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We consider matrix theoretical description of transverse M5-branes in M-theory on

the 11-dimensional maximally supersymmetric pp-wave background. We apply the
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1 Introduction

Matrix models are conjectured to give nonperturbative formulations of M-theory [1]. This

formulation is expected to realize a second quantization of M-theory, which contains all

the fundamental objects in the theory. However, the description of states with M5-branes

in the matrix models has not been established yet. Understanding this problem will shed

light on the matrix-model formulation of M-theory.

In this paper, we focus on M-theory defined on the maximally supersymmetric pp-

wave solution of the 11-dimensional supergravity and consider the description of certain

M5-branes living in this geometry in terms of the matrix model. On this background,

there exist stable spherical M2- and M5- branes with zero light cone energy. According

to the matrix-model conjecture, objects with zero light cone energy should be realized as

vacuum states in the corresponding matrix model. Hence, these spherical branes should

also be realized as certain vacuum states in the matrix model. In this paper, we investigate

this relation in detail by using the localization method.

The matrix model for M-theory on the pp-wave background is called the plane wave

matrix model (PWMM) [2]. This model is given by a mass deformation of the BFSS

matrix model [1], where the mass parameter is proportional to the three form flux on the

pp-wave geometry. Because of the mass deformation, PWMM possesses many discretely

degenerate vacua, unlike the BFSS matrix model. The relation between these vacua

and objects with vanishing light cone energy in M-theory was proposed in [2, 3]. Here,

in particular, the vacua corresponding to the above mentioned spherical M5-brane and

its multiple generalization were also specified. For the case of a single M5-brane, this

correspondence was tested by comparing the BPS protected mass spectra of PWMM

with that of the M5-brane [3].

Let us review this proposal in more detail. The vacua of PWMM, which preserve all

the supersymmetry, are given by the fuzzy sphere [4] and are labeled by N -dimensional

representations of the SU(2) Lie algebra, where N is the matrix size of PWMM. Generally,

the classical vacuum configuration in PWMM takes the form of

Xi ∝ Li, (i = 1, 2, 3) (1.1)

where Xi are the SO(3) scalar fields in PWMM and the other fields are vanishing at
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the vacuum. Li are N -dimensional representation matrices of the SU(2) generators.

Any N -dimensional representation gives a supersymmetric vacuum and, in general, the

representation is reducible. Then, one can make an irreducible decomposition:

Li =
Λ
⊕

s=1

L
[ns]
i ⊗ 1

N
(s)
2
. (1.2)

Here, L
[ns]
i are the generators in the ns-dimensional irreducible representation and N

(s)
2

represents the multiplicity of the sth representation. Hence, the vacua can be labeled by

a set of integers {Λ, N (s)
2 , ns|s = 1, 2, · · · ,Λ} satisfying

∑Λ
s=1 nsN

(s)
2 = N .

From this structure of the vacua, we can immediately find the structure of the spherical

M2-brane in M-theory. The fuzzy sphere is a regularization of a smooth two-dimensional

sphere. In the commutative limit, where N
(s)
2 are fixed while ns go to infinity, smooth

two-spheres are realized from the fuzzy sphere. One can naturally expect that this smooth

sphere is the spherical M2-brane with zero light cone energy.

On the other hand, in [2], the spherical M5-brane was conjectured to be realized as

the trivial vacuum of PWMM, where all the fields are vanishing. This is the case where

the representation in (1.1) is a direct sum of N trivial representations. Furthermore,

the conjecture was generalized to the case of multiple spherical M5-branes [3]. In these

conjectures, the M5-branes are considered to be realized in the limit such that ns are fixed

and N
(s)
2 go to infinity in (1.2).

In order to describe this limit more precisely, let us introduce Young diagrams asso-

ciated with the partition of (1.2). In the decomposition (1.2), we assume that n1 > n2 >

· · · > nΛ without loss of generality. Then we consider a Young diagram which consists of

N
(1)
2 columns with length n1, N

(2)
2 columns with length n2, and so on. See Fig. 1. The

conjecture states that when the lengths of some rows go to infinity, such rows correspond

to the spherical M5-branes, where the light cone momentum of each M5-brane is propor-

tional to the length of each row. For example, in Fig. 1, let us consider the limit where

all N
(s)
2 go to infinity with the same order while all ns are fixed. This limit corresponds

to a situation in M-theory such that there are Λ stacks of spherical M5-branes, where the
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Figure 1: Correspondence between partitions and configurations of M5-branes.

sth stack is made of ns − ns+1 M5-branes1 with light cone momentum

p+s =
s
∑

r=1

N
(r)
2 /R, (1.3)

where R is the radius of the light like circle2. Note that the total light cone momentum

is given by p+ =
∑Λ

s=1(ns − ns+1)p
+
s and this is equal to N/R. Note also that N5 :=

max{ns|s = 1, 2, . . . } = n1 corresponds to the total number of M5-branes.

This conjecture is highly nontrivial. For example, let us consider the simplest parti-

tion with Λ = 1, n1 = 1, N
(1)
2 = N , which corresponds to the trivial vacuum of PWMM.

At the classical level, the vacuum configuration is just vanishing, so that we can not see

any structure of the M5-brane. For example, it looks seemingly impossible to reproduce

geometric information of the spherical M5-brane (the radius etc.) from the trivial config-

uration. Nevertheless, the conjecture claims that a single spherical M5-brane is realized

in the trivial vacuum.

1 For s = Λ, we define nΛ+1 := 0.
2As we will see in the next section, the radius of a single (i.e. not coincident) M5-brane is proportional

to (p+)1/4. Thus, larger p+ gives a larger radius. Though this relation had never been derived for

coincident M5-branes, our results discussed below shows that this is also true for coincident M5-branes.

Fig. 1 is based on this picture, so that the sth stack has a larger radius than (s− 1)th stack.
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To bridge this gap, one needs to recall that M-theory is conjectured to be realized

in an appropriate large-N limit of PWMM, where the coupling constant also becomes

very large as the matrix size N goes to infinity. Thus, one has to deal with the strongly

coupled regime of PWMM, in order to understand the description of M5-branes. In the

strong coupling region, there must be a large quantum fluctuation around the classical

vacuum configuration. Thus, typical configurations of matrices will be very different from

the classical configuration. There is a possibility that the spherical M5-branes are formed

as a typical configuration of matrices in the strong coupling region of PWMM3.

In this paper, we investigate this possibility by directly studying the strong coupling

regime of PWMM. The limit we consider is

N
(s)
2 → ∞, ns fixed, N

(s)
2 /N

(t)
2 fixed (1.4)

for any s, t = 1, 2, · · · ,Λ. This limit corresponds to Λ stacks of M5-branes with different

radii as shown in Fig. 1. In addition, we also scale the coupling constant of PWMM in

such a way that the M5-branes decouple with the bulk gravity and only the degrees of

freedom on the M5-branes become relevant [3]. This decoupling limit turns out to be

the strong coupling limit in the ’t Hooft limit of PWMM, as we will describe in the next

section. In this decoupling limit, we apply the localization to PWMM and reduce some

BPS correlation functions to certain eigenvalue integrals. By evaluating the eigenvalue

integral, we argue that the eigenvalue distribution of the low energy modes of the SO(6)

scalar fields forms Λ stacks of spherical shells and coincides with the expected configuration

of the spherical M5-branes in M-theory4. In particular, we show that, for a single M5-

brane, the radius of the shell completely agrees with the value computed by using the

classical Dirac-Nambu-Goto action of a single M5-brane. This result strongly supports

the proposal of [3] and shows that PWMM indeed contains the multiple M5-brane states.

We also apply the same argument to M2-branes and show that the spherical M2-brane

can be described in a similar way using the eigenvalue integral.

This paper is organized as follows. In section 2, we review M-theory on the pp-wave

background. We show that there exist spherical M2- and M5- branes with zero light cone

3 See also [5] for the description of M5-branes in a different matrix model.
4A part of this result was briefly reported in the letter [6] for the case of concentric M5-branes. In this

paper, we not only describe the technical details of [6] but also generalize the result of [6] to the most

general configurations of the spherical M5-branes.

4



energy on this background. We also compute the radii of these objects. In section 3, we

review PWMM. In section 4, we apply the localization to PWMM and evaluate the moduli

distribution of scalar fields. We show that the distribution agrees with the configuration

of the spherical M5-branes. In section 5, we consider the case of M2-branes. In section 6,

we summarize our results and discuss the low energy theory of PWMM.

2 M-theory on the pp-wave background

In this section, we review M-theory on the maximally supersymmetric plane wave back-

ground in the 11-dimensional supergravity. The background geometry is given by

ds2 = gµνdx
µdxν = −2dx+dx− +

9
∑

A=1

dxAdxA −
(

µ2

9

3
∑

i=1

xixi +
µ2

36

9
∑

a=4

xaxa

)

dx+dx+,

F123+ = µ, (2.1)

where µ is the flux parameter of the three form field5. We will see that spherical M2-brane

and M5-brane exist as the lowest energy states with respect to the light cone Hamiltonian.

We refer the method in [7] for the calculation in this section.

2.1 Spherical M2-brane

We first consider a single M2-brane in the background (2.1). The bosonic part of the

M2-brane action is given by the Dirac-Nambu-Goto action plus a Chern-Simons term as

SM2 = −TM2

∫

d3σ
√

−dethαβ + TM2

∫

C3. (2.2)

Here, hαβ is the induced metric,

hαβ = gµν(X)∂αX
µ∂βX

ν , (2.3)

for the embedding function Xµ(σ). The overall constant TM2 in (2.2) is the tension of

M2-brane given by

TM2 =
1

(2π)2l3p
, (2.4)

5 Throughout this paper, we mainly use the notation that µ, ν = 0, 1, 2, · · · , 10, A,B = 1, 2, · · · , 9,
i, j = 1, 2, 3 and a, b = 4, 5, · · · , 9.
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where lp stands for the Planck length. By introducing a symmetric auxiliary field γαβ, we

rewrite the action into the Polyakov type:

SM2 = −TM2

2

∫

d3σ
√−γ

(

γαβgµν(X)∂αX
µ∂βX

ν − 1
)

+ TM2

∫

C3. (2.5)

This action has a diffeomorphism symmetry for the worldvolume coordinates σα =

(σ0, σ1, σ2) of the membrane. If we consider an M2-brane with topology R× Σ, where R

is the time direction and Σ is a Riemann surface, we can fix this symmetry by putting

γ0a = 0, γ00 = − 4

ν2
dethab, (2.6)

where a, b = 1, 2 and the determinant is taken in this 2 × 2 subspace. ν is a constant

which will be related to the light cone momentum of the M2-brane below. Then, the

action becomes

SM2 =
TM2ν

4

∫

d3σ

(

h00 −
4

ν2
dethab

)

+ TM2

∫

C3

=
TM2ν

4

∫

d3σ

(

−2Ẋ− + (ẊA)2 − µ2

9
(X i)2 − µ2

36
(Xa)2 − 2

ν2
{XA, XB}2

)

+ TM2

∫

C3.

(2.7)

Here, in the second line, we have introduced a canonical Poisson bracket on the membrane

defined by {f, g} = ǫab(∂af)(∂bg) for each fixed σ0. In terms of the Poisson bracket, the

Chern-Simons term can be written as

∫

C3 =
µ

6

∫

d3σǫijkX
i{Xj, Xk}. (2.8)

The gauge fixing condition (2.6) as well as the equation of motion of the auxiliary field

produce the following constraints:

gµνẊ
µẊν = − 2

ν2
gµνgρσ{Xµ, Xρ}{Xν , Xσ}

gµνẊµ∂aX
ν = 0. (2.9)

From the second constraint, it also follows that

{gµνẊµ, Xν} = 0. (2.10)

Thus, the system is reduced to the theory (2.7) with these constraints imposed.
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The constraints (2.9) can be explicitly solved in the light cone gauge,

X+(σ) = σ0. (2.11)

Here, we have defined X± by

X± =
1√
2
(X0 ±X10). (2.12)

We then consider the Hamilton formalism. We denote by P µ the canonical conjugate

momentum of Xµ. The total light cone momentum is then given by

p+ =

∫

d2σP+ = 2πνTM2, (2.13)

where we have chosen the spacial coordinates such that they have a volume
∫

d2σ = 4π.

This relates the constant ν to the light cone momentum. The Hamiltonian is given by

HM2 =

∫

d2σ

[

V2

2p+

(

P 2
A +

T 2
M2

2
{XA, XB}2

)

+
p+

2V2

(

µ2

9
(X i)2 +

µ2

36
(Xa)2

)

− µTM2

6
ǫijkX

i{Xj, Xk}
]

, (2.14)

where, V2 is the volume of the unit sphere, V2 = 4π. The remaining constraint (2.10) is

written in terms of the transverse components XA as

{PA, XA} = 0. (2.15)

Now, let us consider a vacuum configuration, which minimizes the Hamiltonian (2.14).

Note that the potential for X i forms a perfect square,

p+µ2

18V2

(

Xi −
3V2TM2

2µp+
ǫijk{X i, Xj}

)2

. (2.16)

From this, we find that the vacuum configuration is given by

X i = rM2x
i, Xa = 0, PA = 0, (2.17)

where xi are the embedding function of the unit sphere in R3 satisfying

xixi = 1, {xi, xj} = ǫijkxk. (2.18)

The radius is also determined as

rM2 =
µp+

12πTM2

. (2.19)

The configuration (2.17) obviously has the spherical shape. Thus we see that, in M-theory

on the pp-wave background, there exists a spherical zero energy M2-brane with the radius

given by (2.19).
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2.2 Spherical M5-brane

Then, let us consider a single M5-brane. We start from the bosonic part of the action,

SM5 = −TM5

∫

d6σ
√

−dethαβ + TM5

∫

C6, (2.20)

where dC6 = ∗F4 and the tension is written as

TM5 =
1

(2π)5l6p
. (2.21)

We can apply the computation in the previous subsection to (2.20). Then, we can obtain

the light-cone Hamiltonian for the M5-brane,

HM5 =

∫

d5σ

[

V5

2p+

(

P 2
A +

T 2
M5

5!
{XA1 , · · · , XA5}2

)

+
p+

2V5

(

µ2

9
(X i)2 +

µ2

36
(Xa)2

)

− µTM5

6!
ǫa1a2···a6X

a1{Xa2 , · · · , Xa6}
]

. (2.22)

Here, V5 is the volume of the unit 5-dimensional sphere, V5 = π3. The curly bracket with

five entries in (2.22) is the 5-dimensional analogue of the Poisson bracket defined by

{f1, · · · , f5} = ǫa1···a5(∂a1f1) · · · (∂a5f5). (2.23)

We notice that the potential terms of Xa forms a perfect square,

p+µ2

72V5

(

Xa1 −
6V5TM5

5!µp+
ǫa1a2···a6{Xa2 , · · · , Xa6}

)2

. (2.24)

Thus, we find that the vacuum configuration is given by a spherical fivebrane of the form,

X i = 0, Xa = rM5x
a, PA = 0, (2.25)

where xa are the embedding function of the unit 5-sphere into R6 satisfying

xaxa = 1, {xa1 , · · · , xa5} = ǫa1a2···a6xa6 . (2.26)

The radius of the fivebrane is determined as

rM5 =

(

µp+

6π3TM5

)1/4

. (2.27)
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2.3 Decoupling limits

In this paper, we focus on the limits in which the radii of the spherical M2- and M5-

branes become very large and only the degrees of freedom on these branes survive for low

energy physics [3].

Let us introduce the radius r =
√
xixi of the two sphere on which the M2-brane is

wrapping. The metric (2.1) is written as

ds2 = −2dx+dx− − µ2r2

9
dx+dx+ + r2dΩ2

2 + · · ·

= −µ2r2

9
dx̃+dx̃+ +

9

µ2r2
dx̃−dx̃− + r2dΩ2

2 + · · · , (2.28)

where · · · represents the other terms which are irrelevant in this discussion and we have

defined x̃± by x̃+ = x+ + 9
µ2r2

x−, x̃− = x−. Note that x̃± have the periodicity

(x̃+, x̃−) ∼ (x̃+, x̃−) + (9R/(µr)2, R), (2.29)

where R is the radius of the original compactified circle along the light-like direction. Since

the shift of x̃+ is much smaller than that of x̃− in the large-r limit, this can be effectively

regarded as a spatial compactification near the large M2-brane6. From the structure of

the metric (2.28), we find that the physical radius of the M-circle is given by R̃ ∼ R/(µr).

In the perspective of the type IIA superstring theory, the spherical M2-brane wrapping

on the two-sphere in (2.28) corresponds to a D2-brane. The gauge coupling constant on

D2-branes is given by g2YM ∼ gsl
−1
s , where gs and ls are the string coupling and the string

length. By translating this into the M-theory parameters using the standard dictionary,

gs ∼ (R̃/lp)
3/2 and ls ∼ (l3p/R̃)1/2, one can express the coupling constant as g2YM ∼ R̃2/l3p.

In the limit where the radius of the D-branes becomes large, it is convenient to rescale

the metric, so that the parameter which controls the theory on D2-brane is given by the

dimensionless coupling constant g2YMrM2, where rM2 is the radius of the M2-brane. By

6One can also take another coordinate (x̂+, x̂−) such that the metric becomes canonical Minkowski

metric. In this coordinate, the both shifts of x̂± are given by R/(µr) and this looks like a light cone

compactification. However, note that from d
dx̂+ ∼ 1

µr
d

dx+ , we see that the energy along x̂+ direction is

given by 1

µrH. Similarly, the momentum along x̂− direction is µrp++ 1

µrH. In the limit discussed below,

both r and p+ becomes large, so that the energy is much smaller than the spatial momentum. Thus,

after all, this can be indeed regarded as a spatial compactification.
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using (2.19), The coupling constant can be expressed as

g2YMrM2 ∼
R2

rM2µ2l3p
. (2.30)

We are interested in the case where lp and µ are fixed. Moreover, in order to have an

interacting theory on the D2-branes in the rM2 → ∞ limit, we would like to fix the

coupling constant (2.30). Then, the decoupling limit of the D2-branes is given by

p+ → ∞,
R2

p+
: fixed. (2.31)

The fixed quantity in (2.31) measures the size of the M-circle for each fixed p+, so that

the M2-brane in 11-dimension is realized in the limit where R2

p+
becomes large.

The limit (2.31) can be written in terms of the parameters of the matrix model. The

D0-brane charge (the matrix size) N is related to the light cone momentum by p+ = N/R

and the gauge coupling of D0-branes is given as g2 ∼ R3l−6
p . Thus, the limit (2.31) is

translated to

N → ∞,
g2

N
: fixed. (2.32)

Then, the decoupling limit of M2-brane is given by sending g2

N
to infinity.

Next, we consider the decoupling limit of the spherical M5-brane. The theory on

NS5-branes is known as the little string theory. This theory is characterized by the string

tension proportional to 1/l2s . We can apply the above argument for D2-branes to the little

string theory. Here, the fixed quantity is replaced by the tension of the little string which

is made dimensionless by using the radius of the M5-brane (2.27):

r2M5

l2s
∼ R̃r2M5

l3p
∼ RrM5

µl3p
. (2.33)

Thus, the decoupling limit of NS5-brane is given by

p+ → ∞, R4p+ : fixed. (2.34)

The M5-branes in 11-dimension are realized by further taking R4p+ to be large.

In terms of the parameters of the matrix model, the decoupling limit of NS5-brane

(2.34) is translated into

N → ∞, g2N : fixed. (2.35)
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This is just the ’t Hooft limit of the matrix model7. The M5-brane limit corresponds to

the strong coupling limit with respect to the ’t Hooft coupling g2N .

For multiple M5-branes, the radius of each M5-brane should become large to decouple

from the gravity. Furthermore, if there are some stacks of M5-branes with different radii

as shown in Fig. 1, the distances between the nearest stacks should also become large. The

limit realizing this situation is such that the all radii become large with the same order.

Since the radius of each M5-brane is proportional to a positive power of the light cone

momentum, the decoupling limit for the multiple fivebranes should be given by (2.35)

with p+s /p
+
t fixed for any s, t = 1, · · · ,Λ. Thus, we find that the large-N limit in (2.35)

should be taken as in (1.4) in the case of the multiple M5-branes.

3 The plane wave matrix model

In this section, we review the plane wave matrix model (PWMM) [2].

The Hamiltonian of PWMM is obtained by the matrix regularization of the Hamilto-

nian (2.14) of a single M2-brane [9]. In the matrix regularization, real functions on the

world volume f(σa) are linearly mapped to N × N Hermitian matrices, in such a way

that integrals and the Poisson algebra of functions are consistently mapped to traces and

the commutator algebra of the corresponding matrices, respectively. Namely, under this

mapping, we have

1

4π

∫

d2σ → 1

N
Tr, { , } → −iN

2
[ , ]. (3.1)

For example, let us consider the case where the spatial world volume is a unit sphere

embedded in R3. The image of the embedding function xi which satisfies (2.18) is given

by the N -dimensional irreducible representation of the SU(2) generators,

xi → x̂i =
2

N
Li. (3.2)

The normalization is chosen so that
∑

i x̂
2
i = 1N holds in the large-N limit. One can

check that (3.1) is satisfied by (3.2) for sufficiently large N .

7 In [8], a possible logarithmic correction to this limit was found.
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By applying the matrix regularization to the Hamiltonian (2.14), we obtain the bosonic

part of the Hamiltonian of PWMM as

H =
4π

N
Tr

[

4π

2p+

(

(

N

4π

)2

P 2
A − N2T 2

M2

8
[XA, XB]

2

)

+
p+

8π

(

µ2

9
X2

i +
µ2

36
X2

a

)

+
iµNTM2

12
ǫijkXi[Xj, Xk]

]

. (3.3)

PA and XA (A = 1, 2, · · · , 9) are now N × N matrices, which correspond to the images

of PA(σ
a) and Xi(σ

a) in (2.14). The constraint (2.15) is replaced by

[PA, X
A] = 0. (3.4)

In obtaining (3.3), we have also rescaled the momenta as PA →
(

N
4π

)

PA.

The rescaled momenta correspond to the canonical momenta of XA in PWMM. When

one quantizes the theory of M2-brane (2.14), one has the canonical commutation relation8,

[X̂A(σ), P̂B(σ
′)] = iδABδ

(2)(σ − σ′). (3.5)

Without the rescaling, according to (3.1), this would be mapped to

[X̂A
ij , P̂Bkl] = i

N

4π
δABδilδjk. (3.6)

The rescaling just removes the factor N
4π

on the right-hand side and makes P̂Aij the canon-

ically normalized momenta of X̂A
ij .

We consider vacua of PWMM. Noticing that the potential for Xi forms a perfect

square, we find that the Hamiltonian is minimized when

X i =
µp+

6πNTM2

Li (3.7)

and the other fields are equal to zero. Here, Li are N -dimensional representation matrices

of the SU(2) generators. For any N -dimensional representation, (3.7) gives a vacuum of

PWMM. In particular, the representation is reducible in general and we can make an

irreducible decomposition to express Li as in (1.2). With this decomposition, the total

matrix size can be written as N =
∑Λ

s=1 N
(s)
2 ns. Thus, the vacua of PWMM are labeled

by the discrete moduli parameters, Λ, N
(s)
2 and ns, which satisfy N =

∑Λ
s=1 N

(s)
2 ns.

8Here, the commutator represents the commutator of operators acting on the Fock space and this

should not be confused with the commutator of N ×N matrices.
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For later convenience, we introduce the action of PWMM. We first rescale the matrices

as

Y A =
12πNTM2

µp+
XA. (3.8)

Then, the bosonic action of PWMM can be written in a simple form as9

S =
1

g2

∫

dtTr

[

1

2
(DY A)2 − 2Y 2

i − 1

2
Y 2
a +

1

4
[Y A, Y B]2 − iǫijkY

i[Y j, Y k]

]

. (3.9)

Here, the coupling constant is related to the original parameters by

g2 =
T 2
M2

2π

(

12πN

µp+

)3

(3.10)

and the covariant derivative is defined by

DY A =
∂

∂t
Y A − i[A, Y A]. (3.11)

The gauge field A is introduced to take the constraint (3.4) into account. In the A = 0

gauge, the Gauss law constraint reproduces (3.4).

4 Spherical M5-branes from PWMM

4.1 Localization in PWMM

We consider a complex scalar field in PWMM defined by

φ(t) = Y3(t) + i(Y8(t) sin(t) + Y9(t) cos(t)). (4.1)

The real and imaginary parts of φ are given by an SO(3) scalar and an SO(6) scalar,

respectively, up to the time dependent rotation. When one makes a double Wick-rotation

for the time and Y9 directions, one can construct (four) supercharges which leave φ in-

variant. This allows us to exactly compute the expectation values of operators made of

only φ by using the localization method [10].

In order to perform the localization, one first needs to define the boundary conditions

in the Euclidean time direction. Since we are interested in PWMM expanded around a

9We have also rescaled the time coordinate appropriately.
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fixed vacuum, the appropriate boundary condition is such that all the fields approach

to the vacuum configuration as the Euclidean time goes to ±∞. With this boundary

condition, the path integral of PWMM defines the theory around the fixed background.

For the theory around the generic vacuum (1.2), the result of the localization obtained

in [11–13] is summarized below. See appendix A for the detail of localization. We have

the following equality:

〈
∏

I

TrfI(φ(tI))〉 = 〈
∏

I

TrfI(2L3 + iM)〉MM , (4.2)

where fI(x) are arbitrary smooth functions, 2L3 is the vacuum configuration for Y3. The

matrix M in (4.2) is an N × N constant Hermitian matrix which commutes with all of

La(a = 1, 2, 3). For the representation given by (1.2), M takes the form,

M =
Λ
⊕

s=1

(1ns
⊗Ms), (4.3)

whereMs is an N
(s)
2 ×N

(s)
2 Hermitian matrix. The expectation value 〈· · · 〉 on the left-hand

side of (4.2) is taken with respect to the original action of PWMM expanded around the

background (1.2). On the other hand, the expectation value 〈· · · 〉MM on the right-hand

side of (4.2) is taken with respect to the following matrix integral:

Z =

∫ Λ
∏

s=1

N
(s)
2
∏

i=1

dqsiZ1−loope
− 2

g2

∑
s,i nsq2si , (4.4)

where qsi(i = 1, 2, · · · , N (s)
2 ) are eigenvalues ofMs and Z1−loop is the one-loop determinant,

which arises in the 1-loop calculation of the localization. Z1−loop is given by

Z1−loop =
Λ
∏

s,t=1

(ns+nt)/2−1
∏

J=|ns−nt|/2

N
(s)
2
∏

i=1

N
(t)
2
∏

j=1

′
[{(2J + 2)2 + (qsi − qtj)

2}{(2J)2 + (qsi − qtj)
2}

{(2J + 1)2 + (qsi − qtj)2}2
]

1
2

.

(4.5)

The prime on the last product means that the second factor in the numerator with s =

t, J = 0 and i = j is not included in the product.

Note that the right-hand side of (4.2) does not depend on the time coordinates ta. So

this relation implies that the correlator on the left-hand side does not depend on time.

This property can be understood from the SUSY Ward identity, as shown in [12].
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We remark that, in the calculation of the localization, some possible instanton correc-

tions are neglected [11–13]. This corresponds to kink-like configurations in PWMM which

connect two distinct vacua [14–17]. However, the instanton amplitudes are bounded from

below by N2/λ times the difference of the quadratic Casimirs of the two vacua. Thus, in

the decoupling limit of the M5-brane, this effect is suppressed.

4.2 Coincident M5-branes from the simplest partition

To illustrate our computation, let us first consider the simplest partition with Λ = 1,

namely the vacuum with

Li = L
[N5]
i ⊗ 1N2 . (4.6)

According to the proposal in [3], this corresponds to N5 coincident M5-branes. In this

case, the eigenvalue integral (4.4) reduces to a one matrix model:

Z =

∫

∏

i

dqi

N5−1
∏

J=0

N2
∏

i>j

{(2J + 2)2 + (qi − qj)
2}{(2J)2 + (qi − qj)

2}
{(2J + 1)2 + (qi − qj)2}2

e
− 2N5

g2

∑
i q

2
i . (4.7)

In the decoupling limit of the M5-brane, N2 becomes infinity, so that the saddle point

approximation is valid in evaluating the eigenvalue integral (4.7). As usual, we introduce

the eigenvalue distribution

ρ(q) =
1

N2

N2
∑

i=1

δ(q − qi), (4.8)

which is normalized as
∫ qm

−qm

dqρ(q) = 1. (4.9)

Here, qm represents the range of the support of ρ(x)10. Note that, we are interested in the

decoupling limit of M5-brane where the ’t Hooft coupling λ := g2N2 goes to infinity. In

this regime, the Gaussian attractive force of the eigenvalue integral (4.7) becomes weaker,

so that qm is expected to go to infinity. If one considers the region where qm is very large

compared to N5, one can reduce the saddle point equation of ρ(x) to

β = πρ(q) +
2N5

λ
q2 −

∫

dq′
2N5

(2N5)2 + (q − q′)2
ρ(q′), (4.10)

10 Note that ρ has a single support, because the potential in (4.7) has a single well.
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where β is the Lagrange multiplier, which imposes the normalization (4.9). See appendix

B for the derivation of (4.10)

In the M5-brane limit, the solution to the saddle point equation is given by

ρ(q) =
83/4

3πλ1/4

[

1− q2

q2m

]3/2

, qm = (8λ)1/4, β =
81/2N5

λ1/2
. (4.11)

See appendix C.1 for the derivation of this solution11. Note that indeed qm becomes

infinity as the ’t Hooft coupling goes to infinity.

By using this solution, we can compute correlation functions of φ. For example,

1

N
〈Trφ2(0)〉 = 1

N
〈TrY 2

3 (0)〉 −
1

N
〈TrY 2

9 (0)〉 =
1

N
〈Tr(2L3 + iM)2〉MM

=
1

N
4Tr(L2

3)−
1

N
〈TrM2〉MM

=
N2

5 − 1

12
−
∫ qm

−qm

dqq2ρ(q)

=
N2

5 − 1

12
−

√
8λ

6
. (4.12)

Note that the second term is much larger than the first term in the strong coupling regime

with N5 fixed. This originally comes from the fact that the eigenvalue distribution of M

spreads over the much wider region than the distribution of L3 in the M5-brane limit.

This property is common for any correlation function of φ, including the resolvent. In

this regime, therefore, the imaginary part of φ is dominant and the real part is negligible.

In other words, the spectrum of φ lies along the imaginary axis in this limit.

Assuming that the matrices Y A become mutually commuting in the decoupling limit,

one may expect that this spectrum on the imaginary axis given by ρ in (4.11) could

be identified with the eigenvalue distribution of one of the SO(6) scalars. However, such

identification would contradict with the discussion in [18] by Polchinski. In [18], the BFSS

matrix model is considered and the trace of the square of the scalar fields Y A is shown to

be bounded from below by λ2/3 (in the notation used in this paper). And this conclusion

is considered to hold also for PWMM if we assume the gauge/gravity correspondence:

The dual geometry of PWMM reduces to the dual geometry of BFSS matrix model at

a sufficiently large radius r ≫ O(λ1/4) in the decoupling limit of M5-brane [19]. On the

11 See also [12] for another derivation using the Fermi gas method.
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other hand, if one assumes that ρ in (4.11) gives the eigenvalue distribution of one of the

SO(6) scalars in PWMM, this would give 1
N
Tr(Y A)2 = O(λ1/2), which is smaller than

the bound in the Polchinski’s argument. Thus, this leads to a contradiction and the first

assumption that YA become commuting in the decoupling limit seems to be wrong12.

Apart from Polchinski’s argument, we can find another reasoning for the above state-

ment, based on the gauge/gravity correspondence. The gravity dual [19] of PWMM has a

typical scale λ1/3, which is the string scale beyond which the supergravity approximation

is not valid. It is natural to expect that the matrix elements of Y A contain information

of such typical scale on the gravity side, so that the scalar fields in PWMM have the

typical value 1
N
Tr(Y A)2 = O(λ2/3). Then, it is again suggested that the matrices are

noncommuting even in the strongly coupled region.

The classical geometry of the supergravity and the M2/M5-branes are considered to

be realized as the low energy moduli of these matrices. Roughly speaking, they will

correspond to the low energy modes of the matrices and one needs to consider the low

energy theory of the matrix model to find the classical geometric objects in M-theory.

The noncommuting modes, which produce the large value for 1
N
Tr(Y A)2 = O(λ2/3), have

a large excitation energy, so that these modes should be frozen and irrelevant in studying

the low energy theory.

Note that the complex field φ has the eigenvalue distribution of order of λ1/4. This is

much smaller than the typical value of the noncommuting modes. From this fact, we find

that φ is a good low energy field and the operators Trφn can be considered as operators

in the low energy theory. This can also be understood from our formula (4.2) of the

localization. The correlation functions of φ are independent of the time coordinates and

hence are invariant under taking the time averages, which projects the operators to the low

energy modes (More specifically, one can eliminate the high energy modes by integrating

over very short time intervals with length given by 1/C, where C is a constant much

smaller than the typical energy scale for noncommuting modes but much larger than the

energy scale for (4.11).). This means that the result of the localization (4.2) contains only

the low energy modes.

As is discussed in [18], operators in the matrix model should be additively renormal-

12We thank J. Maldacena for suggesting this problem and the resolution using the time average which

we will discuss below.
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ized in the low energy theory, where the additive renormalization constants correspond to

contributions from the high energy noncommuting modes. However, such additive renor-

malization is not needed for Trφn. In order for the eigenvalues of φ to be of O(λ1/4), the

renormalization constants for Y A must cancel out in the correlators of φ. For example,

this can be seen in our computation in (4.12). Since the Trφ2 is given by the difference

between Tr(Y 3)2 and Tr(Y 9)2, the renormalization constants should cancel out.

The statement that φ picks up the low energy moduli of the matrices is also supported

by the earlier work on the gauge/gravity correspondence for PWMM. It was shown in

[12,13] that the field φ describes a system of moduli parameters on the gravity side, which

is equivalent to a certain axially symmetric electrostatic system: The charge densities of

the electrostatic system, which determines the geometry on the gravity side, were shown

to be equivalent to the eigenvalue density of φ.

From these observations, we claim that the spectrum of φ is identified with the low

energy moduli of PWMM. Furthermore, we claim that the low energy moduli in PWMM

are given by commuting matrices in the decoupling limit. This can be understood as

follows. Suppose that the moduli are given by noncommuting matrices and the theory

on the M5-branes has some noncommutativity of the low energy moduli parameters as

well as some length scale associated with the noncommutativity. The noncommutative

length scale must be much smaller than the radius of the M5-brane, since otherwise

the M5-brane would not be localized along the radial direction due to the nonlocality

caused by the noncommutativity and hence would not be regarded as 1+5 dimensional

object. Then, let us consider the length scale λ1/4 of the low energy moduli computed

from the localization. This scale corresponds to the scale of the M5-brane radius if one

takes the rescaling (3.8) into account. Thus, the length scale of the low energy moduli

must be much larger than the noncommutative scale. Therefore, even if the moduli

have noncommutativity, this effect must be much smaller than the value of the moduli

themselves in the decoupling limit. Thus, we can ignore the noncommutativity and can

regard the moduli as just commuting matrices. Note that this conclusion is consistent

with our result of the localization (4.2). Here, the moduli distribution is given by the

distribution of 2L3+iM in (4.7), and L3 and M are indeed mutually commuting variables.

The commutativity of the low energy moduli matrices might be general phenomena
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which occur in the strong coupling limit. As observed in [20], in some matrix models with

commutator interactions, commuting matrices indeed arise in the strong coupling limit. A

possible mechanism is as follows. For Yang-Mills type matrix models, one can rescale the

matrices in such a way that the coupling constant appears in front of each commutators.

In the strong coupling limit, in order to have a finite value of the action, the values of

commutators themselves must become small unless there is some cancellation with the

kinetic terms. If this occurs, the matrices become commuting with each other. Though

observing this phenomena directly in the current model is very difficult, this is very likely

to occur in the low energy region, since in the low energy limit, the kinetic terms of the

matrices are very small and there will be no chance to have a cancellation between the

kinetic terms and the commutator terms.

Thus, we identify the real and imaginary parts of φ in the formula (4.2) with the low

energy moduli for Y 3 and Y 9, respectively. In particular, ρ in (4.11) is identified with

the moduli of Y 9. Recall that, in the decoupling limit of M5-brane, we have seen that

the spectrum of φ becomes pure imaginary. Hence, with the suitable normalization of

matrices (namely, going back to the original normalization in (3.8)), one finds that the

moduli of the SO(6) scalar have a wide distribution while the moduli of the SO(3) scalars

collapse to the origin in the decoupling limit of the M5-brane.

Now, let us consider the description of the spherical M5-brane. We consider the SO(6)

symmetric uplift of the distribution [21, 22] of the moduli of a single SO(6) scalar. The

uplifted distribution ρ̃ is defined as the solution of

∫

d6xρ̃(r)x2n
9 =

(

µp+

12πNTM2

)2n ∫ qm

−qm

dqρ(q)q2n, (4.13)

for any n, where r =
√

x2
a is the distance from the origin. The normalization factor on

the right-hand side is chosen so that ρ̃ represents a density function before the rescaling

(3.8). For the density ρ in (4.11), the unique solution to (4.13) is

ρ̃(r) =
1

V5r50
δ(r − r0). (4.14)

The radius r0 is given by

r0 =

(

µp+

6π3N5TM5

)1/4

. (4.15)
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For N5 = 1, the shape of the density function of the SO(6) moduli agrees with the

shape of the spherical M5-brane. In particular, the radius shows a perfect agreement with

the M5-brane: r0 = rM5. Therefore, we conclude that the spherical M5-brane is indeed

realized as the low energy moduli distribution of the SO(6) scalar fields in PWMM.

For N5 > 1, (4.14) should correspond to the radius of multiple coincident M5-branes.

The N5-dependence of the radius agrees with the expected form in [3] based on the

perturbative expansion in PWMM.

4.3 Multiple M5-branes from generic partitions

Let us generalize the above calculation to the case of the general partition (1.2). According

to [3], this corresponds to Λ stacks of M5-branes with different radii as shown in Fig. 1.

As we discussed in section 2.3, to make the M5-branes decouple from the bulk gravity, we

consider the limit (2.35) such that the large-N limit is taken as in (1.4).

We introduce the eigenvalue distribution for qsi in (4.4) for each s as

ρs(q) =

N
(s)
2
∑

i=1

δ(q − qsi) (4.16)

and again assume that ρs(q) has a single support [−qs, qs]. Note that, to simplify some

expressions below, here we use the normalization

∫ qs

−qs

ρs(q) = N
(s)
2 , (4.17)

which is different from the one we used in the previous subsection. The saddle point

equations for ρs(q) can be derived in the same way as (4.10) and take the form,

ρs(q) +
1

π

Λ
∑

t=1

∫ qt

−qt

du

{ |ns − nt|
|ns − nt|2 + (u− q)2

− ns + nt

(ns + nt)2 + (u− q)2

}

ρt(u) =
µs

π
− 2ns

πg2
q2,

(4.18)

where q ∈ [−qs, qs] and s = 1, 2, · · · ,Λ. In appendix C.2, we construct a solution to these

equations in the decoupling limit. The solution is given as

ρ̂s(q) =
83/4

∑s
r=1 N

(r)
2

3πλ
1/4
s

[

1− q2

q2r

]
3
2

, qs = (8λs)
1/4 , λs := g2

s
∑

r=1

N
(r)
2 , (4.19)
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where s = 1, 2, · · · ,Λ and ρ̂s(q) are defined by

ρ̂s(q) :=
s
∑

r=1

ρr(q). (4.20)

The variables ρ̂s(q)(s = 1, 2, · · · ,Λ) have the following properties. First, ρ̂s(q) is

defined on the interval [−qs, qs] and is normalized as
∫ qs

qs

dqρ̂s(q) =
s
∑

r=1

N
(s)
2 . (4.21)

Note that
∑s

r=1 N
(s)
2 is proportional to the light cone momentum of the M5-brane in the

sth stack (1.3). Second, ρ̂s(q) naturally appear in evaluating the correlation functions of

the complex field φ. As we discussed in the previous subsection, in the decoupling limit of

M5-branes, Li on the right-hand side in (4.2) can be ignored. Then, we have for example,

〈Trφn〉 = in〈TrMn〉MM = in
Λ
∑

s=1

N
(s)
2
∑

i=1

ns〈qnsi〉MM

= in
∫

dqqn [n1ρ1(q) + n2ρ2(q) + · · ·+ nΛ−1ρΛ−1(q) + nΛρΛ(q)]

= in
∫

dqqn [(n1 − n2)ρ̂1(q) + (n2 − n3)ρ̂2(q) + · · ·+ (nΛ−1 − nΛ)ρ̂Λ−1(q) + nΛρ̂Λ(q)] .

(4.22)

Note that the coefficient (ns − ns+1) of ρ̂s is just the number of M5-branes in the sth

stack. From these properties, ρ̂s can be naturally identified with the density function for

an M5-brane in the sth stack.

Obviously, the SO(6) symmetric uplift of {ρ̂s} is given by Λ stacks of the spherical

shells. By taking the rescaling (3.8) into account, the sth stack has the radius

rs =
qsµ

12πRTM2

=

(

µp+s
6π3TM5

)1/4

, (4.23)

where p+s is defined in (1.3). Thus, we have shown that, as shown in Fig. 1, the generic

partition indeed describes concentric stacks of M5-branes with radii given by (4.23).

5 Spherical M2-branes from PWMM

So far, we considered the description of M5-branes in PWMM. In this section, we apply

the same analysis to the M2-brane limit. Note that the emergence of the spherical D2-
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branes in the type IIA superstring theory can be understood even at the level of the

classical action. However, it it still nontrivial whether we can observe the emergence in

the strong coupling region of PWMM. Here, we study the emergence of M2-branes in the

decoupling limit of the M2-branes. In this section, we only consider the simplest partition

(4.6) but the generalization is straightforward.

In the M2-brane limit, where N5 goes to infinity, the one-loop determinant of the

eigenvalue integral (4.7) converges to the hyperbolic tangent function. Thus, we obtain

Z =

∫

∏

i

dqi

N2
∏

i>j

tanh2

(

π(qi − qj)

2

)

e
− 2N5

g2

∑
i q

2
i . (5.1)

Note that the model depends only on N2 and g2/N5.

The typical value of the eigenvalues of this model should depend on N2 and g2/N5.

Then, in the decoupling limit of M2-branes, the typical value is much smaller than N5.

This implies that, in the result of the localization (4.2), the eigenvalue distribution of M is

much narrower than that of L3. Hence the spectrum of φ lies on the real axis in this limit.

This implies that the moduli of Y 3 are given by the classical vacuum configuration 2L3

while the moduli of Y 9 collapse to the origin. It is easy to see that the SO(3) symmetric

uplift of this configuration gives the two-sphere and the radius agrees with that of the

spherical M2-brane on the supergravity side for N2 = 1. Thus, we see that the spherical

M2-brane is also realized as the moduli of SO(3) scalars.

However, we should notice that, unlike the decoupling limit of M5-branes, the in-

stanton corrections could contribute to the partition function in the M2-brane limit13. If

this is the case, since the result of the localization does not include the instanton cor-

rections [11–13], our computation is not correct. Then, in order for our computation to

make sense, we need to consider the limit where the number of M2-branes goes to infinity.

In this limit, the instanton effects will be suppressed. Thus, at least in the large-N2 case,

the result of the localization shows the emergence of the spherical M2-branes in PWMM.

When N2 is large, we can find an exact solution for the eigenvalue distribution of (5.1)

and can check that the typical value of the eigenvalues is proportional to (λ/N5)
1/3 for

large λ/N5. See appendix D.

13This effect can naturally be understood as the instantons on the theory on D2-branes, which connect

two vacua with different monopole charges [3].
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Of course, there is still a possibility that the instantons do not affect our computation.

For instance, this happens if there exists a fermionic zero mode at the saddle points of in-

stantons in the localization computation. This needs a further analysis of the localization

saddles in PWMM.

6 Summary and discussion

In this paper, we tested a conjecture on the description of spherical M5-branes in the

matrix model formulation of M-theory. We considered the plane wave matrix model

(PWMM), which is expected to describe the M-theory on the maximally supersymmetric

11-dimensional plane wave geometry.

We first reviewed that, in the M-theory, there exist spherical M2- and M5- branes with

zero light cone energy. These spherical branes are considered to be described as certain

vacuum states in PWMM. This relation between the spherical branes and the vacua of

PWMM is stated in [3]. In particular, it is conjectured that a single spherical M5-brane

corresponds to the trivial vacuum of PWMM.

Through a direct computation in PWMM using the localization, we showed that the

spherical M2- and M5- branes are formed by the distribution of the moduli of SO(3) and

SO(6) scalar fields, respectively. This result strongly supports the proposal in [3].

As we discussed in section 4.2, we can assume that the moduli in PWMM are given

by commuting matrices in the decoupling limit of the M5-branes. Here, let us consider

a possible effective theory of these commuting matrices in the decoupling limit. We

require the theory to have the SO(6) symmetry and to be able to reproduce our result

of the localization. For the case of coincident M5-branes, a possible solution to these

requirements is given by a commuting matrix model with 6 matrices defined by14

Ŝ = N2

[

m2

2

∫

d6~y′ ρ̂(~y′) ~y2 −
∫

d6~y d6~y′ ρ̂(~y)ρ̂(~y′) ln |~y − ~y′| − β

(∫

d6~y′ ρ̂(~y′)− 1

)]

,

(6.1)

where ρ̂ is the distribution of moduli yai (a = 4, 5, · · · , 9, i = 1, 2, · · · , N) for the SO(6)

14 The same model was also considered in different contexts [22–24].
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scalars Y a,

ρ̂(y) =
1

N

N
∑

i=1

δ(6)(~yi − ~y). (6.2)

The Lagrange multiplier β is introduced to impose the normalization condition on ρ̂. The

second term in (6.1) is understood as the Vandermonde determinant
∏

i<j |~yi − ~yj|2 for

the commuting matrices. We fix the parameter m in (6.1) as

m = (8λ)−
1
4 , (6.3)

so that the model reproduces the result of the localization below. In the ’t Hooft limit,

the WKB approximation becomes exact. The saddle point equation is given by

β =
m2

2
~y2 −

∫

d6~y′ ρ̂(~y′) ln |~y − ~y′|2. (6.4)

The solution to this equation is obtained in [22–24] as

ρ̂(~y) =
1

π3|~y|5 δ(|~y| −
1

m
). (6.5)

Note that, through the rescaling (3.8), this is indeed equivalent to (4.14) obtained from the

localization. Thus, the saddle point configuration of the commuting matrix model agrees

with the configuration of the coincident spherical M5-branes. This agreement suggests

that the commuting matrix model might be relevant to a certain sector of the low energy

theory of PWMM.

It would be interesting to find more general commuting matrix model, which repro-

duces our result for the general partition. In addition, we also need to investigate whether

some low energy excitations can also be reproduced from the commuting matrix model

or not.

Finding a good description of the low energy theory should be one of the most im-

portant problem in understanding the description of the classical geometry in the matrix

theory. We hope that our result gives a clue to this problem.
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A Localization in PWMM

In this appendix, we perform the localization and derive the formula (4.2). In this ap-

pendix, following the method in [10], we use a Lorentzian signature obtained by a double

Wick rotation for the time-direction and the direction of one of the SO(6) scalar fields.

To use some 10 dimensional notation, we relabel the SO(3) scalar fields in PWMM as

(Y1, Y2, Y3) → (Y2, Y3, Y4), the SO(6) scalar fields as (Y4, · · · , Y9) → (Y5, · · · , Y10) and

the gauge field as A → Y1. The double Wick rotation is performed for the Y1 and Y10

directions and hence, the Y1’s direction is Euclidean and Y10’s direction is Lorentzian. We

also use Y0 to express the scalar field in the Lorentzian signature, which is related to Y10

by Y0 = iY10.

A.1 Off-shell supersymmetry of PWMM

In the above notation, the full action of PWMM can be written in the 10-dimensional

notation as

SPW =
1

g2

∫

dτTr
(1

4

10
∑

M,N=1

FMNF
MN +

1

2

10
∑

a=5

YaY
a +

i

2

10
∑

M=1

ΨΓMDMΨ
)

, (A.1)

Here, Ψ is the 10-dimensional Majorana Weyl spinor with 16 components and we use the

gamma matrices defined in [11]. We have also used the following notation:

F1M = D1YM = ∂τYM − i[Y1, YM ] (M 6= 1),

Fij = 2εijkYk − i[Yi, Yj], Fia = DiYa = −i[Yi, Ya], Fab = −i[Ya, Yb],

D1Ψ = ∂τΨ− i[Y1,Ψ], DiΨ =
1

4
εijkΓ

jkΨ− i[Yi,Ψ], DaΨ = −i[Ya,Ψ], (A.2)
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where i, j, k = 2, 3, 4 and a, b = 5, 6, · · · , 10. In order to realize the off-shell supersymme-

tries, we further add seven auxiliary fields

− 1

g2

∫

dτ
1

2

7
∑

I=1

TrKIKI (A.3)

to the action (A.1). Under the Wick rotation, KI shall become anti-Hermitian, so that

(A.3) becomes positive definite in the Euclidean signature.

The theory has the off-shell supersymmetry,

δsYM = −iΨΓMǫ,

δsΨ =
1

2
FMNΓ

MNǫ− YaΓ̃
aΓ19ǫ+KIνI ,

δsKI = iνIΓ
MDMΨ. (A.4)

See [11] for the definition of Γ̃a. The parameter ǫ has to satisfy the Killing spinor equation

of PWMM and the closure of the supersymmetry requires νI to satisfy

ǫΓMνI = 0,

1

2
(ǫΓNǫ)Γ̃

N
αβ = νI

αν
I
β + ǫαǫβ,

νIΓ
MνJ = δIJǫΓ

Mǫ. (A.5)

The following spinors give a solution to these conditions:

ǫ = e
τ
2
Γ09

e−
π
4
Γ49











η1

0

0

0











, νI =
√
2e

τ
2
Γ09

e−
π
4
Γ49

ΓI8











η1

0

0

0











, (A.6)

where η1 is any 4-component constant vector. We use η1 = (1, 0, 0, 0) in the following

computation.

A.2 Saddle point of the localization

To perform the localization, we add an exact term tδsV to the action, where

V =

∫

dτTrΨδsΨ. (A.7)
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After some calculation, one can find that the bosonic part of δsV is calculated to be

δsV ∼ −eτ (D1Y0 + Y0 − e−τK5)
2 − e−τ (D1Y0 − Y0 + eτK5)

2 − 2c
4
∑

i=2

(DiY0)
2

− 2c
∑

I 6=5

(KI)2 + 2c(D4Y9)
2 + 2c[Y0, Y9]

2 + 2c
8
∑

a=5

[Y0, Ya]
2 + S

+ 4
3
∑

a=1

[

e−τ

{

F+
a4 −

1

2
Da(e

τY9) + F+
a+4,8

}2

+ eτ
{

F−
a4 +

1

2
Da(e

−τY9)− F−
a+4,8

}2
]

,

(A.8)

where c := cosh τ and S is defined by

S = eτ (Y5 +D1Y5 +D2Y6 +D3Y7 +D4Y8 + e−τF98)
2

+ e−τ (Y5 −D1Y5 −D2Y6 −D3Y7 +D4Y8 − eτF98)
2

+ eτ (Y6 +D1Y6 −D2Y5 +D3Y8 −D4Y7 − e−τF97)
2

+ e−τ (Y6 −D1Y6 +D2Y5 −D3Y8 −D4Y7 + eτF97)
2

+ eτ (Y7 +D1Y7 −D2Y8 −D3Y5 +D4Y6 + e−τF96)
2

+ e−τ (Y7 −D1Y7 +D2Y8 +D3Y5 +D4Y6 − eτF96)
2

+ eτ (Y8 +D1Y8 +D2Y7 −D3Y6 −D4Y5 − e−τF95)
2

+ e−τ (Y8 −D1Y8 −D2Y7 +D3Y6 −D4Y5 + eτF95)
2. (A.9)

The derivatives DM are defined in (A.2). F±
ab stands for the selfdual and anti-selfdual

part of F±
ab in the subspace a, b = 1, 2, 3, 4 or a, b = 5, 6, 7, 8. After the Wick rotation,

Y0 = iY10 and Ki = iK
(E)
i (i = 1, 2, · · · , 7), the bosonic part δsV |bos becomes a sum of

positive-definite terms.

We consider the theory around a fixed vacuum (1.2). Then, we impose the boundary

condition such that all fields approach to the vacuum configuration at τ → ±∞. Then,

taking the temporal gauge Y1 = 0, we find that the saddle point configuration is given by

Ŷ10 =
M

c
, K̂

(E)
5 =

M

c2
, Ŷi = −2Li−1 (i = 2, 3, 4), (A.10)

where all the other fields are zero. Here, 2Li (i = 1, 2, 3) are the vacuum configuration

and M is a constant Hermitian matrix, which commutes with all of Li. For the vacuum

of the form (1.2), M takes the form (4.3).
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It is easy to see that the gaussian part in (4.4) is obtained by substituting the saddle

point configuration to the classical action SPW . The remaining part Z1−loop in (4.4) is

obtained by the 1-loop calculation around the saddle point.

A.3 Ghost fields

We introduce the collective notation,

X =

(

YA

(ǫǫ)ΥI

)

, X ′ =

(

−i(ǫǫ)ΨA

HI

)

, (A.11)

where ΥI , HI (I = 1, 2, · · · , 7) and ΨA (A = 1, · · · , 9) are defined below. Since {ΓAǫ, νI |A =

1, · · · , 9, I = 1, · · · , 7} gives an orthogonal basis for 16 component spinors, Ψ can be ex-

panded as

Ψ = ΨAΓ
Aǫ+ΥIν

I . (A.12)

ΨA and ΥI are introduced as the coefficients of this expansion. HI are defined as

HI = (ǫǫ)KI + 2νI ǫ̃Y0 + νI

(

1

2

9
∑

A,B=1

FABΓ
ABǫ− 2

9
∑

a=5

XaΓ
aǫ̃

)

, (A.13)

where ǫ̃ = 1
2
Γ19ǫ. We also define

φ = Y0 cosh τ − Y4 + Y9 sinh τ. (A.14)

Then, the supersymmetry can be written as

δsX = X ′, δsX
′ = −i(δφ + δU(1))X, δsφ = 0, (A.15)

where δφ is a gauge transformation with the parameter given by φ and δU(1) is a diagonal

U(1) transformation of the SO(3)× SO(6) symmetry. This shows that X and X ′ forms

a doublet while φ is a singlet under the supersymmetry.

We also introduce the ghost fields, (C,C0, C̃, C̃0, b, b0, a0, ã0), where (b, b0, a0, ã0) are

bosonic and (C, C̃, C0, C̃0) are fermionic fields. The fields with subscript 0 shall contain

only zero modes for both τ direction and the fuzzy sphere directions. They are defined

through the following BRS transformations,

δBX = [X,C], δBX
′ = [X ′, C],
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δBC = a0 − C2, δBφ = [φ,C],

δBC̃ = b, δBb = [C̃, a0],

δBã0 = iC̃0, δBC̃0 = −i[ã0, a0],

δBb0 = iC0, δBC0 = −i[b0, a0], δBa0 = 0. (A.16)

The commutator in the above equation shall express the anti-commutator for fermionic

variables. The square of δB is a gauge transformation with parameter a0,

δ2B = [ , a0]. (A.17)

We define the supersymmetry transformation of the ghost fields as

δsC = φ, δs(the other ghosts) = 0. (A.18)

Then Q = δs + δB has the following action:

QX = X ′ + [X,C], QX ′ = −i(δφ + δU(1))X + [X ′, C],

QC = φ+ a0 − C2, Qφ = [φ,C],

QC̃ = b, Qb = [C̃, a0],

Qã0 = iC̃0, QC̃0 = −i[ã0, a0],

Qb0 = iC0, QC0 = −i[b0, a0], Qa0 = 0. (A.19)

One can easily show that Q2 is given as

Q2 = −iδU(1) + [ , a0]. (A.20)

The gauge-fixing and ghost actions are defined by

Sgh =

∫

dτ QTr
[

iC̃ (F + b0) + Cã0

]

, (A.21)

where F corresponds to the gauge fixing condition. We use

F =
4
∑

a=1

D̂a

(

1

cosh τ
Ya

)

(A.22)

for our computation, where the background covariant derivative D̂a is defined by

D̂aX := −i[Ŷa, X] (a = 1, 2, 3, 4). (A.23)

Here, Ŷ1 = i ∂
∂τ

and Ŷi(i = 2, 3, 4) are the vacuum configuration of Yi.
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A.4 1-loop determinants

Let us perform the 1-loop calculation around the saddle point (A.10). We first redefine

the fields as

X̃ ′ := X ′ + [X,C], φ̃ := 2φ+ a0 − C2, (A.24)

and divide the fields to four groups as

Z0 = (YA, ã0, b0), Z1 = (ΥI , C, C̃),

Z ′
0 = (Ψ̃A, C̃0, C0), Z ′

1 = (H̃I , φ̃, b). (A.25)

They form doublets under the action of Q as

QZi = Z ′
i, QZ ′

i = RZi, (i = 0, 1) (A.26)

where R := Q2 is given by the sum of the U(1) and gauge transformations as shown in

(A.20).

Then we expand the full action SPW + tQ(V + Vgh) around the saddle point config-

uration (A.10) as Zi → Ẑi + Zi and Z ′
i → Ẑ ′

i + Z ′
i. Then the quadratic part of the

fluctuations in V + Vgh is schematically written as

V (2) = (Z ′
0, Z1)

(

D00 D01

D10 D11

)(

Z0

Z ′
1

)

, (A.27)

where Dij(i, j = 0, 1) are some linear differential operators. Thus, the quadratic part of

the action takes the form

QV (2) = (RZ0, Z
′
1)

(

D00 D01

D10 D11

)(

Z0

Z ′
1

)

+ (Z ′
0, Z1)

(

D00 D01

D10 D11

)(

Z ′
0

RZ1

)

. (A.28)

Hence, the one-loop integral produces the determinants,

Z1−loop =

(

detVZ1
R

detVZ0
R

) 1
2

. (A.29)

Here, the determinants should be taken in the appropriate functional spaces of the fluc-

tuations. Recall that we adopted the boundary condition such that all fields go to the
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vacuum configuration as τ → ∞. This implies that the fluctuations should vanish at

infinities.

Note that D10 is a linear map from VZ0 to VZ1 and commutes with R. Then the

determinants in (A.29) cancel between ImD10 ⊂ VZ1 and ImD∗
10 ⊂ VZ0 , where D∗

10 is the

adjoint of D10. Hence, the 1-loop determinant reduces to

Z1−loop =

(

detcokerD10R

detkerD10R

) 1
2

. (A.30)

Furthermore, since R and D10 commute, the kernel and the cokernel are given by direct

sums of the eigenspaces of R. Thus, we can express the 1-loop determinant as

Z1−loop =
∏

i

r
(dimV ′

ri
−dimVri

)/2

i , (A.31)

where Vri and V ′
ri
are the restrictions of the kernel and the cokernel to the eigenspace of

R with eigenvalue ri, respectively. Therefore, the remaining task is to evaluate ri and the

index dimV ′
ri
− dimVri in each eigenspace.

By integrating the ghost field ã0, we obtain the constraint a0 = −2φ. At the saddle

point, this is equal to −2iM + 4L4. Thus, ri is given by the sum of eigenvalues of

[−2iM + 4L4, ] and the diagonal U(1) charge.

By studying the structure of D10 for each supersymmetry multiplet, we can easily com-

pute the index. The result is as follows [11]. The contribution from the hypermultiplet,

which contains Y5, · · · , Y8, is given by

Λ
∏

s,t=1

(ns+nt)/2−1
∏

J=|ns−nt|/2

N
(s)
2
∏

i=1

N
(t)
2
∏

j=1

1

(2J + 1)2 + (qsi − qtj)2
. (A.32)

The contribution from the vector multiplet, which contains Y1, · · · , Y4, Y9, is given by

Λ
∏

s,t=1

(ns+nt)/2−1
∏

J=|ns−nt|/2
J 6=0

N
(s)
2
∏

i=1

N
(t)
2
∏

j=1

{(2J)2 + (qsi − qtj)
2}1/2

×
Λ
∏

s,t=1

(ns+nt)/2−1
∏

J=|ns−nt|/2

N
(s)
2
∏

i=1

N
(t)
2
∏

j=1

{(2J + 2)2 + (qsi − qtj)
2}1/2. (A.33)

Combining these contributions with the Vandermonde determinant for diagonalizing M ,

we obtain the 1-loop determinant (4.5). See below for the derivation of these 1-loop

determinants.
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A.5 Derivation of 1-loop determinants

The relevant part of the action is given by Z1D10Z0. In terms of the component fields,

this can be written explicitly as

2siΥi + iC̃(F + b0) + Cã0

− i

ǫǫ

(

δU(1)YA − 2i[ŶA, v
4Y4 + v9Y9]− i[YA,−2iM + v4Ŷ4]

)

[ŶA, C], (A.34)

where

si := νi

(

1

2

9
∑

A,B=1

FABΓ
ABǫ− 2

9
∑

a=5

XaΓ
aǫ̃

)

. (A.35)

Note that the fields in the hypermultiplet, {(Ym,Υi)|m = 5, 8, 7, 8, i = 1, 2, 3, 4},
decouple from the fields in the vector multiplet in (A.34). Hence, the index has two

independent contributions from these two sectors.

Index theorem in 1-dimension

For the computation of the 1-loop determinant, the index theorem in 1-dimension is very

useful, which we will describe below.

The setup is as follows. We consider the set of all n-dimensional vector valued smooth

functions on R vanishing at infinity, S := {f : R → Cn| limτ→±∞ f(τ) = 0}. Let us

introduce a linear differential operator D on S as

Df(τ) :=
∂f

∂τ
(τ) + (A · f)(τ), (A.36)

where f ∈ S and A : R → Mn(C). A · f is just the standard action of matrices,

(A·f)i(τ) := Aij(τ)fj(τ). For the computation of the 1-loop determinant, we only consider

the case where A is bounded at both infinities as limτ→±∞ Aij(τ) < ∞ (i, j = 1, · · · , n)
and A(τ) is diagonalizable as

V −1(τ)A(τ)V (τ) = Ad(τ) := diag(λ1(τ), · · · , λn(τ)). (A.37)

As A is bounded, both of limτ→±∞ Aij(τ) and limτ→±∞ λi(τ) are some constants. Then,

limτ→±∞ V (τ) are also constant matrices.

The 1-dimensional index theorem follows from the fact that the number of positive

and negative eigenvalues of A at both infinities determines the index of D. The essential
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statement of the index theorem is that if the k (1 ≤ k ≤ n) eigenvalues in (A.37) satisfy

both

lim
τ→∞

Reλi(τ) > 0 and lim
τ→−∞

Reλi(τ) < 0 (A.38)

and the remaining n− k eigenvalues do not, then, we have

dim(kerD) = k. (A.39)

This relation can be shown as follows. Note that D is covariant under A → U−1AU +

U−1∂U . Consider the gauge transformation such that

U−1AU + U−1∂U = Ad. (A.40)

Such U can be expressed as U(τ) = [P exp(−
∫ τ

A)] exp(
∫ τ

Ad), where P denotes the

path ordering. The general solution to the differential equation Df = 0 is then given by

f(τ) = U(τ) exp

(

−
∫ τ

0

Ad(τ
′)dτ ′

)

f0, (A.41)

where f0 is a constant vector. In order to be a solution in the space of S, (A.41) has to

vanish at both infinities. Here, let us consider the condition (A.38). When k of λi’s satisfy

(A.38), only k components of f0 can be nonzero to satisfy the boundary conditions. This

implies (A.39).

Of course, the similar equation to (A.39) holds for the adjoint operator D†. By com-

bining this with (A.39), we obtain the index theorem in 1-dimension, which states that

the index of D is completely determined by the behavior of A at infinities.

Hypermultiplet

Let us consider the hypermultiplet. We use complex combinations,

W1 = Y5 + iY8, W2 = Y6 + iY7. (A.42)

We can read off the action of D10 from (A.34). If (W1,W2) is an element of kerD10, we

have

∂W1 + 2i[L−,W2] +
s

c
(W1 + 2[L3,W1]) = 0,

33



∂W2 − 2i[L+,W1] +
s

c
(W2 − 2[L3,W2]) = 0, (A.43)

where s = sinh τ and c = cosh τ . To analyze the structure of these equation, we use the

fuzzy spherical harmonics, which behave nicely under the adjoint action of Li. See [25–27]

for the definition. For the vacuum of the form (1.2) we can decompose Wi(i = 1, 2) to the

block components {W (s,t)
i |s, t = 1, 2, · · · ,Λ}. We then expand each block with the fuzzy

spherical harmonics ŶJm(js,jt) as

W
(s,t)
i =

js+jt
∑

J=|js−jt|

J
∑

m=−J

W
(s,t)
iJm ⊗ ŶJm(js,jt). (i = 1, 2) (A.44)

Then, (A.43) becomes

∂W
(s,t)
1Jm +

s

c
(1 + 2m)W

(s,t)
1Jm + 2iδ−W

(s,t)
2Jm+1 = 0,

∂W
(s,t)
2Jm +

s

c
(1− 2m)W

(s,t)
2Jm − 2iδ+W

(s,t)
1Jm−1 = 0, (A.45)

where δ± =
√

(J ±m)(J ∓m+ 1). It is easy to check that (A.38) is satisfied only by

W
(s,t)
1JJ and W

(s,t)
2J−J . Indeed, these modes have eigenvalues (2J + 1) tanh τ which satisfy

(A.38). Thus, only W
(s,t)
1JJ and W

(s,t)
2J−J and their complex conjugates contribute to the

index.

Then, let us consider the contribution from fermions, {Υi, i = 1, 2, 3, 4}. We introduce

complex fields as

ξ1 = Υ1 + iΥ4, ξ2 = Υ3 + iΥ2, (A.46)

and expand their block components by the spherical harmonics as we did above. Then,

we can obtain

∂ξ
(s,t)
1Jm +

2sm

c
ξ
(s,t)
1Jm + 2δ+ξ

(s,t)
2Jm−1 = 0,

∂ξ
(s,t)
2Jm − 2sm

c
ξ
(s,t)
2Jm + 2δ−ξ

(s,t)
1Jm+1 = 0, (A.47)

for ξ1, ξ2 ∈ cokerD10. In this case, there is no eigenvalue satisfying (A.38). Hence, these

modes have no contribution to the index.

Thus, we find that only W
(s,t)
1JJ and W

(s,t)
2J−J and their complex conjugates contribute to

the index. The eigenvalues of R for these modes are r = 2(±(2J + 1) + i(qsi − qtj)), and

thus we obtain (A.32).
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Vector multiplet

Next, we consider the vector multiplet. We first calculate dim(kerD10). For {YA, ã0, b0|A =

1, 2, 3, 4, 9} ∈ kerD10, we have

F + b0 = 0, (A.48)

ã0 + 2

[

ŶA,
1

ǫǫ
[ŶA, v

4Y4 + v9Y9]

]

+

[[

ŶA,
1

ǫǫ
YA

]

,−2iM + v4Ŷ4

]

= 0, (A.49)

c(2Y4 − i[Ŷ2, Y3] + i[Ŷ3, Y2])− s(∂Y4 + i[Ŷ4, Y1])− ∂Y9 = 0, (A.50)

c(∂Y3 + i[Ŷ3, Y1])− s(2Y3 + i[Ŷ2, Y4]− i[Ŷ4, Y2])− i[Ŷ2, Y9] = 0, (A.51)

c(∂Y2 + i[Ŷ2, Y1])− s(2Y2 − i[Ŷ3, Y4] + i[Ŷ4, Y3]) + i[Ŷ3, Y9] = 0. (A.52)

To simplify the equations, let us consider the limit τ → ±∞ in (A.48). Since F → 0

in this limit, we obtain b0 = 0. Noticing that b0 has only the constant mode, by using

(A.48) again, we find that F should be vanishing for arbitrary point on R, namely,

F =
4
∑

a=1

[

Ŷa,
1

cosh τ
Ya

]

= 0. (A.53)

Similarly, ã0 = 0 follows from (A.49). By substituting these vanishing conditions to

(A.49), we obtain,

−∂

(

1

c
∂(Y4 − sY9)

)

+
4

c

3
∑

i=1

[Li, [Li, Y4 − sY9]] = 0. (A.54)

This equation implies Y4 − sY9 = 0 as follows. Putting f = Y4 − sY9, the equation (A.54)

has the form ∂2f − s
c
∂f − 4J(J +1)f = 0, where J(J +1) is the eigenvalue of [Li, [Li, ]].

From the boundary condition, f/c should vanish at infinity. Then, it follows that

0 =

∫

dτ∂

(

1

c2
f∂f

)

=

∫

dx

[

(

∂f

c

)2

+

(

4J(J + 1)− 1

c2
+

3

2c4

)

f 2

]

. (A.55)

For J 6= 0, the right-hand side is a sum of positive definite terms and hence f itself

must be zero. For J = 0, the equation (A.54) is just ∂((∂f)/c) = 0. By integrating this

equation under the boundary condition f/c → 0, we find that f is constant. We then

consider (A.50) with f constant. From this equation, we can easily obtain Y4 = Y9 = 0

for J = 0. Therefore, the relation Y4 = sY9 holds for any J .
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Then, by eliminating Y4 by Y4 = sY9, the equations (A.48), (A.50), (A.51), (A.52)

become

− i∂Y1 + i
s

c
Y1 + [L+, Y−] + [L−, Y+] + 2s[L3, Y9] = 0,

− [L+, Y−] + [L−, Y+] + sY9 − c∂Y9 + 2i
s

c
[L3, Y1] = 0,

c(∂Y+ − 2i[L+, Y1])− s(2Y+ − 2[L3, Y+])− 2c2[L+, Y9] = 0,

c(∂Y− − 2i[L−, Y1])− s(2Y− + 2[L3, Y−]) + 2c2[L−, Y9] = 0, (A.56)

where Y± = Y2 ± iY3.

We then make a redefinition Y ′
9 = cY9

15, and expand each block component of Y±, Y1, Y
′
9

by the fuzzy spherical harmonics. For f = (Y
+(s,t)
Jm+1 /

√
2, Y

−(s,t)
Jm−1 /

√
2, iY

1(s,t)
Jm , Y

′9(s,t)
Jm )T

(m = −J + 1,−J + 2, · · · , J − 1, J ≥ 1), the equations (A.56) take the same form

as (A.36), where A is given by

A =











2ms
c

0 −
√
2δ− −

√
2δ−

0 −2ms
c

−
√
2δ+

√
2δ+

−
√
2δ− −

√
2δ+ − s

c
−2ms

c

−
√
2δ−

√
2δ+ −2ms

c
−2s

c











. (A.57)

This matrix does not have any eigenvalues, which satisfy (A.38). Hence, we find that the

bosonic fields in the vector multiplet do not contribute to the index.

Let us apply the same analysis to the fermions. For (C, C̃,Υ5,Υ6,Υ7) ∈ cokerD10, we

have

− 1

c
∂C̃ +

1

c
[iM − 2L3, ∂C]− 8s[L3,Υ5]− 8c[L2,Υ6] + 8c[L1,Υ7] = 0,

1

c
[L1, C̃]− 1

c
[L1, [iM − 2L4, C]] + 4ic[L2,Υ5]− 4is[L3,Υ6]− 2c∂Υ7 − 6sΥ7 = 0,

1

c
[L2, C̃]− 1

c
[L2, [iM − 2L4, C]]− 4ic[L1,Υ5]− 4is[L3,Υ7] + 2c∂Υ6 + 6sΥ6 = 0,

1

c
[L3, C̃] + ∂

(

1

c
∂C

)

− 4

c

3
∑

i=1

[Li, [Li, C]]− 1

c
[L3, [iM − 2L3, C]] + 2s∂Υ5 + 6cΥ5

+ 4is[L1,Υ6] + 4is[L2,Υ7] = 0,

− s∂

(

1

c
∂C

)

+
4s

c

3
∑

i=1

[Li, [Li, C]] + 2∂Υ5 + 4i[L1,Υ6] + 4i[L2,Υ7] = 0. (A.58)

15 Note that Y ′
9 does not necessarily vanish at infinities. However, only when Y ′

9 vanishes at infinities,

(A.56) has nontrivial solutions. So we assume that Y ′
9 → 0 as τ → ±∞.
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We make some redefinitions as C̃ ′ = (C̃ − [iM − 2L4, C])/(2
√
2c), C ′ = C/c, Υ′

5 =
√
2Υ5

and also introduce complex fields, Υ± = Υ6 ± iΥ7. With this notation, we can write

(A.58) as

∂C ′ − d = 0,

∂d+
3s

c
d+ 2C ′ − 4

3
∑

i=1

[Li, [Li, C
′]] +

2
√
2

c2
[L3, C̃

′] +
3
√
2

c2
Υ′

5 = 0,

∂Υ+ −
√
2i[L+, C̃

′]−
√
2i[L+,Υ

′
5] +

3s

c
Υ+ − 2s

c
[L3,Υ+] = 0,

∂Υ− +
√
2i[L−, C̃

′]−
√
2i[L−,Υ

′
5] +

3s

c
Υ− +

2s

c
[L3,Υ−] = 0,

∂C̃ ′ +
2s

c
C̃ ′ +

2s

c
[L3,Υ

′
5]−

√
2i([L+,Υ−]− [L−,Υ+]) = 0,

∂Υ′
5 +

2s

c
[L3, C̃

′] +
3s

c
Υ′

5 +
√
2i([L+,Υ−] + [L−,Υ+]) = 0, (A.59)

where a new field d is introduced to make the equations first order.

We then expand each block component by fuzzy spherical harmonics. For f =

(C ′(s,t)
Jm , d

(s,t)
Jm ,Υ

+(s,t)
Jm+1,Υ

−(s,t)
Jm−1,Υ

′5(s,t)
Jm , C̃ ′(s,t)

Jm )T (m = −J + 1,−J + 2, · · · , J − 1), the above

equation can be written in the form of (A.36), where

A =





















0 −1 0 0 0 0
3s
c

2− 4J(J + 1) 0 0 3
√
2

c2
3
√
2m
c2

0 0 s
c
(1− 2m) 0 −

√
2iδ− −

√
2iδ−

0 0 0 s
c
(1 + 2m) −

√
2iδ+

√
2iδ+

0 0
√
2iδ−

√
2iδ+

3s
c

2ms
c

0 0
√
2iδ− −

√
2iδ+

2ms
c

2s
c





















. (A.60)

It is easy to see that there is no eigenvalues of A that satisfy (A.38). Hence, these modes

have no contribution to the index.

On the other hand, the highest momentummodes f = (C ′(s,t)
JJ , d

(s,t)
JJ ,Υ

−(s,t)
JJ−1 ,Υ

′5(s,t)
JJ , C̃ ′(s,t)

JJ )T

have a nontrivial contribution. They satisfy (A.36) where A is given by a 5×5 matrix ob-

tained by eliminating the fifth row and column (namely, those for Υ+) and putting m = J

in (A.60). Then, we can find that there is just one eigenvalue which satisfies (A.38). In

the same way, we can see that the modes with m = −J have the same structure16. The

eigenvalues of R for these modes are r = 2(±2J + i(qsi − qtj)). This contribution gives

the first line of (A.33).

16In fact, these modes are the complex conjugate of the highest modes with m = J .
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Finally, Υ
+(s,t)
J−J and Υ

−(s,t)
JJ satisfy the closed equation ∂Υ + (2J+3)s

c
Υ = 0. Then

(A.38) is satisfied and hence they contribute to the index. The eigenvalues of R are

r = 2(±(2J + 2) + i(qsi − qtj)). This gives the second line of (A.33).

B The saddle point equation

In this appendix, we derive (4.10). We start with the effective action of (4.7),

Seff =β

(

1−
∫ qm

−qm

dqρ(q)

)

+
2N5

λ

∫ qm

−qm

dqq2ρ(q)

− 1

2

∫ qm

−qm

dq

∫ qm

−qm

dq′ρ(q)ρ(q′)

N5−1
∑

J=0

log
{(2J + 2)2 + (q − q′)2}{(2J)2 + (q − q′)2}

{(2J + 1)2 + (q − q′)2}2 .

(B.1)

Here, λ = g2N2 is the ’t Hooft coupling and β is the Lagrange multiplier for the nor-

malization of the eigenvalue density (4.9). The saddle point equation is obtained by

differentiating Seff with respect to ρ(q) and is given by

β =
2N5

λ
q2 −

∫ qm

−qm

dq′ρ(q′)

N5−1
∑

J=0

log
{(2J + 2)2 + (q − q′)2}{(2J)2 + (q − q′)2}

{(2J + 1)2 + (q − q′)2}2 . (B.2)

Here the integral of q′ should be understood as the principal value.

We first consider the following identity,

log tanh2
(πx

2

)

= log
(πx

2

)2

+
∞
∑

J=1

(

1 +
x2

(2J)2

)2

−
∞
∑

J=1

(

1 +
x2

(2J − 1)2

)2

, (B.3)

which follows from the infinite product expression of the hyperbolic sine and cosine func-

tions. By using this identity, we find that the second term in (B.2) can be written as

−
∫ qm

−qm

dq′ρ(q′)

[

log tanh2

(

π(q − q′)

2

)

−
∞
∑

J=N5

log
{(2J + 2)2 + (q − q′)2}{(2J)2 + (q − q′)2}

{(2J + 1)2 + (q − q′)2}2

]

(B.4)

up to a constant term. We ignore the constant term since it can always be absorbed by

a redefinition of β. In the regime where N5 is finite but λ is very large, qm also becomes

very large. To see the qm-dependence clearly, let us rescale the variables as q = qmξ. From

the fact that

qm log tanh2 πqmξ

2
→ −πδ(ξ) (qm → ∞), (B.5)
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we find that the first term in (B.4) is equal to πρ(q) in this limit. In the second term in

(B.4), we approximate the discrete sum with a continuous integral by replacing J/qm → η

and
∑∞

J=N5
→ qm

∫∞
N5/qm

dη. Then, the second term can be evaluated as

− 2

∫ 1

−1

dξ′ρ(qmξ
′)

∫ ∞

N5/qm

dη

[

4η2 − (ξ − ξ′)2

(4η2 + (ξ − ξ′)2)2
+O(1/qm)

]

≃ −
∫ qm

−qm

dq′ρ(q′)
2N5

(2N5)2 + (q − q′)2
. (B.6)

Thus, in the strongly coupled regime, the saddle point equation (B.2) is reduced to (4.10).

C Solving the saddle point equation

In this appendix, we construct solutions of the saddle point equations of the eigenvalue

integrals obtained by the localization.

C.1 For the simplest partition

Here, we derive (4.11). We first rewrite (4.10) into a more tractable form. We define the

resolvent by

ω(z) =

∫ qm

−qm

dq
ρ(q)

z − q
. (C.1)

For q ∈ [−qm, qm], this satisfies

ω(q ± i0) = P

∫ qm

−qm

dq′
ρ(q′)

q − q′
∓ πiρ(q), (C.2)

where P
∫ qm
−qm

denotes the principal value. Note that the last term in (4.10) can be written

as 1
2i
{ω(q − 2iN5)− ω(q + 2iN5)}. By using this and (C.2), we rewrite (4.10) as

β =
1

2i
{ω(q + 2iN5)− ω(q + i0)} − 1

2i
{ω(q − 2iN5)− ω(q − i0)}+ 2N5

λ
q2. (C.3)

When qm is large compared to N5, we can expand ω(q ± 2iN5) as

ω(q ± 2iN5) = ω(q ± i0)± 2iN5ω
′(q ± i0) + · · · . (C.4)

The convergence of this expansion can be seen clearly if one rescales the variable as

q = qmξ, as we did in appendix B. Thus, in the large-qm limit, the equation (C.3) becomes

β = N5 {ω′(q + i0) + ω′(q − i0)}+ 2N5

λ
q2. (C.5)
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By integrating this equation, we obtain

ω(q + i0) + ω(q − i0) =
β

N5

q − 2

3λ
q3, (C.6)

where we have set the integration constant to be zero because of the symmetry under

q → −q.

The equation (C.6) is identical with the equation of motion of the quartic one matrix

model. Hence, the solution takes the same form as the quartic matrix model, where the

resolvent is written as

ω(z) =
1

2
{ω(q + i0) + ω(q − i0)}+ (a+ bz2)

√

z2 − q2m. (C.7)

We substitute (C.6) into this expression. Then, the asymptotic behavior of the resolvent,

ω(z) → 1
z
(z → ∞), gives three conditions, which enable us to express a, b and β in terms

of qm:

a = − 2

q2m
+

2q2m
3λ

, b =
1

3λ
,

β

N5

=
4

q2m
+

q2m
2λ

. (C.8)

Thus, the resolvent is finally determined as

ω(z) =

(

2

q2m
+

q2m
4λ

)

z − 1

3λ
z3 −

(

2

q2m
+

q2m
12λ

− z2

3λ

)

√

z2 − q2m. (C.9)

The eigenvalue density is given by the discontinuity of (C.9) as

ρ(q) =
1

π

(

2

q2m
+

q2m
12λ

− q2

3λ

)

√

q2m − q2. (C.10)

Note that in order for ρ(q) to be positive for any q ∈ [−qm, qm], qm has to satisfy

q4m ≤ 8λ. (C.11)

Finally, we determine the value of qm from the action principle. By using the saddle

point equation, we can reduce the effective action (B.1) to

Seff/(N2)
2 =

N5

λ

∫ qm

−qm

q2ρ(q) +
β

2
. (C.12)

By evaluating this using (C.10), we obtain the on-shell value of the effective action as

Seff/(N2)
2 =

2N5

q2m

(

1 +
q4m
4λ

− q8m
192λ2

)

. (C.13)

In the region (C.11), the minimum of Seff is realized at

q4m = 8λ. (C.14)

By substitute this into (C.10), we obtain (4.11).
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C.2 For the generic partition

Here, we construct a solution to (4.18) in the decoupling limit of M5-branes.

In the decoupling limit, by applying the same computation that we used to derive

(C.5), we can reduce the saddle point equations (4.18) to

1

2

Λ
∑

t=1

(ns + nt − |ns − nt|) (ω′
t(q + i0) + ω′

t(q − i0)) = βs −
2ns

g2
q2, (C.15)

where we have defined the resolvent as

ωs(z) =

∫ qs

−qs

dq
ρs(q)

z − q
. (C.16)

Without loss of generality, we assume that ns in the decomposition (1.2) are ordered

as n1 > n2 > · · · > nΛ. We also assume that

qΛ > qΛ−1 > · · · > q1. (C.17)

Then, let us first consider the equation (C.15) with s = Λ,

nΛ

Λ
∑

t=1

(ω′
t(q + i0) + ω′

t(q − i0)) = βΛ − 2nΛ

g2
q2, q ∈ [−qΛ, qΛ]. (C.18)

Under the assumption (C.17), it makes sense to consider

ρ̂Λ(q) =
Λ
∑

s=1

ρs(q), (C.19)

which has the support [−qΛ, qΛ] and is normalized as

∫ qΛ

−qΛ

dqρ̂Λ(q) =
Λ
∑

s=1

N
(s)
2 . (C.20)

In terms of ρ̂Λ(q), (C.18) can be simply written as

nΛ(ω̂
′
Λ(q + i0) + ω̂′

Λ(q − i0)) = βΛ − 2nΛ

g2
q2, q ∈ [−qΛ, qΛ], (C.21)

where ω̂Λ(z) is the resolvent for ρ̂Λ(q). Since (C.21) takes the same form as (C.5), the

solution for ρΛ(q) is also given by the same form as (C.10). We will determine qΛ below.
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Next, we solve (C.15) with s < Λ. Let us consider the difference between (C.15) with

s = r and (C.15) with s = r+1 on the support q ∈ [−qr, qr], where r ∈ {1, 2, · · · ,Λ− 1}.
This leads to

(nr − nr+1)
r
∑

t=1

(ω′
t(q + i0) + ω′

t(q − i0)) = βr − βr+1 −
2(nr − nr+1)

g2
q2, q ∈ [−qr, qr].

(C.22)

Note that ρs(q) with s > r does not appear in this equation. We introduce new variables

ρ̂r(q) =
r
∑

s=1

ρs(q), (C.23)

which are normalized as

∫ qr

−qr

dqρ̂r(q) =
r
∑

s=1

N
(s)
2 . (C.24)

In terms of ρ̂r(q), (C.22) becomes

(nr − nr+1)(ω̂
′
r(q + i0) + ω̂′

r(q − i0)) = βr − βr+1 −
2(nr − nr+1)

g2
q2, q ∈ [−qr, qr].

(C.25)

Again, this is the same form as (C.5), so that the solution for ρ̂r is given by the same

form as (C.10).

Finally we determine qr. By using the equation of motion for ρs, the on-shell can be

computed as

Seff =
Λ
∑

s=1

2(ns − ns+1)

q2s

(

1 +
q4s
4λs

− q8s
192λ2

s

)

, (C.26)

where λs = g2
∑s

r=1 N
(r)
2 . Thus, the minimum is given by qs = (8λs)

1/4. Thus, we

obtained (4.19).

D Eigenvalue distribution in the M2-brane limit

In this appendix, we solve the eigenvalue integral (5.1) for large N2. Putting a = g2N2/N5,

we consider the scaling limit such that N5, N2, a → ∞, N5/N2 → ∞ and N2/a → ∞.
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We again assume that the typical value of eigenvalues is very large in this limit, since the

Gaussian attractive force becomes weak.

We introduce the eigenvalue density ρ(q) as (4.8). The effective action of (5.1) is

written in terms of ρ(q) as

Seff/(N2)
2 =

2N5

λ

∫ qm

−qm

dqq2ρ(q)− 1

2

∫ qm

−qm

dq

∫ qm

−qm

dq′ρ(q)ρ(q′) log tanh2

(

π(q − q′)

2

)

+ β

(

1−
∫ qm

−qm

dqρ(q)

)

. (D.1)

By applying (B.5), we find that the action reduces to

Seff/(N2)
2 =

2N5

λ

∫ qm

−qm

dqq2ρ(q) +
π

2

∫ qm

−qm

dqρ(q)2 + β

(

1−
∫ qm

−qm

dqρ(q)

)

. (D.2)

The saddle point equation is given by

β = πρ(q) +
2N5

λ
q2. (D.3)

Thus, ρ(q) is a quadratic function in q and qm is related to β as

q2m =
λ

2N5

β. (D.4)

From (4.9), (D.3) and (D.4), we obtain

qm =

(

3πλ

8N5

) 1
3

. (D.5)

Thus, the typical value of the eigenvalues should be proportional to
(

λ
N5

)1/3

. Note that

this result is consistent with our assumption that the typical value of the eigenvalues is

very large in the strong coupling region.
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