mass is large (M ≫ λ), there are two horizons, one near the singularity
(r− ≈ 0) and the other near the classical horizon (r+ ≈ 2M). As M gets smaller, these
two surfaces move towards each other and meet for M =: M0 at r =: r0. We call a black
hole with the mass M0 and a single horizon at r0 minimal, since for any smaller M there
is no horizon at all, minimal black hole is the smallest (and lightest) possible black hole.
The values of M0, r0 can be obtained numerically

M0
.
= 2.57λ, r0

.
= 3.38λ . (8)

The Hawking temperature of a minimal black hole is zero. This follows from the fact

that it is proportional to the surface gravity at the (outer) horizon κ = − g′
00(r0)
2 , which

has to be zero, since g00(r) reaches its maximum there. The black hole becomes frozen
and evaporation ceases when the minimal mass M = M0 is reached.

Note that infinite temperatures are avoided (Figure 2). From a dimensional analysis
we can see that the maximal reached temperature (denoted Tm) is proportional to λ−1.
To find the constant of proportionality, let us first factorize out the mass from g00

g00(r;λ,M) = −1 +Mg̃(r;λ) , (9)

where g̃(r) does not depend on M . At the (outer) horizon g̃(r+) = 1
M , and

g
′
00(r+) = Mg̃

′(r+) =
g̃′(r+)

g̃(r+)
. (10)

This is, up to a multiplicative constant, equal to the Hawking temperature. To find r+, for
which this achieves extremum we need to solve ∂r+g

′
00(r+) = 0. This can be, again, done

numerically (choosing λ = 1), finding that the extremum is reached as g′00(r+
.
= 6.54)

.
=

−0.12. Plugging this into the relation for the temperature we obtain

Tm
.
=

~c

4πkB

0.12

λ
,

~c

4πkB

.
= 0.18× 10−3

mK. (11)

It can be observed in Figure 2 that the temperature grows very rapidly for M & M0. It
is therefore interesting to investigate what happens after adding a small mass δM ≪ M0

into a minimal black hole.

Fig. 1. g00(r) for λ = 1 and different values of M .
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To answer this question we use the decomposition (9). Let us denote the increment in
radius δr, horizon condition after adding a small mass δM reads

− 1 + (M0 + δM)g̃(r0 + δr;λ) = 0. (12)

Truncating the Taylor expansion of (12) we obtain

g̃(r0 + δr;λ)
.
= g̃(r0;λ)

︸ ︷︷ ︸

M−1

0

+δr ∂r g̃(r0;λ)
︸ ︷︷ ︸

0

+
1

2
δr

2
∂
2
r g̃(r0;λ) . (13)

Inserting this back into (12) we arrive to

δr
.
= ±

√

−2δM

M2
0 ∂

2
r g̃(r0;λ)

. (14)

Evaluating for M0 and r0 as given in (8) yields δr
.
= ±2.54

√
λδM (there are two symmetric

solutions because we have truncated the Taylor expansion after the quadratic term).
We can now determine the temperature of the resulting black hole

T (r0 + δr)
.
=

0
︷ ︸︸ ︷

T (r0)+∂rT (r0)δr (15)

= −M0g̃
′′(r0)
4π

δr
.
=

1

4π

1

M0

2δM

δr

.
=

1

2π

√
δM

6.53 λ3/2
,

Recovering constants for a moment

T (M0 + δM)
.
=

√
δM

41.01 λ3/2
~c

kB
. (16)

It is useful to express this with respect to the maximal temperature

T (M0 + δM)

Tm

.
= 2.55

√

δM

λ

.
= 4.09

√
δM

M0
. (17)

Fig. 2. The Hawking temperature as a function of black hole’s mass.
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We can see that for δM ≪ M0 the black hole does not reach its maximum temperature,
only a small fraction of it (which is, absolutely speaking, still huge).

The last question of this section will be whether does the temperature reach the max-
imum value if we merge two minimal black holes together? When we have M = 2M0 we
are in a region where we can safely take r+ = 2M = 4M0

.
= 10.28λ. This is larger than the

value r+ = 6.54λ for which the temperature reaches maximum, therefore the maximum
will be reached, when the new black hole evaporates from the radius of 10.28λ to 6.54λ.

4. Physical consequences and conclusion

To be able to evaluate physical consequences let us assume that λ ∼ lPlanck
.
= 1.62 ×

10−35m, as is usually done (scaling rules for a different choice will be included). Most
sensitive to introducing the noncommutativity are microscopic black holes, with a radius
of the order of a few λ. The most important case is the minimal black holes, let us denote
it mBH.

According to (8) a mBH should have a radius r0
.
= 5.48 × 10−35m (we can take the

cross section to be σ = πr20
.
= 9.43 × 10−69m2) and a mass M0

.
= 5.59 × 10−8kg (r0,M0

scale as λ). Furthermore the maximal temperature Tm is 1.33×1030K, which is two orders
below the Planck temperature (this scales as λ−1).

Considering these numbers, mBH (or microscopic black holes in general) are possible
cold dark matter constituents. They are cold and dark (since their radiation froze out),
have extremely small cross section and are heavy enough so only a small concentration
nmBH

.
= 4.25 × 10−20m−3 is needed to make up for the observed dark matter mass

density ρDM
.
= 2.38× 10−27kgm−3 (this scales as λ−1). Dark matter density is uniform

only on cosmological scales, there is more of it in galaxies (by factor 105 − 106, see,30

possibly even more within solar systems). The idea of mBH as dark matter candidates has
appeared as a brief comment in,31 with the question of their creation left open. We propose
that they might have been formed shortly after the Big Bang (perhaps from primordial
inhomogeneities32), cooling down afterwards, until they eventually froze out.

The cross section of mBH is small enough for them not to interact with each other,
however it is still possible for them to be hit by another particle. Let us assume that a mBH
gets hit by a proton and absorbs it, what would happen? Since the mass of the proton is
significantly smaller than M0 we can use eq. (17), for this example δM

M0

.
= 2.98×10−20. The

resulting microscopic black hole will warm up to 7.06×10−10 of Tm, which is 9.39×1020K

(this scales as λ−
3
2 ), two orders below the energy of ultra-high-energy cosmic rays which

are being observed. Had the λ been shorter than the Planck length, a radiation of a
microscopic black hole after consuming a proton could account for such rays. It should be
noted here that it might be more correct to consider mBH-electron or mBH-quark collision
insteadb, since the proton is significantly larger than mBH.

It is important to note that in the considered case the energy of radiation exceeds the
energy of the consumed particle. The possible scenario is that the energy will be radiated
in one or two quanta and the resulting object will end with M < M0, it will have no
horizons and stops being a black hole. Then it will be moving through the space as an
extremely dense lump of matter and collect additional mass until it reaches mass M0 and
becomes mBH again.

Such object, let us name it gravimond, lives in cycles: first it is a mBH with mass M0.
Then, after it absorbs a particle its radiation is reignited as M > M0. Shortly after it stops
being a black hole, since so much energy has been radiated that M < M0, it becomes an

bInteresting questions about the confinement arise in that case.
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extremely dense object (almost a black hole), which needs to capture additional mass to
become mBH again. The period of these cycles is unknown and largely depends on the
location of such object (how often does it get to interact with other matter).

Conclusion: The paper analyzed (microscopic) black holes with a blurred mass den-
sity, instead of a singular one. Such matter density originated from considering a NC
structure of 3-space, yet the following calculations have been done using the ordinary cal-
culus and the general theory relativityc. There are many cases in the history of physics
advocating for a semiclassical approach, just recall the Bohr’s derivation of the Rydberg’s
formula. We do not expect our results to be as exact, but merely to give a hint of what to
expect from a proper quantum theory of gravity. Since some of the features persist also in
full NC approach (for example existence of the minimal possible event horizon radius can
be compared to the minimal event horizon area A ≈ 4πl2Planck in33) it is plausible that
other features will hold in a full NC approach as well.

The emphasis of our analysis was on the radius of event horizon(s) and the Hawking
temperature of such black holes. The principal results of this paper are:

• Investigating the effects of blurring the matter singularity on the behavior of
(microscopic) black holes. Showing the existence of a minimal possible black hole
radius r0

.
= 3.38λ and M0

.
= 2.57λ.

• Derivating the temperature dependency on the black hole mass, which is close to
the ordinary case for M ≫ M0, drops to zero for M = M0 and grows rapidly for
M & M0.

• Conjecture that microscopic black holes could be dark matter constituents (and
are also capable of generating high energy radiation).
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