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Abstract: We study the second derivative of the free energy with respect to the fundamental

mass (the mass susceptibility) for the Berkooz-Douglas model as a function of temperature and

at zero mass. The model is believed to be holographically dual to a D0/D4 intersection. We

perform a lattice simulation of the system at finite temperature and find excellent agreement

with predictions from the gravity dual.
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1 Introduction

Gauge/gravity duality [1, 2], the idea that gravity can capture the dynamics of strongly

coupled gauge theories and vice versa continues to fascinate theoretical physicists. Numer-

ous applications ranging from condensed matter physics to heavy ion collisions have been

proposed. Most of them exploit the weak/strong coupling duality of the correspondence.

However, it is this property that makes the correspondence difficult to test, especially in a

non-supersymmetric setting. In this paper we continue recent efforts to test a particular

regime of the correspondence at finite temperature using mainly lattice simulations [3–9].

We focus on the Berkooz-Douglas (BD) matrix model [10], a flavoured version of the BFSS

matrix model [11], holographically dual to the D0/D4-system [12, 13].

In ref. [14] the lattice formulation of the BD matrix model was studied. The model was

studied both holographically and with computer simulations focusing on the fundamental

condensate of the theory as a main observable. In the large N limit, as the mass parameter

is varied, gauge/gravity duality predicts the existence of a meson melting phase transition,

corresponding to a topology change transition in the supergravity set-up. The studies of

ref. [14] show a remarkable agreement between theory and simulations in the deconfined phase

of the theory. It was speculated that in this phase there is a cancellation mechanism for the

α′ corrections to the condensate. The studies were conducted at two different temperatures

and for a variety of bare masses.

In this paper we consider the opposite regime studying the susceptibility of the condensate

with respect to the bare mass, at vanishing bare mass and for a range of different temperatures.

The advantage of this approach is that at high temperatures the BD model can be studied

perturbatively [15] and at low temperatures we have a gauge/gravity prediction. This allows
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us at high temperatures to verify the validity of our lattice approach against the perturbative

results of ref. [15], while at low temperatures to compare with the predictions of gauge/gravity

duality. Furthermore, we find that if we go to sufficiently high order in perturbation theory

we can extrapolate the high temperature expansion to intermediate temperatures. If the

cancellation mechanism for the α′ corrections to the fundamental condensate does take place

we may expect to obtain agreement of these extrapolated high temperature results with

the gauge/gravity curve. Remarkably, the low temperature curve obtained from the D0/D4

holographic set-up and the high temperature expansion curves are indeed very close in the

intermediate temperature regime T ∼ g1/3.

The paper is organised as follows. In section 2 we briefly review the lattice formulation

of the BD matrix model and its high temperature expansion. In section 3, with details in

appendix A, we present the derivation of the slope of the condensate from supergravity. In

section 4 we present our results for the slope of the fundamental condensate. We conclude

with a discussion in section 5.

2 Mass susceptibility of the condensate at high temperature.

The BD model in euclidean 1+0 dimensions is given by the following action [14–16]:

SE = N

∫ β

0

dτ

[

Tr

(

1

2
DτX

aDτX
a +

1

2
Dτ X̄

ρρ̇DτXρρ̇ +
1

2
λ†ρDτλρ +

1

2
θ†ρ̇Dτθρ̇

)

+ tr
(

Dτ Φ̄
ρDτΦρ + χ†Dτχ

)

− Tr

(

1

4
[Xa, Xb]2 +

1

2
[Xa, X̄ρρ̇][Xa, Xρρ̇]

)

+
1

2
Tr

3
∑

A=1

DADA + tr
(

Φ̄ρ(Xa −ma)2Φρ

)

− Tr

(

−1

2
λ†ργa[Xa, λρ] +

1

2
θ†ρ̇γa[Xa, θρ̇]−

√
2iερσθ†ρ̇[Xσρ̇, λρ]

)

− tr
(

χ†γa(Xa −ma)χ+
√
2iερσχ†λρΦσ +

√
2iερσΦ̄

ρλ†σχ
)

]

, (2.1)

where

DA = σA σ
ρ

(

1

2
[X̄ρρ̇, Xσρ̇]− ΦσΦ̄

ρ

)

, (2.2)

and the covariant derivative Dτ acts on the fields of the fundamental multiplet, Φρ and χ, as

Dτ · = (∂τ − iA) · . The trace of the colour SU(N) is written as Tr while that of the flavour

SU(Nf ) is denoted by tr. The diagonal matrices, ma, correspond to the transverse positions

of the D4–branes.

Note that the overall factor of N in equation (2.1) implies that the dimensionless pa-

rameter β is related to the temperature via: β−1 = T/λ1/3, where λ = N g2 is the ’t Hooft
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coupling. In the same way the dimensionless parameter ma = ma
q/λ

1/3, where ma
q is the bare

mass in physical units.

The fundamental condensate is defined as the variation of the free energy density with

respect to the bare mass parameter ma:

〈Oa
m〉 = ∂

∂ma

(

− 1

β
logZ

)

=

〈

∂

∂ma

SE

β

〉

=

〈

N

β

∫ β

0

dτ tr
{

2Φ̄ρ(ma −Xa)Φρ + χ†γaχ
}

〉

.

(2.3)

In this paper we focus on the mass susceptibility of the condensate at vanishing mass. The

mass susceptibility of the condensate by definition is:

〈Cm〉 = ∂2

∂ma2

(

− 1

β
logZ

)

=
1

β

〈

∂2SE

∂ma2
−
(

∂SE

∂ma

)2
〉

+
1

β

〈

∂SE

∂ma

〉2

, (2.4)

which using Oa
m = ∂SE/∂m

a can be written as:

〈Cm〉 = 〈∂maOa
m〉 − β

〈

(Oa
m)2 − 〈Oa

m〉2
〉

. (2.5)

Now if we substitute SE with the action (2.1), for the operator Cm we obtain1:

Cm =
2N

β

∫ β

0

dτ tr Φ̄ρΦρ −
N2

5β

(
∫ β

0

dτ tr
{

−2Φ̄ρXaΦρ + χ†γaχ
}

)2

. (2.6)

Recently, the high temperature expansion of the BD model was considered in ref. [15] using

expansion in Matsubara modes and standard perturbation theory. The following expansion

of the mass susceptibility was obtained:

〈Cm〉
N

= β− 1

2Ξ6 + β(Ξ7 + Ξ8) +O(β
5

2 ) , (2.7)

where the constants Ξ6,Ξ7 and Ξ8 can be measured by simulating the pure matrix model

obtained in the T → ∞ limit and have been tabulated in ref. [15]. We can now use the

lattice formulation of the BD model proposed in ref. [14] to compare to the high temperature

expansion formula (2.7). Before we continue with the lattice studies of the susceptibility let

us focus on the holographic description of the model at low temperature.

3 Holographic description at low temperature.

At low temperature the BD model is proposed to be dual to the D0/D4 holographic set-up2.

The most understood case that we will focus on is the so called quenched approximation,

1Note that the expression for Cm in ref. [15] differs by a factor of N . Note also that the factor of 1/5 in the

second term compensates the summation over a = 1, . . . , 5.
2The D0/D4 set-up belongs to a large class of Dp/Dp+4 -brane intersections exhibiting universal properties

such as the presence of a meson melting phase transition. For more details look at refs. [13, 17–20] as well as

ref. [21] for an extensive review.
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when the flavour D4–branes are in the probe approximation [12]. In the near horizon limit

the D0-brane supergravity background is given by:

ds2 = −H− 1

2 f dt2 +H
1

2

(

du2

f
+ u2 dΩ2

8

)

,

eΦ = H
3

4 , C0 = H−1 , (3.1)

where H = (L/u)7 and f(u) = 1 − (u0/u)
7. Here u0 is the radius of the horizon related

to the Hawking temperature via T = 7/(4π L) (u0/L)
5/2 and the length scale L is given by

L7 = 15/2 (2πα′)5 λ, with λ the ’t Hooft coupling.

To introduce matter in the fundamental representation we consider the addition of Nf

D4–probe branes . In the probe approximation Nf ≪ N , their dynamics is governed by the

Dirac-Born-Infeld action:

SDBI = − Nf

(2π)4 α′5/2 gs

∫

d4ξ e−Φ

√

−det||Gα,β + (2πα′)Fα,β || , (3.2)

where Gα,β is the induced metric and Fα,β is the U(1) gauge field of the D4–brane, which we

will set to zero. Parametrising the unit S8 in the metric (3.1) as:

dΩ2

8 = dθ2 + cos2 θ dΩ2

3 + sin2 θ dΩ2

4 (3.3)

and taking a D4–brane embedding extended along: t, u, Ω3 with a non-trivial profile θ(u),

we obtain (after Wick rotation):

SE
DBI =

Nf β

8π2 α′5/2 gs

∫

duu3 cos3 θ(u)
√

1 + u2 f(u) θ′(u)2 . (3.4)

The embedding extremising the action (3.4) can be obtain by solving numerically the corre-

sponding non-linear equation of motion. The AdS/CFT dictionary then relates the behaviour

of the solution at large radial distance u to the bare mass and condensate of the theory

via [12], [13]:

sin θ =
m̃

ũ
+

c̃

ũ3
+ . . . , (3.5)

where ũ = u/u0 and the parameters m̃ and c̃ are proportional to the bare mass and condensate

of the theory. Therefore, the mass susceptibility of the condensate at zero bare mass 〈Cm〉 is
proportional to:

〈Cm〉 ∝ −
(

dc̃

dm̃

)

∣

∣

∣

m̃=0

=
1

2

csc(π/7) Γ(3/7) Γ(5/7)

Γ(1/7)2 Γ(2/7) Γ(4/7)
. (3.6)

The last expression was obtained by using that small m̃ implies small θ, and hence the

equation of motion for θ can be linearised and solved analytically. We refer the reader to

appendix A for more details. Combining equation (3.6) with the exact expressions for the

mass and condensate in terms of m̃ and c̃ [13, 14]:

m = mq/λ
1/3 =

u0 m̃

2πα′
=

(

120π2

49

)1/5(
T

λ1/3

)2/5

m̃ ,
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〈Om〉 = − Nf u
3
0

2π gs α3/2
c̃ =

(

24 153 π6

76

)1/5

Nf Nc

(

T

λ1/3

)6/5

(−2 c̃) , (3.7)

we obtain:

〈Cm〉 = 141/5152/5π9/5

(

csc(π/7) Γ3/7 Γ5/7

Γ2

1/7 Γ2/7 Γ4/7

)

Nf Nc

(

T

λ1/3

)4/5

≈ 1.136Nf Nc

(

T

λ1/3

)4/5

.

(3.8)

Equation (3.8) is the holographic prediction for the mass susceptibility of the fundamental

condensate, which in the next section we are going to test on the lattice.

4 Lattice Results

In this section we use the lattice formulation of the BD model developed in ref. [14] to test both

the high temperature expansion curve (2.7) and the holographic prediction (3.8). Remarkably,

the two curves are already very close in the intermediate T/λ1/3 ∼ 1 temperature regime (see

figure 1) suggesting that the α′ corrections to the mass susceptibility are small.

As was shown in section 2, if we start with the action SE in equation (2.1) we arrive at

equations (2.5) and (2.6). However on the lattice we have to substitute the corresponding

lattice action Sbos + Sps.f [14] for SE , where Sbos is the discretised bosonic action and Sps.f

is the pseudo fermionic action, in which the fermions are represented (modulo a neglected

phase) by pseudo fermionic bosonic fields and a complicated fermionic matrix [14]. As a

result equation (2.6) is no longer valid, however equation (2.5) remains valid, provided one

substitutes the condensate operator Oa
m with the corresponding lattice operator, obtained by

differentiating the lattice action with respect to the mass parameter ma. In addition, the first

term in equation (2.5) involves a further derivative with respect to ma, which complicates

the analysis due to the more complex mass dependence of the pseudo fermionic action3.

Nevertheless, the fact that the second term in (2.5) is the variance of the condensate operator

remains true on the lattice. This means that we can use the simulation data for the calculation

of the condensate to measure the variance term, while the first term in (2.5) has to be

calculated directly as an expectation value.

The computation of the condensate susceptibility is a nice consistency check of our code,

since it involves also the second momentum of the simulation data. We used this method

for temperatures in the range 1 ≤ T/λ1/3 ≤ 5. For temperatures T < λ1/3, we found that

the critical slowing down, related to the absence of a gap in the supersymmetric system,

impede the estimation of the variance. This is why for such low temperatures we used that

the condensate is to a very good approximation linear near m = 0 and since it vanishes at

m = 0 one can approximate:

〈Cm〉 ≈ 〈Oa
m〉/ma , (4.1)

3We refer the reader to ref. [14] for more details on the differentiation of the pseudo-fermionic action Sps.f .
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for small ma. This method also has the advantage that it imposes the vanishing of the

condensate at vanishing mass (which is true by symmetry) and lowers the numerical error.

We used this method to estimate the slope at temperature T = 0.8λ1/3.

In our simulations we used Λ = 16 lattice points for temperatures T/λ1/3 ≤ 1 and lowered

Λ at higher temperatures (in the range 1 ≤ T/λ1/3 ≤ 4) to preserve roughly the same lattice

spacing. For temperatures higher than T = 4λ1/3 we used Λ = 4 lattice points. The rank of

the gauge group was fixed at N = 10 and we used one family of flavours Nf = 1 to minimise

the ratio Nf/N and improve the probe approximation. Note that although on the gravity

side we used the probe approximation, the lattice simulation was dynamical [14]. Finally, for

our parameters the high temperature curve (2.7) is given by [15] :

〈Cm〉 = 14.08

(

T

λ1/3

)1/2

− 3.02

(

T

λ1/3

)−1

+O(T− 5

2 ) . (4.2)

In figure 1 we present our main result. The red dashed curve is the holographic curve (3.8).

The black dashed curve is the high temperature curve (4.2) and the blue bars represent

the lattice simulations based on the lattice formulation developed in ref. [14]. The red bars

correspond to an independent lattice simulation based on a different lattice discretisation.

Although generated with significantly less statistics these results agree very well with our

other simulation4. The red error bar at T = λ1/3 has been obtained by extrapolating to

Λ = ∞ using simulations with Λ = 8 and Λ = 16 (see figure 2). The extrapolated result

〈Cm〉
∣

∣

∣

T=λ1/3
= 11.33± 1.26 is very close to the AdS/CFT prediction (3.8), for T = λ1/3 and

N = 10.

Overall, one can observe excellent agreement of the lattice simulation and the high T curve

even for temperatures as low as T = λ1/3. One can also observe excellent agreement with

holographic predictions at temperatures T ∼ λ1/3. Remarkably, even the high temperature

curve is very close to the holographic curve in this regime. As mentioned earlier this suggests

that the α′ corrections to the mass susceptibility are indeed very small.

5 Conclusion

In this paper we continue our investigation of the BD model and its relation to the D0/D4–

brane holographic set-up. The main observable that we consider is the mass susceptibility of

the fundamental condensate at vanishing fundamental mass. We applied the recent analysis of

the high temperature regime of the BD matrix model to write down a perturbative expression

for the susceptibility at high temperatures. We also review the holographic derivation of

the fundamental condensate and obtain an analytic result for the susceptibility valid at low

temperatures. Based on the observation of ref. [14] that the α′ corrections to the condensate

seem to be insignificant in the deconfined phase (which is the relevant phase at vanishing

bare mass) we expect to find good agreement with the holographic curve not only at very

4We plan to refine these results in the near future, by accumulating more data and lowering the error bars.
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Figure 1. The red curve represents the holographic prediction (3.8), while the black dashed curve

corresponds to the high temperature expansion curve (4.2). The blue bars represent the results

of lattice simulations using the lattice discretisation in ref. [14]. The red bars correspond to an

independent lattice simulation based on an alternative formulation.

low temperatures, but also at intermediate temperatures T ≤ λ1/3. Remarkably, the high

temperature expansion curve also remains valid down to intermediate temperatures T ≥ 1

and is in fact very close to the AdS/CFT curve. Our lattice simulation is also in excellent

agreement with both the high temperature and low temperature predictions, verifying the

validity of the gauge/gravity correspondence.

Our results can be extended in several directions. The numerical direction is to push

the simulation to lower temperatures, higher rank gauge groups (higher N) and larger Λ, the

number of lattice points. In addition we plan to refine our alternative simulation and lower

the corresponding error bars (the red error bars in figure 1). The theoretical direction is to try

to extend the validity of the high temperature curve by considering higher order perturbation

theory such as in the studies of ref. [15]. Equally, one can attempt to estimate the leading

α′ corrections to the fundamental condensate. Such studies could potentially provide a more

rigorous test of the correspondence, which does not rely on lattice simulations. It would also

be satisfying to understand in more details the suppression of the α′ corrections in the black

hole (deconfined) phase of the D0/D4 system. Finally, one could attempt to study corrections

to the probe approximation by taking into account the backreaction of the flavour D4–branes.

We leave all of these interesting directions for future work.
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Figure 2. The red bars correspond to measurements at Λ = 8 and Λ = 16. The extrapolated result

is 〈Cm〉
∣

∣

∣

T=λ1/3
= 11.33± 1.26, which is very close to the AdS/CFT prediction (3.8) for T = λ1/3 and

N = 10.

Acknowledgements: The support from Action MP1405 QSPACE of the COST founda-

tion is gratefully acknowledged.

A Analytic expression for the condensate susceptibility

To obtain an expression for the slope of the condensate curve at vanishing bare mass, we

will determine the mass dependence of the condensate at small masses. This corresponds to

D4–brane embeddings entering the horizon at small angle θ0. Our strategy is to substitute

θ(ũ) = θ0 η(ũ) into the equation of motion for θ, derived from the action (3.4) and expand

to leading order in θ0. This is equivalent to linearising the equation of motion for θ. The

resulting equation for η is given by:

η′′(u) +
2 + 5u7

u8 − u
η′(u) +

3u5

u7 − 1
η(u) = 0 , (A.1)

where to simplify the notation we have replaced ũ → u. The general solution of equation

(A.1) is given by:

η(u) = C(1) 2F1

[

1/7, 3/7, 4/7, u7
]

+ C(2)u32F1

[

4/7, 6/7, 10/7, u7
]

. (A.2)
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Imposing regularity at the horizon (u = 1) fixes one of the integration constants and the

solution regular at u = 1 is given by:

η(u) = C(1)

(

2F1

[

1/7, 3/7, 4/7, u7
]

− u3
Γ(4/7) Γ(6/7)

Γ(1/7) Γ(3/7) Γ(10/7)
2F1

[

4/7, 6/7, 10/7, u7
]

)

.

(A.3)

The remaining integration constant C(1) can be fixed by imposing η(1) = 1. However, we

will not need its value to determine the dependence of the condensate c̃ on the bare mass m̃.

Indeed, expanding equation (A.3) at large u, we obtain:

η(u) = C(1)

(

Γ(2/7) Γ(4/7)

Γ(3/7)2
1

u
− 7π csc(π/7) Γ(5/7)

2 Γ(1/7) Γ(3/7)

1

u3
+O

(

1

u5

))

. (A.4)

Note that equation (3.5) can be rewritten as:

θ(u) =
m̃

u
+

c̃

u3
+O(m̃2) +O(1/u5) , (A.5)

where we have kept only the terms linear in m̃, since equation equation (A.4) is valid only to

a linear order in θ0. Therefore, to linear order in m̃ we have:

m̃ = C(1) θ0
Γ(2/7) Γ(4/7)

Γ(3/7)2
; c̃ = −C(1) θ0

7π csc(π/7) Γ(5/7)

2 Γ(1/7) Γ(3/7)
, (A.6)

and hence:

−
(

dc̃

dm̃

)

∣

∣

∣

m̃=0

= − lim
m→0

(

c̃

m̃

)

=
1

2

csc(π/7) Γ(3
7
) Γ(5

7
)

Γ(1
7
)2 Γ(2

7
) Γ(4

7
)

, (A.7)

which is the result used in equation (3.6).
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