DIAS Access to
Institutional Repository

Title	The $(2,5)$ minimal model on degenerating genus two surfaces
Creators	Leitner, Marianne
Date	2018
Citation	Leitner, Marianne (2018) The $(2,5)$ minimal model on degenerating genus two surfaces. (Preprint) URL
https://dair.dias.ie/id/eprint/559/	
DOI	DIAS-STP-17-11

The $(2,5)$ minimal model on degenerating genus two surfaces

Marianne Leitner*
Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Road, Dublin 4, Ireland
*leitner@stp.dias.ie

January 26, 2018

Abstract

In the $(2,5)$ minimal model, the partition function for genus $g=2$ Riemann surfaces is expected to be given by a quintuplet of Siegel modular forms that extend the Rogers-Ramanujan functions on the torus. Their expansions around the $g=$ 2 boundary components of the moduli space are obtained in terms of standard modular forms. In the case where a handle of the $g=2$ surface is pinched, our method requires knowledge of the 2-point function of the fundamental lowestweight vector in the non-vacuum representation of the Virasoro algebra, for which we derive a third order ODE.

1 Introduction

1.1 Motivation and outline

Two-dimensional conformal field theories (CFTs) are naturally defined on compact Riemann surfaces. Every such theory is characterised by its partition function, which defines a function on the moduli space of such surfaces. Its restriction to genus $g=1$ is given by classical modular functions. For the $(2,5)$ minimal model, one obtains the sum of the squared norms of the well-known Rogers-Ramanujan functions. These 0 point functions satisfy a second order ODE in the modulus. For $g=2$, a corresponding system of differential equations has been established in [6]. The method relies on the description of the Riemann surface Σ as a double covering of the Riemann sphere,

$$
\begin{equation*}
\Sigma: \quad y^{2}=p(x), \tag{1}
\end{equation*}
$$

where p is a polynomial of degree 3 (for genus $g=1$) resp. 5 (for $g=2$).
A different method for computing N-point functions of CFTs on higher genus Riemann surfaces due to [8] is available, by sewing pairs of lower genus Riemann surfaces [9]. The case of interest to us in this paper is $N=0$.

For $i=1,2$, let $\left(\Sigma_{i}, P_{i}\right)$ with $P_{i} \in \Sigma_{i}$ be a non-singular Riemann surface of genus g_{i} with puncture P_{i}. Let z_{i} be a local coordinate vanishing at P_{i}. We allow arbitrary
complex coordinate choices. Now excise sufficiently small discs $\left\{\left|z_{1}\right|<r\right\}$ and $\left\{\left|z_{2}\right|<r\right\}$ from Σ_{1} and Σ_{2}, respectively, and sew the two remaining surfaces by the condition

$$
\begin{equation*}
z_{1} z_{2}=r^{2} \tag{2}
\end{equation*}
$$

on tubular neigbourhoods of the circles $\left\{\left|z_{i}\right|=r\right\}$. This operation yields a non-singular Riemann surface of genus $g_{1}+g_{2}$ with no punctures.

Instead of sewing two one-punctured surfaces, we may self-sew a single Riemann surface (the case $\Sigma_{1}=\Sigma_{2}$) with two different punctures. This procedure results in a Riemann surface with one new handle attached to it.

Thus we consider the inverse procedure by which the genus $g=2$ surface degenerates. Such singular surfaces are boundary points of the the moduli space with Deligne-Mumford compactification. In the limit where $r^{2} \searrow 0$, a cycle on the surface is pinched. When the cycle is homologous to zero (case discussed in Section 2.1), the squeezing results in two separate tori with a single puncture on each. In the algebraic description by eq. (1), three ramification points run together. In the case where the cycle is non-homologous to zero (addressed in Section 2.2), the above mentioned limit describes the cut through a handle. In this case two ramification points run together, yielding a single torus with two punctures. To distinguish the two cases, following [7], we shall refer to the first and second case as the ε and the ρ formalism, respectively.

Using methods from vertex operator algebras, T. Gilroy and M. Tuite have derived the first terms of the corresponding expansion for the ε formalism [2]. In this paper, we give an expansion in terms of modular forms which in particular includes these earlier results.

One purpose of this paper is to built a bridge between the two approaches, and to make the subject better accessible to researchers interested in Siegel modular forms.

1.2 Quasi-primary and derivative fields

Let F be the space of holomorphic fields, (equivalently, the space of holomorphic states). A distinguished element in F is the Virasoro field

$$
T(z)=\sum_{n \in \mathbb{Z}} z^{n-2} L_{n}
$$

The constant field 1 corresponds to the vacuum state v, the Virasoro field to $L_{2} v$. The Laurent coefficients define the Virasoro algebra

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0} \tag{3}
\end{equation*}
$$

where $c \in \mathbb{R}$ is the central charge. (Note the unusual index convention, which is chosen so that $L_{1}=\frac{\partial}{\partial z}$). The kernel of L_{1} is spanned by the vacuum vector v. L_{0} defines a grading on F, called the conformal weight. Holomorphic fields in the image of L_{1} will be referred to as derivative fields, whose space we denote by $F_{\text {der }}$. The Shapovalov metric defines a sesquilinear form on F. For the latter we have $L_{-1}=L_{1}^{*}$. The space of quasi-primary fields is the orthogonal complement of $F_{\text {der }}$ w.r.t. that metric, thus the kernel of L_{-1}. A holomorphic field ψ is primary iff $L_{n} \psi=0$ for $n<0$. Suppose in some minimal model, W is an irreducible representation of the Virasoro algebra (3). Then there exists $w \in W$ with $L_{0} w=h w$ and h is minimal in $W . W$ is spanned by vectors of
the form $L_{n_{k}} \ldots L_{n_{1}} w$ with $n_{k} \in \mathbb{Z}, k \geq 0$. The vacuum representation is characterised by

$$
L_{-1} v=0, \quad L_{0} v=0, \quad L_{1} v=0
$$

The generating function of W is the character

$$
\chi_{W}:=\operatorname{tr}_{F_{W}} q^{L_{0}}
$$

Let \tilde{F}_{W} be the space of quasi-primary fields in the representation W. If $w=v$, the generating function of \tilde{F}_{W} is

$$
\tilde{\chi}_{W}=(1-q)\left(\chi_{W}-1\right) .
$$

For other vectors one has

$$
\tilde{\chi}_{W}=(1-q) \chi_{W} .
$$

1.3 The $(2,5)$ minimal model

For every minimal model and for every irreducible representation of the Virasoro algebra, there are two fundamental linear relations between states in that representation. In the $(2,5)$ minimal model, the Virasoro algebra has two irreducible representations, the vacuum respresentation V (with vacuum vector v) and a non-vacuum representation which we denote by W. The lowest weight vector w in W has conformal weight $h=-1 / 5$. The fundamental identities in V are

$$
\begin{aligned}
L_{1} v & =0 \\
\left(L_{2} L_{2}-\frac{3}{5} L_{4}\right) v & =0
\end{aligned}
$$

Equivalently, the operator product expansion (OPE) of $T(z) \otimes T(0)$ has the form

$$
\begin{equation*}
T(z) \otimes T(0) \mapsto \frac{c / 2}{z^{4}} \cdot 1+\frac{1}{z^{2}}\{T(z)+T(0)\}+\frac{3}{10} T^{\prime \prime}(0)+O(z) \tag{4}
\end{equation*}
$$

where $c=-22 / 5$. The two fundamental identities in W are

$$
\begin{align*}
\left(2 L_{2}-5 L_{1} L_{1}\right) w & =0 \tag{5}\\
\left(L_{3}-5 L_{2} L_{1}\right) w & =0 \tag{6}
\end{align*}
$$

To w corresponds a non-holomorphic field Φ. For suitable pairs (z, \bar{z}) of a holomorphic and an antiholomorphic local coordinate the field's local representative admits a splitting $\Phi(z, \bar{z})=\varphi_{\text {hol }}(z) \otimes \varphi_{\overline{\text { hol }}}(\bar{z})$ into holomorphic and antiholomorphic part. The individual holomorphic part $\varphi=\varphi_{\text {hol }}$ is a local primary field of conformal weight $h=-1 / 5$. Thus eqs (5) and (6) are equivalent to the OPE

$$
\begin{equation*}
T(z) \otimes \varphi(0) \mapsto \frac{h}{z^{2}} \varphi(0)+\frac{1}{z} \varphi^{\prime}(0)+\frac{5}{2} \varphi^{\prime \prime}(0)+\frac{25}{12} z \varphi^{(3)}(0)+O\left(z^{2}\right), \tag{7}
\end{equation*}
$$

where $h=-1 / 5$. The space of all fields factorises as

$$
F=F_{V} \otimes \overline{F_{V}} \oplus F_{W} \otimes \overline{F_{W}}
$$

where F_{V} and F_{W} denote the space of holomorphic fields that correspond to states in V and W, respectively, and the bar marks the corresponding spaces of antiholomorphic fields.

For the $(2,5)$ minimal model, the generating function for the number of holomorphic fields of a given weight in F_{V} and in F_{W} is the character

$$
\begin{aligned}
\chi_{V} & =\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}} \\
& =1+q^{2}+q^{3}+q^{4}+q^{5}+2 q^{6}+2 q^{7}+3 q^{8}+3 q^{9}+4 q^{10}+4 q^{11}+6 q^{12}+\ldots, \\
\chi_{W} & =q^{-\frac{1}{5}} \sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}} \\
& =q^{-\frac{1}{5}}\left(1+q+q^{2}+q^{3}+2 q^{4}+2 q^{5}+3 q^{6}+3 q^{7}+4 q^{8}+5 q^{9}+6 q^{10}+7 q^{11}+9 q^{12}+\ldots\right),
\end{aligned}
$$

respectively. (Here (; $)_{n}$ is the q-Pochhammer symbol.)
Propos. 1. To every conformal weight $h \leq 10$, there exists at most one quasi-primary field in F_{V}, up to normalisation. For $h \leq 8$, their respective weight and squared Shapovalov norm are given by the following table:

weight	quasi-primary field	squared norm
2	$L_{2} v$	$c / 2$
4	-	-
6	$\left(7 L_{4} L_{2}-2 L_{6}\right) v$	$217 c$
8	$\left(6 L_{6} L_{2}+\frac{21}{5} L_{4} L_{4}-7 L_{8}\right) v$	$-\frac{8952}{5} c$

Here $c=-22 / 5$.
Proof. The number of quasi-primary fields of conformal weight h in F_{V} is given by the coefficient of q^{h} in the series

$$
\tilde{\chi}_{V}-1=(1-q)\left(\chi_{V}-1\right)=q^{2}+q^{6}+q^{8}+q^{10}+2 q^{12}+q^{15}+\ldots .
$$

The fields and their respective weight are obtained by direct computation.
Propos. 2. To every conformal weight $h \leq 11$, there exists at most one quasi-primary field in F_{W}, up to normalisation. For $h<6$, their respective weight and squared Shapovalov norm are given by the following table:

weight		quasi-primary field	squared norm		
$-\frac{1}{5}$	+2	-	-		
	+4	$\left(52 L_{4}-25 L_{1} L_{3}\right) w$	$\frac{5928}{5}\\|w\\|^{2}$		
	+6	$\left(4 L_{1} L_{5}+3 L_{3} L_{3}-\frac{684}{35} L_{6}\right) w$	$\frac{653268}{6125}\\|w\\|^{2}$		

Proof. The number of quasi-primary fields of conformal weight h in F_{W} is given by the coefficient of q^{h} in the series

$$
\tilde{\chi}_{W}=(1-q) \chi_{W}=q^{-\frac{1}{3}}\left(1+q^{4}+q^{6}+q^{8}+q^{9}+q^{10}+q^{11}+2 q^{12}+\ldots\right)
$$

The fields and their respective weight are obtained by direct computation.

Now we specialise to $g=1$. The 0 -point functions differ from the corresponding characters by a factor of $q^{-\frac{c}{24}}$, where q is identified with the nome $e^{2 \pi i \tau}$. For the $(2,5)$
minimal model on the torus, these are the so-called Rogers-Ramanujan functions

$$
\begin{aligned}
& \langle 1\rangle_{1}^{g=1}(q)=H(q):=q^{\frac{11}{60}} \sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q ; q)_{n}}, \\
& \langle 1\rangle_{2}^{g=1}(q)=G(q):=q^{-\frac{1}{60}} \sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}} .
\end{aligned}
$$

The modular invariant partition function is given by

$$
Z^{g=1}(q)=|H(q)|^{2}+|G(q)|^{2}
$$

The Virasoro field generates changes of τ, so that ([1], or [5] for a direct proof)

$$
\begin{equation*}
\mathcal{D}_{0}\langle 1\rangle=\frac{1}{(2 \pi i)^{2}}\langle T\rangle \tag{8}
\end{equation*}
$$

As an aside, the OPE (4) yields in addition

$$
\mathcal{D}_{2}\langle T\rangle=\frac{11}{3600}(2 \pi i)^{2} E_{4}(q)\langle 1\rangle
$$

Here for $\ell \in \mathbb{R}$,

$$
\mathcal{D}_{\ell}=q \frac{\partial}{\partial q}-\frac{\ell}{12} E_{2}(q)
$$

is the Serre-derivative operator, (defined on modular forms of weight ℓ).
Let $\wp(z \mid \tau)$ and $\zeta(z \mid \tau)$ (or $\wp(z)$ and $\zeta(z)$ when $\tau \in \mathbb{H}^{+}$, the upper complex half plane, is fixed) be the Weierstrass \wp-function and the Weierstrass ζ-function, respectively. For brevity, we write $\wp_{i j}$ and $\zeta_{i j}$ in place of $\wp\left(z_{i j}\right)$ and $\zeta\left(z_{i j}\right)$ respectively, where for $z_{i}, z_{j} \in \mathbb{C}, z_{i j}:=z_{i}-z_{j}$.

Now we calculate the 1-point function of the field $\varphi \in F_{W}$ corresponding to the lowest weight vector w in W.

Propos. 3. We have

$$
\mathcal{D}_{-1 / 5}\langle\varphi\rangle=0 .
$$

Proof. By the OPE (7),

$$
\begin{equation*}
\frac{\langle T(z) \varphi(0)\rangle}{\langle\varphi(0)\rangle}=-\frac{1}{5} \wp(z) . \tag{9}
\end{equation*}
$$

Indeed, the regular part must be constant, and is zero by the fact that $\left\langle\varphi^{\prime \prime}(0)\right\rangle=$ $\partial^{2}\langle\varphi(0)\rangle=0$. Thus

$$
q \frac{d}{d q}\langle\varphi(0)\rangle=\oint\langle T(z) \varphi(0)\rangle \frac{d z}{(2 \pi i)^{2}}=-\frac{1}{5}\langle\varphi(0)\rangle \int_{0}^{1} \wp(z) \frac{d z}{(2 \pi i)^{2}}=-\frac{1}{60} E_{2}(q)\langle\varphi(0)\rangle .
$$

(Here the contour integral is taken along the real period, and $\oint d z=1$).
Thus we have

$$
\begin{aligned}
\langle\varphi\rangle=\eta(q)^{-2 / 5} & =q^{-\frac{1}{60}} \prod_{n \geq 1}\left(1-q^{n}\right)^{-2 / 5} \\
& =q^{-\frac{1}{60}}\left(1+\frac{2}{5} q+\frac{17}{25} q^{2}+\frac{98}{125} q^{3}+\frac{714}{625} q^{4}+\frac{18,768}{15,625} q^{5}+\ldots\right) .
\end{aligned}
$$

Here $\eta(q)$ is Dedekind η-function.

Corollary 4. Set $z_{0}=0$. We have

$$
\begin{equation*}
\frac{\left\langle T\left(z_{1}\right) T\left(z_{2}\right) \varphi(0)\right\rangle}{\langle\varphi(0)\rangle}=\frac{c}{2} \wp_{12}^{2}-\frac{1}{5} \wp_{12}\left(\wp_{10}+\wp_{20}\right)+\frac{6}{25} \wp_{10} \wp_{20}+\frac{\pi^{4}}{45} E_{4} . \tag{10}
\end{equation*}
$$

Proof. On the one hand, from the OPE (7) for $T(z) \otimes \varphi(0)$ and eq. (9),

$$
\eta^{2 / 5}\langle T(z) T(w) \varphi(0)\rangle=\frac{h^{2}}{z^{2}} \wp(w)-\frac{h}{z} \wp^{\prime}(w)+\text { terms that are regular for } z \rightarrow 0,
$$

where the occurring even and odd negative power of z can be replaced with $\wp(z)$ and $z \wp(z)$, respectively. The latter expression is not elliptic, however we may use

$$
-z \wp^{\prime}(w)=\wp(z-w)-\wp(w)+O\left(z^{2}\right) .
$$

Thus we have

$$
\begin{align*}
& \eta^{2 / 5}\langle T(z) T(w) \varphi(0)\rangle \\
& \quad=h \wp(z) \wp(z-w)+\left(h^{2}-h\right) \wp(z) \wp(w)+\text { terms that are regular for } z \rightarrow 0 . \tag{11}
\end{align*}
$$

On the other hand, by the OPE (4) for $T(z) \otimes T(w)$, using eq. (9),

$$
\eta^{-2 / 5}\langle T(z) T(w) \varphi(0)\rangle=\frac{c / 2}{(z-w)^{4}}+\frac{h}{(z-w)^{2}}\{\wp(z)+\wp(w)\}+\frac{3}{10} h \wp^{\prime \prime}(w)+O(z-w) .
$$

Thus

$$
\begin{align*}
& \eta^{2 / 5}\langle T(z) T(w) \varphi(0)\rangle \\
& \quad=\frac{c}{12} \wp^{\prime \prime}(z-w)+h \wp(z-w)\{\wp(z)+\wp(w)\}+\left(h^{2}-h\right) \wp(z) \wp(w)+K, \tag{12}
\end{align*}
$$

where K is constant in z and w. Comparison of eqs (11) and (12) yields

$$
h\left(h+\frac{1}{5}\right)=0, \quad K=-(c+10 h(h-1)) \frac{\pi^{4}}{90} E_{4}=\frac{\pi^{4}}{45} E_{4} .
$$

2 The genus 2 partition function

2.1 Results in the ε formalism

Let $\left\{\psi_{i}\right\}_{i \geq 0}$ be an orthonormal basis of F_{V} with the Shapovalov metric, where $\psi_{0}=$ 1 and $L_{0} \psi_{i}=h_{i} \psi_{i}$ for $i \geq 0$. For any $\psi \in F_{V}$, denote by $\psi(z)$ and $\hat{\psi}(\hat{z})$ the local representative of ψ w.r.t. a chart of an affine structure [3] on the torus with modulus τ and $\hat{\tau}$, respectively. In the respective coordinate z and \hat{z}, all 1-point functions on either torus are constant in position. On a small annulus centered at $z=0$ resp. $\hat{z}=0$, we glue the two tori using

$$
z \hat{z}=\varepsilon
$$

for $\varepsilon>0$ small. This procedure yields a $g=2$ surface with a projective structure. Let $\tilde{z}=\hat{z} / \varepsilon$ and write $\tilde{\psi}(\tilde{z})$ accordingly. For $a, b \in\{1,2\}$, the choice of the RogerRamanujan function $\langle 1\rangle_{a}^{g=1}$ and $\langle 1\rangle_{b}^{g=1}$ on the torus of modulus τ and $\hat{\tau}$, respectively, gives rise to the 0-point function for the index pair (a, b)

$$
\begin{equation*}
\langle 1\rangle_{a, b}^{g=2}(q, \hat{q}, \varepsilon)=\sum_{i \geq 0}\left\langle\psi_{i}(z)\right\rangle_{a}^{g=1}(q)\left\langle\tilde{\psi}_{i}(\tilde{z})\right\rangle_{b}^{g=1}(\hat{q}) \tag{13}
\end{equation*}
$$

on the resulting genus $g=2$ surface. A fifth solution $\langle 1\rangle_{\varphi}^{g=2}(q, \hat{q}, \varepsilon)$ is obtained by choosing $\langle\varphi\rangle$ on either torus.

For $i>0$, only the ψ_{i} that are quasi-primary contribute to the sum. Under the coordinate change $\tilde{z} \mapsto \hat{z}$, the 1-point functions transform according to

$$
\left\langle\tilde{\psi}_{i}(\tilde{z})\right\rangle=\varepsilon^{h_{i}}\left\langle\hat{\psi}_{i}(\hat{z})\right\rangle
$$

so eq. (13) becomes an infinite series in powers of ε. We will use the notation

$$
\left\langle\psi_{i}\right\rangle=\left\langle\psi_{i}\right\rangle^{g=1}(q), \quad \widehat{\left\langle\psi_{i}\right\rangle}=\left\langle\hat{\psi}_{i}\right\rangle^{g=1}(\hat{q}) .
$$

We also write $E_{2 k}=E_{2 k}(q)$ and $\widehat{E}_{2 k}=E_{2 k}(\hat{q})$ and likewise for other modular forms.
Theorem 1. For $a=1,2$ we have

$$
\begin{aligned}
\langle 1\rangle_{a, a}^{g=2}(q, \hat{q}, \varepsilon) & =F_{0} \widehat{F}_{0}+\frac{\varepsilon^{2}}{7920}(2 \pi i)^{4} F_{2} \widehat{F}_{2}+\frac{\varepsilon^{6}}{445,471,488,000}(2 \pi i)^{12} F_{6} \widehat{F}_{6} \\
& -\frac{\varepsilon^{8}}{125,067,317,760,000}(2 \pi i)^{16} F_{8} \widehat{F}_{8}+O\left(\varepsilon^{10}\right)
\end{aligned}
$$

Here $F_{2 k}=F_{2 k}(q)$ and $\widehat{F}_{2 k}=F_{2 k}(\hat{q})$ are given by

$$
\begin{aligned}
F_{0} & =\langle 1\rangle_{a}, \quad F_{2}:=60 q \frac{\partial}{\partial q} F_{0}=\frac{60}{(2 \pi i)^{2}}\langle T\rangle_{a}, \quad a=1,2 \\
F_{6} & :=110 E_{6} F_{0}+21 E_{4} F_{2} \\
6 F_{8} & :=1309 E_{8} F+235 E_{6} F_{2} .
\end{aligned}
$$

For $F_{0}=H$, the expansions

$$
\begin{aligned}
& F_{2}(q)=q^{11 / 60}\left(11+131 q^{2}+191 q^{3}+251 q^{4}+311 q^{5}+742 q^{6}+862 q^{7}+1473 q^{9}+O\left(q^{10}\right)\right) \\
& F_{6}(q)=q^{11 / 60}\left(341-1,327,699 q^{2}-11,366,119 q^{3}-49527739 q^{4}-153310159 q^{5}-418324358 q^{6}+O\left(q^{7}\right)\right) \\
& F_{8}(q)=q^{11 / 60}\left(649-112,420 q+6,348,609 q^{2}+173,671,679 q^{3}+1,424,241,669 q^{4}+O\left(q^{5}\right)\right)
\end{aligned}
$$

(and similar expansions for $F_{0}=G$) have been found previously by [2] though the coefficients have not been identified with standard modular forms.

Proof. According to Proposition 1, we have for $a, b \in\{1,2\}$,

$$
\begin{aligned}
\langle 1\rangle_{a, b}^{g=2}(q, \hat{q}, \varepsilon) & =\langle 1\rangle_{a} \widehat{\langle 1\rangle_{b}}-\frac{2}{c} \varepsilon^{2}\langle T\rangle_{a} \widehat{\langle T\rangle_{b}}-\frac{7}{31 c} \varepsilon^{6}\left\langle L_{4} L_{2} 1\right\rangle_{a}{\widehat{\left\langle L_{4} L_{2} 1\right\rangle}}_{b} \\
& -\frac{5 \varepsilon^{8}}{8952 c}\left\langle\left(6 L_{6} L_{2}+\frac{21}{5} L_{4} L_{4}\right) v\right\rangle_{a}\left\langle\left(6 L_{6} L_{2}+\frac{21}{5} L_{4} L_{4}\right) v\right\rangle_{b}
\end{aligned}+O\left(\varepsilon^{10}\right) . .
$$

We have

$$
\langle T(z) T(0)\rangle=\sum_{n \in \mathbb{Z}} z^{n-2}\left\langle L_{n} L_{2} v\right\rangle .
$$

Comparison with

$$
\left\langle T\left(z_{1}\right) T\left(z_{2}\right)\right\rangle=\frac{c}{2} \wp_{12}^{2}\langle 1\rangle+2 \wp_{12}\langle T\rangle-\frac{\pi^{2}}{15} E_{4} c\langle 1\rangle
$$

[4, and references therein] yields:

$$
\begin{aligned}
& \left\langle L_{4} L_{2} v\right\rangle=\frac{2 c}{189} \pi^{6} E_{6}\langle 1\rangle+\frac{2}{15} \pi^{4} E_{4}\langle T\rangle \\
& \left\langle L_{6} L_{2} v\right\rangle=\frac{c}{270} \pi^{8} E_{8}\langle 1\rangle+\frac{4}{189} \pi^{6} E_{6}\langle T\rangle \\
& \left\langle L_{4} L_{4} v\right\rangle=\frac{7 c}{315} \pi^{8} E_{8}\langle 1\rangle+\frac{48}{189} \pi^{6} E_{6}\langle T\rangle
\end{aligned}
$$

We conclude that for the other quasi-primary fields listed in Proposition 1, we have

$$
\begin{aligned}
\left\langle\left(7 L_{4} L_{2}-2 L_{6}\right) v\right\rangle_{1} & =(2 \pi i)^{6} \frac{F_{6}}{21600} \\
\left\langle\left(6 L_{6} L_{2}+\frac{21}{5} L_{4} L_{4}-7 L_{8}\right) v\right\rangle_{1} & =-(2 \pi i)^{8} \frac{1309 E_{8} F_{0}+235 E_{6} F_{2}}{756000} .
\end{aligned}
$$

In order to compute the higher order terms (i.e., the one-point function of quasiprimary fields of conformal weight $h \geq 12$), N-point functions for $N \geq 3$ are required.

Theorem 2. [4] Let $S\left(z_{1}, \ldots, z_{N}\right), N \in \mathbb{N}$, be the set of oriented graphs with vertices z_{1}, \ldots, z_{N} (which may or may not be connected), subject to the condition that every vertex has at most one ingoing and at most one outgoing line, and none is a tadpole (with the incoming line being identical to the outgoing line). We have

$$
\left\langle T\left(z_{1}\right) \ldots T\left(z_{N}\right)\right\rangle^{g=1}=\sum_{\Gamma \in S\left(z_{1}, \ldots, z_{N}\right)} F(\Gamma),
$$

where for $\Gamma \in S\left(z_{1}, \ldots, z_{N}\right)$,

$$
F(\Gamma):=\left(\frac{c}{2}\right)^{\sharp l o o p s} \prod_{\left(z_{i}, z_{j}\right) \in \Gamma} \wp_{i j}\left\langle\bigotimes_{k \in E_{N}^{c}} T\left(z_{k}\right)\right\rangle_{r} .
$$

Here $\left(z_{i}, z_{j}\right) \in \Gamma$ is an oriented edge,

$$
E_{N}:=\left\{1 \leq j \leq N \mid \exists \text { i such that }\left(z_{i}, z_{j}\right) \in \Gamma\right\},
$$

and E_{N}^{c} denotes its complement in $\{1, \ldots N\}$. Moreover, for all $n \in \mathbb{N},\left\langle T\left(z_{k_{1}}\right) \otimes \ldots \otimes T\left(z_{k_{n}}\right)\right\rangle_{r}$ with $k_{i} \in E_{N}^{c}$ for $i=1, \ldots, n$, is a modular form of weight $2 n$.

Example 5. For $\langle 1\rangle=\langle 1\rangle_{a}^{g=1}$ with $a \in\{1,2\}$, and for $\langle T\rangle$ given by eq. (8), we have

$$
\begin{aligned}
\langle 1\rangle_{r} & =\langle 1\rangle \\
\langle T(z)\rangle_{r} & =\langle T\rangle \\
\left\langle T\left(z_{1}\right) T\left(z_{2}\right)\right\rangle_{r} & =-\frac{\pi^{4}}{15} E_{4} c\langle 1\rangle \\
\left\langle T\left(z_{1}\right) T\left(z_{2}\right) T\left(z_{3}\right)\right\rangle_{r} & =-\frac{4 \pi^{6}}{45} E_{6} c\langle 1\rangle+\frac{14 \pi^{4}}{25} E_{4}\langle T\rangle \\
\left\langle T\left(z_{1}\right) T\left(z_{2}\right) T\left(z_{3}\right) T\left(z_{4}\right)\right\rangle_{r} & =-\frac{1,468 \pi^{8}}{10,125} E_{4}^{2} c\langle 1\rangle+\frac{1,792 \pi^{6}}{1,575} E_{6}\langle T\rangle .
\end{aligned}
$$

We discuss the fifth solution, which is characterised by properties of φ.
Theorem 3. We have

$$
\begin{aligned}
\langle 1\rangle_{\varphi}^{g=2}(q, \hat{q}, \varepsilon)=\varepsilon^{-1 / 5}(\eta \widehat{\eta})^{-2 / 5}\{1 & +\frac{13}{8,208,000}(2 \pi i)^{8} \varepsilon^{4} E_{4} \widehat{E}_{4} \\
& \left.+\varepsilon^{6}(2 \pi i)^{12} \frac{989}{33,591,075,840} E_{6} \widehat{E}_{6}+O\left(\varepsilon^{8}\right)\right\}
\end{aligned}
$$

Proof. By Proposition 2,

$$
\begin{aligned}
\langle 1\rangle_{\varphi}^{g=2}(q, \hat{q}, \varepsilon)=\varepsilon^{-1 / 5} & \left\{\langle\varphi\rangle \widehat{\langle\varphi\rangle}+\frac{5 \cdot(52)^{2}}{5,928} \varepsilon^{4}\left\langle L_{4} w\right\rangle \widehat{\left.L_{4} w\right\rangle}\right. \\
& \left.+\varepsilon^{6} \frac{6,125}{6,539,268}\left\langle\left(3 L_{3} L_{3}-\frac{684}{35} L_{6}\right) w\right\rangle\left\langle\left(3 L_{3} L_{3}-\frac{684}{35} L_{6}\right) w\right\rangle+O\left(\varepsilon^{8}\right)\right\} .
\end{aligned}
$$

We list the partial results: By eq. (9) we have

$$
\begin{aligned}
& \left\langle L_{4} w\right\rangle=-\frac{(2 \pi i)^{4}}{1200} E_{4} \eta^{-2 / 5} \\
& \left\langle L_{6} w\right\rangle=\frac{(2 \pi i)^{6}}{30,240} E_{6} \eta^{-2 / 5}
\end{aligned}
$$

Sorting out the terms $\propto z_{1} z_{2}$ in eq. (10) yields:

$$
\left\langle L_{3} L_{3} w\right\rangle=\frac{5}{3,024}(2 \pi i)^{6} E_{6} \eta^{-2 / 5} .
$$

We conclude that for the quasi-primary fields listed in Proposition 2, we have

$$
\begin{aligned}
\left\langle\left(52 L_{4}-25 L_{1} L_{3}\right) w\right\rangle & =-(2 \pi i)^{4} \frac{13}{300} E_{4} \eta^{-2 / 5} \\
\left\langle\left(4 L_{1} L_{5}+3 L_{3} L_{3}-\frac{684}{35} L_{6}\right) w\right\rangle & =-(2 \pi i)^{6} \frac{989}{176,400} E_{6} \eta^{-2 / 5} .
\end{aligned}
$$

The $g=2$ partition function is

$$
Z^{g=2}=\sum_{a, b=1,2}\left|\langle 1\rangle_{a, b}^{g=2}\right|^{2}+\lambda\left|\langle 1\rangle_{\varphi}^{g=2}\right|^{2},
$$

where $\lambda \in \mathbb{R}$ is such that $Z^{g=2}$ is modular.

2.2 Results in the ρ formalism

We consider a torus with modulus τ and two punctures separated from one another by a pair of disjoint neighbourhoods with local coordinates z_{1} and z_{2} respectively, which vanish at the respective puncture. The torus is self-sewed by imposing the condition

$$
z_{1} z_{2}=\rho
$$

for some $\rho>0$. For any of the two local coordinates, we define $\tilde{z}=z / \rho$. This gives rise to local representatives of a field ψ denoted by $\tilde{\psi}(\tilde{z})$. Let $\left\{\psi_{i}\right\}_{i \geq 0}$ be an orthonormal basis of F_{V} with the Shapovalov metric, where $\psi_{0}=1$ and $L_{0} \psi_{i}=h_{i} \psi_{i}$ for $i \geq 0$. For $k \geq 0$, we have

$$
\frac{2}{c}\left\|\partial^{k} T\right\|^{2}=\frac{k!(k+3)!}{3!}=1, \frac{1}{4}, \frac{1}{40}, \frac{1}{720}, \frac{1}{20,160}, \ldots .
$$

The choice of a Rogers Ramanujan function $\langle 1\rangle_{a}^{g=1}$ on the torus with $a \in\{1,2\}$ gives rise to a 0 -point function

$$
\begin{equation*}
\langle 1\rangle_{a}^{g=2}=\sum_{i \geq 0}\left\langle\psi_{i}\left(z_{1}\right) \tilde{\psi}_{i}\left(\tilde{z}_{2}\right)\right\rangle_{a}^{g=1} \tag{14}
\end{equation*}
$$

for genus $g=2$. Since

$$
\tilde{\partial}^{k} \tilde{T}(\tilde{z})=\rho^{2+k} \partial^{k} T(z), \quad k \geq 0
$$

where $\partial=\partial / \partial_{z}$ and $\tilde{\partial}=\partial / \partial_{\tilde{z}}$, eq. (14) becomes an expansion in powers of ρ,

$$
\begin{equation*}
\langle 1\rangle_{a}^{g=2}=\sum_{i \geq 0} \rho^{h_{i}}\left\langle\psi_{i}\left(z_{1}\right) \psi_{i}\left(z_{2}\right)\right\rangle_{a}^{g=1} \tag{15}
\end{equation*}
$$

Note that upon setting three ramification points equal to $0,1, \infty$, respectively, for every choice of a, either side of the equation depends on three parameters. On the l.h.s. we have the remaining three ramification points for genus $g=2$. On the r.h.s., we are free to choose the difference $z_{1}-z_{2}$, the perturbation parameter ρ and the modulus τ (or the remaining ramification point) of the torus.

For the vacuum sector, the first non-trivial term in the series of eq. (15) occurs for weight $h=6$.

Propos. 6. We have

$$
\left\langle\left(7 L_{4} L_{2}-2 L_{6}\right)\left(z_{1}\right)\left(7 L_{4} L_{2}-2 L_{6}\right)\left(z_{2}\right)\right\rangle=7\left\{12 g\left(z_{12}\right)\langle T\rangle+f\left(z_{12}\right) c\langle 1\rangle\right\},
$$

where

$$
\begin{aligned}
f\left(z_{12}\right)= & -151,831 \wp_{12}^{6}+\frac{303,662}{5} \pi^{4} E_{4} \wp_{12}^{4}+\frac{1,813,300}{189} \pi^{6} E_{6} \wp_{12}^{3}-\frac{71,057}{15} \pi^{8} E_{4}^{2} \wp_{12}^{2} \\
& -\frac{1,046,828}{945} \pi^{10} E_{4} E_{6} \wp_{12}-\frac{5,768}{135} \pi^{12} E_{6}^{2}+\frac{1,706}{125} \pi^{12} E_{4}^{3},
\end{aligned}
$$

and
$g\left(z_{12}\right)=5,765 \wp_{12}^{5}-\frac{88,643}{45} \pi^{4} E_{4} \wp_{12}^{3}-\frac{294,326}{945} \pi^{6} E_{6} \wp_{12}^{2}+\frac{4,192}{45} \pi^{8} E_{4}^{2} \wp_{12}+\frac{77,542}{4725} \pi^{10} E_{4} E_{6}$.

Proof. Using the contour integral method and sorting out the coefficient of $z^{4} w^{4}$ in $\left\langle T\left(z+z_{1}\right) T\left(w+z_{2}\right)\right\rangle$ yields

$$
\begin{aligned}
\left\langle L_{6}\left(z_{1}\right) L_{6}\left(z_{2}\right)\right\rangle= & \left\{\frac{400}{243} \pi^{12} E_{6}^{2}-\frac{14}{27} \pi^{12} E_{4}^{3}\right. \\
& \left.+\frac{380}{9} \pi^{10} E_{4} E_{6} \wp_{12}+\frac{539}{3} \pi^{8} E_{4}^{2} \wp_{12}^{2}-\frac{1,100}{3} \pi^{6} E_{6} \wp_{12}^{3}-2,310 \pi^{4} E_{4} \wp_{12}^{4}+5,775 \wp_{12}^{6}\right\} c\langle 1\rangle \\
& +\left\{\frac{88}{27} \pi^{10} E_{4} E_{6}+\frac{56}{3} \pi^{8} E_{4}^{2} \wp_{12}-\frac{200}{3} \pi^{6} E_{6} \wp_{12}^{3}-420 \pi^{4} E_{4} \wp_{12}^{3}+1,260 \wp_{12}^{5}\right\}\langle T\rangle .
\end{aligned}
$$

Sorting out the coefficient of $\left(z-z_{1}\right)^{2}$ in $\left\langle T(z) T\left(z_{1}\right) T^{(4)}\left(z_{2}\right)\right\rangle$ yields

$$
\begin{aligned}
\left\langle L_{4} L_{2}\left(z_{1}\right) L_{6}\left(z_{2}\right)\right\rangle & =\left\{\frac{896}{81} \pi^{12} E_{6}^{2}-\frac{32}{9} \pi^{12} E_{4}^{3}\right. \\
& \left.+288 \pi^{10} E_{4} E_{6} \wp_{12}+1,232 \pi^{8} E_{4}^{2} \wp_{12}^{2}-\frac{7,520}{3} \pi^{6} E_{6} \wp_{12}^{3}-15,840 \pi^{4} E_{4} \wp_{12}^{4}+39,600 \wp_{12}^{6}\right\} c\langle 1\rangle \\
& +\left\{-\frac{448}{9} \pi^{10} E_{4} E_{6}-288 \pi^{8} E_{4}^{2} \wp_{12}+960 \pi^{6} E_{6} \wp_{12}^{2}+6,144 \pi^{4} E_{4} \wp_{12}^{3}-18,144 \wp_{12}^{5}\right\}\langle T\rangle .
\end{aligned}
$$

Sorting out the coefficient of $\left(z-z_{1}\right)^{2}\left(w-z_{2}\right)^{2}$ in $\left\langle T(z) T\left(z_{1}\right) T(w) T\left(z_{2}\right)\right\rangle$ yields

$$
\begin{aligned}
\left\langle L_{4} L_{2}\left(z_{1}\right) L_{4} L_{2}\left(z_{2}\right)\right\rangle= & \left\{\frac{4,936}{59,535} \pi^{12} E_{6}^{2}-\frac{134}{3,375} \pi^{12} E_{4}^{3}\right. \\
& \left.\left.+\frac{388}{135} \pi^{10} E_{4} E_{6} \wp_{12}+\frac{19}{15} \pi^{8} E_{4}^{2} \wp_{12}^{2}-\frac{860}{27} \pi^{6} E_{6} \wp_{12}^{3}-\frac{934}{5} \pi^{4} E_{4} \wp_{12}^{4}+467 \wp_{12}^{6}\right\} c<1\right\rangle \\
& +\left\{\frac{2,728}{4,725} \pi^{10} E_{4} E_{6}+\frac{32}{5} \pi^{8} E_{4}^{2} \wp_{12}+\frac{904}{45} \pi^{6} E_{6} \wp_{12}^{2}+\frac{2,524}{15} \pi^{4} E_{4 \wp_{12}^{3}}^{3}-588 \wp_{12}^{5}\right\}\langle T\rangle .
\end{aligned}
$$

From this follows the claimed equation.
We list the first few terms in eq. (15).

k	coefficient of ρ^{k} / c
0	$c\langle 1\rangle$
2	$4 P_{1}\langle T\rangle+\left(P_{2}-\frac{1}{90} E_{4} \pi^{4}\right) c\langle 1\rangle$
3	$-6 P_{2}\langle T\rangle-5 P_{3} c\langle 1\rangle$
4	$12 P_{3}\langle T\rangle+21 P_{4} c\langle 1\rangle$
5	$28 P_{4}\langle T\rangle-84 P_{5} c\langle 1\rangle$
6	$\frac{1}{217}\left\langle\left(7 L_{4} L_{2}-2 L_{6}\right)\left(z_{1}\right)\left(7 L_{4} L_{2}-2 L_{6}\right)\left(z_{2}\right)\right\rangle+72 P_{5}\langle T\rangle+330 P_{6} c\langle 1\rangle$

where $\langle 1\rangle=\langle 1\rangle_{a}^{g=1}, a \in\{1,2\}$, and $\langle T\rangle$ is is given by eq. (8). The P_{i} are polynomials in $\wp=\wp_{12}$ defined by

$$
\begin{aligned}
P_{1}= & \wp \\
P_{2}= & \wp^{2}-\frac{1}{9} E_{4} \pi^{4} \\
P_{3}= & \wp^{3}-\frac{1}{5} E_{4} \pi^{4} \wp-\frac{4}{135} E_{6} \pi^{6} \\
P_{4}= & \wp^{4}-\frac{4}{15} E_{4} \pi^{4} \wp^{2}-\frac{8}{189} E_{6} \pi^{6} \wp+\frac{1}{135} E_{4}^{2} \pi^{8} \\
P_{5}= & \wp^{5}-\frac{1}{3} E_{4} \pi^{4} \wp^{3}-\frac{10}{109} E_{6} \pi^{6} \wp^{2}+\frac{2}{135} E_{4}^{2} \pi^{8} \wp+\frac{22}{8,505} E_{4} E_{6} \pi^{10} \\
P_{6}= & \wp^{6}-\frac{2}{5} E_{4} \pi^{4} \wp^{4}-\frac{4}{63} E_{6} \pi^{6} \wp^{3}+\frac{11}{495} E_{4}^{2} \pi^{8} \wp^{2}+\frac{76}{10,395} E_{4} E_{6} \pi^{10} \wp \\
& \quad-\frac{2}{22,275} E_{4}^{3} \pi^{12}+\frac{16}{56,133} E_{6}^{2} \pi^{12} .
\end{aligned}
$$

For $N \geq 2, N$-point functions involving $\varphi(z)$ can be properly defined for $\Phi(z, \bar{z})$ only. On the torus, they may fail to be elliptic in z. In order to deal with this problem, we assume that z takes on a fixed value, or varies little about a fixed value. We show below that $\langle\varphi(z) \varphi(0)\rangle$ satisfies a third order ODE in z, so $\Phi(z, \bar{z})$ defines a 3-dimensional representation of the lattice translation group. In order to continue eq. (15) to $a=$ $3,4,5$, we must assume that $\left\langle\varphi\left(z_{1}\right) \varphi\left(z_{2}\right)\right\rangle_{a}$ is translationally invariant. In particular, $\langle\varphi(z) \varphi(0)\rangle_{a}$ is an even function of z.

Propos. 7. Let $z_{0}=0$ and let z_{2} be fixed. We have

$$
\begin{aligned}
\left\langle T\left(z_{1}\right) \varphi\left(z_{2}\right) \varphi(0)\right\rangle^{g=1} & =h\left\{\wp_{12}+\wp_{10}-\wp_{20}\right\}\left\langle\varphi\left(z_{2}\right) \varphi(0)\right\rangle \\
& +\left\{\zeta_{01}+\zeta_{12}+\zeta_{20}\right\}\left\langle\varphi^{\prime}\left(z_{2}\right) \varphi(0)\right\rangle+\frac{5}{2}\left\langle\varphi^{\prime \prime}\left(z_{2}\right) \varphi(0)\right\rangle .
\end{aligned}
$$

Proof. By the OPE of $T(u) \otimes \varphi(z)$ and $T(u) \otimes \varphi(0)$, respectively,

$$
\begin{aligned}
\langle T(u) \varphi(z) \varphi(0)\rangle & =h \wp(u-z)\langle\varphi(z) \varphi(0)\rangle+\zeta(u-z)\left\langle\varphi^{\prime}(z) \varphi(0)\right\rangle+\text { regular for } u \rightarrow z \\
& =h \wp(u)\langle\varphi(z) \varphi(0)\rangle+\zeta(u)\left\langle\varphi(z) \varphi^{\prime}(0)\right\rangle+\text { regular for } u \rightarrow 0
\end{aligned}
$$

The Weierstrass zeta function fails to be periodic w.r.t. the torus periods ω_{1}, ω_{2} but satisfies

$$
\zeta\left(z+m \omega_{1}+n \omega_{2}\right)-\zeta(z)=2 m \zeta\left(\frac{\omega_{1}}{2}\right)+2 n \zeta\left(\frac{\omega_{2}}{2}\right), \quad m, n \in \mathbb{Z} .
$$

Thus the difference $\zeta(u-z)-\zeta(u)$ defines an elliptic function of u, while the sum does not. It follows that we necessarily have ${ }^{1}$

$$
\left\langle\varphi(z) \varphi^{\prime}(0)\right\rangle=-\left\langle\varphi^{\prime}(z) \varphi(0)\right\rangle .
$$

So

$$
\begin{align*}
\langle T(u) \varphi(z) \varphi(0)\rangle & =h\{\wp(z-u)+\wp(u)\}\langle\varphi(z) \varphi(0)\rangle+\{\zeta(u-z)-\zeta(u)\}\left\langle\varphi^{\prime}(z) \varphi(0)\right\rangle \tag{16}\\
& + \text { terms that are regular in } u .
\end{align*}
$$

In order for $\langle T(u) \varphi(z) \varphi(0)\rangle$ to be elliptic in u, the terms regular in u must actually be constant. Comparison of the u^{0} terms in line (16) with the OPE (7) for $T(u) \otimes \varphi(0)$ shows that the terms constant in u are equal to

$$
\frac{5}{2}\left\langle\varphi(z) \varphi^{\prime \prime}(0)\right\rangle-h \wp(z)\langle\varphi(z) \varphi(0)\rangle+\zeta(z)\left\langle\varphi^{\prime}(z) \varphi(0)\right\rangle
$$

(ζ is an odd function). Comparison with the terms constant in u which are obtained from the OPE for $T(u) \otimes \varphi(z)$ shows that

$$
\left\langle\varphi^{\prime \prime}(z) \varphi(0)\right\rangle=\left\langle\varphi(z) \varphi^{\prime \prime}(0)\right\rangle .
$$

Corollary 8. Let $z_{0}=0$ and $z_{1}=z$. The two-point function of φ satisfies the $O D E$

$$
\begin{equation*}
\frac{25}{12} \frac{d^{3}}{d z^{3}}\langle\varphi(z) \varphi(0)\rangle^{g=1}=h \wp_{10}^{\prime}\langle\varphi(z) \varphi(0)\rangle+\wp_{10}\left\langle\varphi^{\prime}(z) \varphi(0)\right\rangle \tag{17}
\end{equation*}
$$

where $h=-1 / 5$.

[^0]Proof. This follows from comparing the terms in line (16) which are linear in u with the OPE (7) for $T(u) \otimes \varphi(0)$, using that $\zeta^{\prime}(z)=-\wp(z)$ for $z \in \mathbb{C}$, and the fact that $\left\langle\varphi^{(3)}(z) \varphi(0)\right\rangle=-\left\langle\varphi^{(3)}(0) \varphi(z)\right\rangle$.

Using that for $k \geq 0$,

$$
\frac{\left\|\partial^{k} \varphi\right\|^{2}}{\|\varphi\|^{2}}=k!\prod_{n=0}^{k-1}\left(k-n-\frac{7}{5}\right) \in\left\{1,-\frac{5}{2},-\frac{25}{12},-\frac{125}{288} \cdots\right\}
$$

solving eq. (17) will allow to compute the coefficients of $\rho^{k-1 / 5} /\|\varphi\|^{2}$ in eq. (15). For example, $\left\langle L_{4} \varphi\left(z_{1}\right) L_{1} L_{3} \varphi\left(z_{2}\right)\right\rangle$ sorts out the coefficient proportional to $\left(z-z_{1}\right)^{2}(u-$ $\left.z_{2}\right)^{-1}\left(v-z_{2}\right)$ in $\left\langle T(z) T(u) T(v) \varphi\left(z_{1}\right) \varphi\left(z_{2}\right)\right\rangle$.

2.3 Outlook

Using the Frobenius Ansatz $\langle\varphi(z) \varphi(0)\rangle \sim z^{\alpha}$, the differential equation (17) imposes the condition

$$
\frac{25}{12} \alpha(\alpha-1)(\alpha-2)=\frac{2}{5}+\alpha
$$

on α, which produces the values $1 / 5,2 / 5$ and $12 / 5$. The obvious solutions to the ODE are, to leading order,

$$
z^{1 / 5}\langle\varphi\rangle, \quad z^{2 / 5}\langle 1\rangle,
$$

but the third exponent remains to be understood.
Remark 9. Solving the $O D E$ (17) is equivalent to solving the $O D E$

$$
y^{4 / 5}\left(p(x) \frac{d^{3}}{d x^{3}}+f(x) \frac{d^{2}}{d x^{2}}+g(x) \frac{d}{d x}+h(x)\right) \Psi(x)=0
$$

where

$$
p(x)=4\left(x^{3}-\frac{\pi^{4}}{3} E_{4} x-\frac{2}{27} \pi^{6} E_{6}\right),
$$

and

$$
\begin{aligned}
& f=\frac{6}{5} p^{\prime} \\
& g=\frac{3}{100} \frac{\left[p^{\prime}\right]^{2}}{p}+\frac{9}{50} p^{\prime \prime} \\
& h=-\frac{33}{500} \frac{\left[p^{\prime}\right]^{3}}{p^{2}}+\frac{33}{250} \frac{p^{\prime} p^{\prime \prime}}{p}-\frac{288}{125} .
\end{aligned}
$$

In particular, the ODE has simple poles at the four ramification points.

Proof of the Remark. We change to the algebraic coordinates $x=\wp(z)$ and $y=\wp^{\prime}(z)$ with $y^{2}=p(x)$. Let $\check{\varphi}(x)$ be the local representative of φ and let $\Psi(x)=\langle\check{\varphi}(x) \varphi(0)\rangle$. By the ODE (17), $\langle\varphi(z) \varphi(0)\rangle=y^{-1 / 5} \Psi(x)$ lies in the kernel of the operator

$$
L=y\left(p \frac{d^{3}}{d x^{3}}+\frac{3}{2} p^{\prime} \frac{d^{2}}{d x^{2}}+\frac{12}{25} p^{\prime \prime} \frac{d}{d x}+\frac{12}{125}\right),
$$

since $\frac{d}{d z}=\wp^{\prime} \frac{d}{d \wp}$. Moreover, $y^{-1 / 5}$ lies in the kernel of the three operators
$\frac{d}{d x}+\frac{1}{10} \frac{p^{\prime}}{p}, \quad \frac{d^{2}}{d x^{2}}-\frac{1}{10}\left(\frac{11}{10}\left[\frac{p^{\prime}}{p}\right]^{2}-\frac{p^{\prime \prime}}{p}\right), \quad \frac{d^{3}}{d x^{3}}+\frac{1}{10}\left(\frac{231}{100}\left[\frac{p^{\prime}}{p}\right]^{3}-\frac{33}{10} \frac{p^{\prime} p^{\prime \prime}}{p^{2}}+\frac{p^{\prime \prime \prime}}{p}\right)$, respectively. So $L\left(y^{-1 / 5} \Psi(x)\right)=y^{-1 / 5}\left(L-\frac{3}{10} L_{1}\right) \Psi(x)$, where

$$
L_{1}=y\left(p^{\prime} \frac{d^{2}}{d x^{2}}+\left(p^{\prime \prime}-\frac{1}{10} \frac{\left[p^{\prime}\right]^{2}}{p}\right) \frac{d}{d x}+\frac{1}{3} \frac{p^{\prime \prime \prime}}{p}+\frac{11}{50} \frac{\left[p^{\prime}\right]^{3}}{p^{2}}-\frac{11}{25} \frac{p^{\prime} p^{\prime \prime}}{p}\right) .
$$

References

[1] Eguchi, T. and Ooguri, H.: Conformal and current algebras on a general Riemann surface, Nucl. Phys. B282 (1987), 308-328;
[2] Gilroy, T., and Tuite, M., in preparation;
[3] Gunning, R.C.: Lectures on Riemann surfaces, Princeton Univ. Press, Princeton (1966);
[4] Leitner, M.: CFTs on Riemann Surfaces of genus $g \geq 1$, PhD thesis, TCD (2014);
[5] Leitner, M.: An algebraic approach to minimal models in CFTs, preprint arXiv:1705.08294;
[6] Leitner, M., Nahm, W.: Rational CFTs on Riemann surfaces, preprint arXiv:1705.07627;
[7] Mason, G., Tuite, M.: On genus two Riemann surfaces formed from sewn tori, Commun. Math. Phys. 270, (2007) 587-634;
[8] Sonoda, H.: Sewing Conformal Field Theories, Nucl.Phys. B311 (1988), 401416;
[9] Vafa, C.: Conformal Theories and Punctured Surfaces, Phys. Lett. B199 (1987), 195-202.

[^0]: ${ }^{1}$ Alternatively, this follows from the assumption that $\langle\varphi(z) \varphi(0)\rangle$ is translationally invariant.

