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I. INTRODUCTION

Quantum effects in accelerators have been of interest for many years, [1], [2],

and [3]; however recently with the development of multi TeV colliders and interest

in large linear colliders, they have become the subject of wide spread research

[4]. The concept of a quasi-invariant has been introduced in [5], and has been

proven useful for representing the properties of nonlinear betatron dynamics. The

quantum version of this invariant is developed, and from it quantum corrections to

the classical results are found. The similarity between the Lie algebras associated

with the classical case and the quantum case are used to obtain the relevant

results. At first the classical linear and classical nonlinear cases are studied from

the view point of their appropriate Lie algebras. These systems are quantized, and

the corresponding Lie algebras are used to determine properties of the quantized

systems.

It is well known that the Courant-Snyder [6] invariant is particularly useful

for determining the phase space pattern for the transverse dynamics of a particle

in a storage ring. Using the Hamiltonian for a time-dependent simple harmonic

oscillator, one can obtain the relevant invariant. However, when there are non

linear contributions to the Hamiltonian little success has been achieved in finding

invariants. In order to better understand the behavior of a particle beam, it

is useful to find an approximate invariant, which is associated with a nonlinear

time-dependent Hamiltonian. The method used to find the quasi-invariant for the

nonlinear oscillator is first used in the context of classical dynamics, based on us

ing the Lie algebra associated with elements obtained from powers and products

of the position and conjugate momentum coordinates. To illustrate the method,

an example is given for the linear system. where the invariant is exact, and the

relevant algebra is SU(1,l) [7]. The method used for the linear system can be

easily generalized to study a nonlinear one dimensional system. The method has

the advantage that the time-dependent coefficients of the approximate invariant

are found as the solution of a system of linear first order differential equations.

For classical one dimensional transverse dynamics, an approximate invariant

associated with a time-dependent Hamiltonian containing a nonlinear sextupole

term is found. Both the Hamiltonian and the approximate invariant can be rep

resented as linear sums of the elements of a Lie algebra. The invariant is ap

proximate in the sense that terms of order greater than three, resulting from the

Poisson bracket of elements of the algebra, are neglected. This results in a closed

Lie algebra. The method is extended to quantum operators, and a similar Lie

algebra involving operator elements is found. This is used to obtain the quantum

quasi-invariant. The relation between the classical result is established with the

aid of coherent states associated with the linear time-dependent oscillator.

The Hamiltonian associated with nonlinear betatron dynamics studied in this

paper is a special case of the Hamiltonian for a particle of mass rn with the one
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dimensional conventional form

(t) = P + mwgK(t) + (t)3. 1.1

The method used to obtain this equation from a covariant formulation of storage
ring dynamic is found in [2] and [81. This equation is put in dimensionless form

H(t) =
- + K(t)- + S(t)3, 1.2

with the transformation to the dimensionless position, momentum, and energy
variables q/qo, p/po, and H/E0. Here

pg

____

2 E0
=1, 2 =q0, poqo=:c_lI, 1.3

m 0 rn0

with g0 = w0h. In addition

S(t) 1.4

Introducing the dimensionless parameter

-

1.5
poqo E0

gives for the quantum bracket of the dimensionless operators and j3

1.6
Po qo

This allow the results which depend upon the quantum bracket to be expressed in
terms of . The quantum results, corresponding to various orders of h, are found
with = 1, and associated classical results are found with —÷ 0, corresponding
to the limit h —* 0. For applications to betatron dynamics, it is conventional to
use qo = 1 and Po p1, which is the magnitude of the three-momentum of a
relativistic particle.
II. THE COURANT-SNYDER INVARIANT AND SU(1,1)

The time-dependent Hamiltonian for one dimensional transverse dynamics is
written in terms of the position coordinate q and the conjugate momentum p as

H(t) = - + K(t)-. 2.1

The invariant Courant-Snyder associated with this Hamiltonian is

/3(t)p2 + 2a(t)pq + 7(t)q2
2 2

2 ‘
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which satisfies the partial differential equation

dlo(t) = ôIo(t)
+ {H(t),10(t)} =0. 2.3

The Poisson bracket of phase space functions f(p, q) and g(p, q) is defined as

—
Of(p, q) Og(p, q) c3f(p, q) ôg(p, q)

2 4{f(p,q),g(p,q)}
— aq aq op

The functions c(t), 3(t), and 7(t) satisfy the equations

da(t)

dt
=K(t)/3(t)—7(t)

d13(t)
= —2a(t) 2.5

dt
d7(t)

= 2K(t)a(t),
dt

where
1+ o2(t)

7(t)
/3(t)

2.6

Both the Hainiltonian Eq. (2.1) and the invariant Eq. (2.2) may be ex

pressed in terms of the elements of the Lie algebra SU(1,1). If one introduces the

coordinates
q + ip

2.7
*

q—zp
a

=

with Poisson bracket
{a,a*} = i, 2.8

then the functions
2 *2

A1=a, A2=a , .43=aa,

satisfy the Lie algebra of SU(1,1). Namely,

{A1,A2} = 4iA3

{A1,A3} = 2iA1 2.10

{A2,A3} = —2iA2,

In terms of the elements of the algebra Eq. (2.10), the Hamiltonian and the

invariant become
H(t) = ai(t)A1 +a2(t)A2+a3(t)A3 2 11
Io(t) = /31(t)A1 +/32(t)A2 +,33(t)A3.
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Requiring Io(t) to be real gives the relations

i31(t) = 3*(t)
2 12

/33(t) =

When these are substituted into Eq. (2.3), one finds, using Eq. (2.10), the set of
linear differential equations

____

/ . . .. /

I d \ / 2zc3(t) 0 —2zai(t) \ ,t t31(t)
dfl2(t)

= f 0 —2icr3(t) 2iai(t) J ( ,l3(t) . 2.13
d/3(t)) \4iai(t) —4iai(t) 0 ) \i33(t)

The functions Q(t) and ,i3(t) satisfy the relations

1(t) a2(t)
= K(t) -i

a3(t)
= K(t) + 1

2

and
io(t) y(t)—13(t)

2

ia(t) + 2.15

/33(t)
= /3(t) + 7(t)

These relations can be used to show that the system of linear differential equations

Eq. (2.13) is equivalent to the system Eq. (2.5). With initial values given for 3(t)

and d,l3(t)/dt, the system of equations Eq. (2.13) can be integrated numerically,

using Eq. (2.14) and Eq. (2.15).
III. THE NONLINEAR SEXTUPOLE SYSTEM

Next the method described above is extended to the classical case when a

nonlinear term is added to the linear system Hamiltonian. However, in this case

an approximation is made to obtain a finite closed Lie algebra which contains

seven elements. As an example, one considers the Hamiltonian Eq. (1.2) where

S(t) is the strength of the sextupole term [9]. Now defining functions of a and a*

as
A1=a2,

A3=a*a, A4=a3
31

A6=a2a*

A7 =
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one finds, keeping terms of order less than

{A1,A2} 4iA3

{A,A4} 0,

{A1,A6} 2iA4,

{A25A3} —2iA2,

{A2,A5} 0,

{A2,A7}

{A3,A4}

{A3,A6}

{A4,A5}

{A45A6}

{A5,A6}

{A6,A7}

The Hamiltonian Eq.

7

four in a and a*, the closed Lie algebra

{A1,A3} = 2iAi,

{A1,A5} = 6zA7,

{A1,A7} = 4iA6,

{A2,A4} = —6iA6,

{A2,A6} = —4iA7,

{A3,A5} = 3iA5,

{A3,A7} = iA7,

{A4,A7} = 0,

{A5,A7} = 0,

H(t) =

1=1

One can now find an approximate time-invariant
tonian Eq. (3.3). This is assumed to be of the form

1(t) =

dØ(t) —

dt
_M(t)/3(t),

associated with the Hamil

(1.2) may be written in the form

—2iA5

—3iA4,

-iA6,

0,

0,

0,

0.

3.2

3.3

3.4

where aj (t), i = 1 -+ 3 are given by Eq. (2.14), and

/S(t)
c4(t) = a5(t) =

4
c6(t) = Q7(t) = 3c4(t).

3.5

which contains terms up to third order in a and a*. Since 1(t) must be real, one
finds

= = Z. 3.6

When this along with the Hamiltonian Eq. (3.3) is substituted into Eq. (2.3),
one finds, using the algebra Eq. (3.2), the system of linear first order differential
equations

3.7
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where
31(t)
/32(t)
/33(t)

/3(t) = 3.8
/35(t)
/36(t)
/37(t)

and

M(t) =

2ic3(t) 0 —2iai(t) 0 0 0 0
o —2icx3(t) 2ia2(t) 0 0 0 0

—4ia2(t) 4iai(t) 0 0 0 0 0
2ic6(t) 0 —3ia4(t) 3ic3(t) 0 —2iai(t) 0

o —2icx7(t) 3iQ5(t) 0 —3ia3(t) 0 2ia2(t)
4ic7(t) —6icx4(t) —iU6(t) 6icx2(t) 0 ia3(t) —4iai(t)
6ic5(t) —4ia6(t) ia7(t) 0 —6ia1(t) 4ia2(t) —ia3(t)

3.9
In these expressions the a(t)’ are given in Eq. (2.14) and Eq. (3.4). The first

three 1i3(t)’ are given in Eq. (2.15). The remaining /3(t)’ are found as solutions
to a system of first order differential equations Eq. (3.7). Using Eq. (3.5), the
quasi-invariant may be written in the form

I = I(t) + 2?(/34(t)A4+36(t)A6). 3.10

The first term 10(t) is the function Eq. (2.2), which is an invariant for the linear
system. The remaining term may be expressed in the form

ci(t)q3 +c2(t)q2p+ c3(t)qp2 +c4(t)p3,

with
= ?/34(t) + R/36(t)

= —(3/34(t) + /36(t))
11

/c3(t) = -(3?/34(t) /36(t))

= /34(t) -

The functions c(t), i = 1 —+ 4, satisfy the following system of first order differential

equations:
= K(t)c2(t) + 3S(t)a(t)

é2(t) = —3c1(t) + 2K(t)c3(t) + 3S(t)/3(t)
3 12

3(t) = —2c2(t) + 3K(t)c4(t)

= —c3(t),
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where dot denotes differentiation with respect to t.

IV. THE QUANTUM LINEAR SYSTEM

As a first approximation for finding the quantum limits associated with the

Hamiltonian Eq. (L2) for transverse betatron oscillations, one neglects the non

linear multipole contributions and considers for each transverse degree of freedom

a time-dependent harmonic oscillator with Hamiltonian

4j

where t (c = 1) represents arc length along an ideal storage ring orbit. The

dynamical evolution of the conjugate quantum operators j3 = c and is determined

from the Heisenberg equations

d
— = z[H,qj

d13

The Courant-Snyder invariant as a function of the quantum operators and j3

takes the form
210(t) = [(wj3 — th)2 + (/w)2j. 4.3

The invariance follows from

dIo(t)
=

+ t),
4.4

along with the conditions

- = 0
4•5

Expressed in the usual Courant-Synder parameters, one finds for each transverse

coordinate
21o =7(t)2 + a(t)(j3 + j3) +13(t)132 4.6

with
a(t) = -wtb

4.7
1 +a2(t)

7(t)
= (t)
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The quantum states for this system can be constructed with the aid of the
squeezing operator [10] and [11] defined as

l(*2t2)

S=e , 4.8

with complex = Iijexp(i) and boson operators a and â. The time-independent
rationalized Hamiltonian is

52+2 1
H0=

2
=aa+, 4.9

where the boson operators & and at are found from

q= 4.10

with the commutation relations

[c]=i = [a,at]=1. 4.11

The Courant-Synder invariant Eq. (4.3) or Eq. (4.6) is found from the time-
independent Hamiltonian using the squeezing operator Eq. (4.8) to write

10(t) = iI0t= (t+ ), 4.12

where

b(t) = SeàS = ( + w — a + ( — w — 4.13
2w 2w

with

coshII = (1/w + w)2 + th2

wti,
tan8=— 4.14

1+w2
wzi,

tan(6+q)= —____

1—w2

The eigenstates of Io(t) satisfy the eigenvalue equation

/ 1”
Io(t)In,t) =

+
n,t)

4.15
(bt)n

jri,t)
=

0).

9



The states ri, t) are not Schrödinger states, for they are not solutions of the time-

dependent Schrödinger equation

iIn,t)3 = E(t)In,t)3. 4.16

However, the Schrödinger states are of the form [12]

= eit)ln,t), 4.17

where the phase, as shown in Appendix A, is

a(t) = - ( + 1) f w2(t’)
4.18

To evaluate the quantum correction to Io(t) and to find the uncertainties

associated with the operators (t) and (t), one must use the appropriate coher

ent state associated with H(t). This state is the time-dependent generalization

of the coherent state [13] obtained from the eigenstates of the time-independent

Hamiltonian Eq. (‘k9). Thisis the nearest quantum state to the clasical state

of the simple harmonic oscillator. The coherent state for a time-dependent simple

harmonic oscillator can be generated from the squeezed ground state as

= D(,6)l0,t)3, 4.19

where the displacement operator D(3) is defined as

D(3) = et(t)_t). 4.20

Here 4? is a complex parameter, which is the eigenvalue of the operator b(t). This

parameter is related to the classical value of the invariant 10(t) since

= (3j2 + l/2)h/p = I(t) + h/2p. 4.21

This includes the quantum correction (1/2)(h/Ipl). The variance of an operator

is defined as
a2(q) =3(j3,t( —)2I4?,t)8, 4.22

where the mean value of the operator is

= (4?,t4?,t)3. 4.23

Time-independent Hamiltonian Eq. (4.9) results are found using the coherent

state Ia), defined for the complex parameter a as

(a) = D(a)(a) = et(0), 4.24
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where the parameter a is related to the classical coordinates of position q and
momentum p as in Eq. (2.7). They are

1W
u(q) = (p) = —v2 4.25

h
O(p)cT(q) =

which yield the minimum value for the uncertainty product. For the Hamiltonian
Eq. (4.9), the coherent state a) represents the quantum state nearest to the
classical state, h —+ 0, for which o(q), o(p), and the uncertainty product are zero.

One can now use the states Eq. (4.19) and the definition of the variance Eq.
(4.22) to obtain results appropriate for the a particle collider. For the scaling
transformations frequently used in betatron dynamics

p—
[i
H

H—+— 4.26
I1
a

a — —,

Li1
where the three-momentum magnitude

p

is

4.27
C

with relativistic particle energy ‘, one finds that the uncertainties and the uncer
tainty product, represented in terms of the Courant-Snyder parameters Eq. (4.7),
are

(q) =

/_

i}V 2p 4.28

p — dq
pdt

____

(dq — tl\/43(t)7(t)
q

21p1
Writing the amplitude as qamp = /(eo/7r)/3(t) with the emittance eo = 2irIo(t),
one finds the results

/ \ 1/2
cr(qamp) ( q ‘

qamp 4.29
h hC particle

2
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where eq/7r, the quantum emittance, represents half the resolution distance of a

particle in the beam. With the approximations

hc 2 x 10—19 TeV m

E 2TeV,
4.30

one finds

5 X 10 m. 4.31

For a typical proton collider with 3(t) 300 m and with qamp 3.5 mm, one finds

Eo/lr 4 x 10—8 m
4.32

c7(qamp) 3.9 X 10—6 mm.

Similarly, the angular uncertainty is

() 1.3 x 10’ rad. 4.33

V. THE QUANTUM NONLINEAR SYSTEM

The method described can be extended to the case when a nonlinear term is

added to the quantum Hamiltonian. As an example. one considers the quantum

operator Hamiltonian Eq. (1.2). Defining operator elements of a and â, with

[a,at} , as

A2 = àt2

A3=(aa+aa)/2 51
A5 = at3 A6 = (a2& + ââ& + t2)/3

A7 = + a&a + ààt2)/3,

one finds, keeping terms of order less than four in a and at and first order in the

12



where tIIo(t)f,13, t)3 is given in Eq. (4.21). The correction to the linear invariant
is

8(i3,t111(t)I,3,t)8 = Ii + ‘iqc. 6.12

The classical correction to the linear invariant is

=c1(t) +c2(t)2+c3(t)2+c4(t)3, 6.13

and the quantum correction is

‘lqc = ((/2)[3(t)c1(t)+ ‘y(t)c3(t) — a(t)c2(t)j

+ (p/2)[/3(t)c2(t)+37(t)c4(t) — Q(t)c3(t)])(h/p).

VII. RESULTS AND CONCLUSIONS

The nonlinear time-dependent Hamiltonian for one dimensional transverse

classical dynamics is written in terms of the position coordinate q and the conjugate

momentum p in Eq. (1.2). For this Hamiltonian, the equation of motion is found
from Hamilton’s equations

ÔH(t)

p 71
ÔH(t)

ôq

to be
+ K(t)q + 3S(t)q2 = 0. 7.2

The classical approximate invariant associated with this Hamiltonian is

— /3(t)p + 2c(t)pq + 7(t)q2

2 7.3

+ ci(t)q3 +c2(t)q2p+ c3(t)qp2 +c4(t)p3.

The time-dependent functions c(t), /3(t), and 7(t) are found from the Eq. (2.5) or

Eq. (2.13), and the functions c(t) can be found from the differential equations Eq.

(3.12). These system of equations are equivalent to the system of linear equations

Eq. (3.7).
Numerical results are given which confirm the analytical development in the

previous sections. Periodic solutions for the functions c(t) allow the determination

of these functions at a fixed point in a lattice with a sextupole nonlinearity. The

values of the functions q and p are determined from nonlinear tracking for the first

five circuits of the lattice. After the turn, the quasi-invariant becomes

1(j) = ‘0(j) +ci(j)g(1,j) +c2(j)g(2,j) +c3(j)g(3,j) +C4(4,j), 7.4
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with
g(1,j) = q(j)3

g(2,j) = q(j)2p(j)

g(3,j) = q(j)p(j)2

g(4,j) = p(j)3.

From the requirement that
1(k) — 1(1) = 0, 7.6

for k = 2 —+ 5, one finds the system of linear equations

(k) = c(j)g(i,k), 7.7

with
= —(10(k) I(1))

8
g(i, k) = g(i, k) — g(i, 1)

For the numerical results, the FODO approximation is used to find the lattice

function ,B(t). This function is derived in Appendix B. The system Eq. (7.7) and

Eq. (7.8) is solved numerically to find the coefficients c(t). The thin lens approx

imation is used where the lattice is made up of a single thin sextupole element

and identical cells of length L. Each cell consists of a focusing and defocusing

magnet separated by a bending drift magnet. The focal length of the focusing and

defocusing magnets is f, and the phase advance per cell u is found from

sin(t/2)
= j.

7.

The tune ii is obtained from
1uN 7.1C
2ir

where N is the number of cells. The maximum value of 3(t) occurs when o(t) 0.

and 16(t) = 1/7(t), and it is found from

—2 (1+sin(it/2)N 711/3()max fi .

\ 1 — sin(ji/2)

The phase space plot of/3matP cm and q cm for the classical quasi-invariant

I is shown in Figure. 1. The classical results for both the invariant for th€

linear system 1 cm and the quasi-invariant 1 cm for the nonlinear system ar

plotted in Figure 2. as a function of turn number. It is clearly seen here that

the methods leading to the quasi-invariant produce a more stable quantity that

Io. For the example considered, the values N = 4, u = 7r/2, L/2 = 8875 mm

16



quantum parameter E, the closed approximate Lie algebra

{A1,A2] = 4A3 [A1,A3] = 2A1,

[A1,A4} = 0, [A1,A5] = 6A7,
[A1,A6] = 2A4, [A1,A7] = 4A6,

{A2,A3] = —2A2, [A2,A4] = —6A6,

[A2,A5} = 0, [A2,A6] = —4A7,

{A2,A7]=—2A5
52

[A3,A4] = —3A4, [A3,A5] = 3A5,

[A3,A6] = -.-A6, [A3,A7] =

{A4,A5] = 0,

[A4,A6] = 0, [A4,A7j = 0,

[A5,A6] = 0, [A5,A7] = 0,

-

[A6,A7]=0.

These algebraic relations are the same as those associated with the Poisson bracket
relations. The hermitian Hamiltonian operator and the hermitian quasi-invariant
operator are

E(t) = a(t)A, 5.3

and

1(t) = Zj(t)Aj,

where the a(t) and /3 (t) are defined as before. The equation which must be
satisfied by the hermitian quasi-invariant operator is

dI(t) = 81(t)
+ i{(t), 1(t)] =0. 5.5

This equation along with the quantum algebra leads to the same set of differential
equations Eq. (3.7) that appear in the classical case.
VI. QUANTUM CORRECTIONS

The quantum corrections to the quasi-invariant are obtained using first order
perturbation theory. The Boson operators which occur in the linear invariant Eq.
(4.12) can be written as

(_(fi(w) f2(w)N(à 61
t)

- \f(w) fr(w)) at

13



The inverse transformation is

- ( f(w) -f2(w) ( 62
vat)

- -f(w) fi(w) ) ut)’

where
111

fi(w)=
6.3

f2(w)= ——w---zw

and
fi(w)12 - 1f2(w)12 =1. 6.4

These scaled Boson operators satisfy the commutation relations

{&,at] = 1
6.5

{b,btj = 1.

The operators and j3 become

66
= (1/iw\/)(b - bt) + (zb//)(b + b)

The quantum corrections to the quasi-invariant are found from the operator

1(t) = 10(t) + 11(t) 6.7

where from Eq. (4.12)

10(t) = (1/2)[(wj3 - th)2 + (/w)2j, 6.8

and
11(t) =c(t) +c2(t)2 +

6.9
c3(t)2 + + 2) +c4(t)3.

The classical values of the operators and j3 are

3 (,i3,tkI/3,t)3 610
p=8 (3,tIj3I3,t)3.

The expectation value of the quasi-invariant operator is

3(/3,tfI(t)116,t)3 = (,3,t110(t)I/3,t)3 + (,3,t111(t)1i3,t)3, 6.11

14



and ii = 0.33666667 +N1u/(2ir), with near resonance fractional tune contribu
tion, have been used. The initial values q = 0.3 cm,/3maxP = 0 along with the
sextupole strength 3s = 0.1 x 10 cm2 have been used. For integer j, the
sextupole function is approximated by S(t) =(3e/3)S(t — jTo), where T0 is the
orbital period. For the present case, the values of the periodic functions c(0) are

= —3.41219 x 106 cm2

C2//3maz = —0.91910 X 10 cm2

C3//3ax = +0.99563 x 10 cm2

C4//3ax = —1.11468 x 10 cm2,

(7.12)

with /3maz = 38389.279 cm.
It is clear from the Figure 2. that the quasi-invariant is nearly stable. It

remains this way for increasingly larger number of turns. It oscillates with small
amplitude and with period of 100 turns. The amplitude of the oscillation de
pends upon the strength of the sextupole nonlinearity, and the period results from
the nearness of th fractional tune to the third integer resonance. Although, the
present quasi-invariant, which includes terms in q and p through third order, be
comes increasingly unstable for large values of the sextupole strength or large
initial values of the amplitude q, it is clear that the method can be extended to
include arbitrarily higher order corrections which will improve the stability of the
quasi-invariant. The quantum correction associated with the quasi-invariant can
be found from Eq. (4.21) and Eq. (6.14), and for the numerical example being
considered it takes the value

‘qc (1/2+/2(maxi+C3//3max))h/p1 O.538/p. 7.13

Although very small for a hadron collider, it would be more significant for a low en
ergy nonlinear time-dependent oscillator of the type described by the Hamiltonian
Eq. (1.2).

In conclusion, it is seen that the Lie algebra methods used for both the classical
and quantum quasi-invariants provide a useful approximation for the invariant as
sociated with the time-dependent nonlinear oscillator. For applications to betatron
dynamics, this method provides a complimentary method to the usual nonlinear-
map tracking methods. In addition, the quantum states 3, t)3 of Eq. (4.19) pro
vides the connection between the quantum operator for the quasi-invariant and
the classical result when these states are used to form matrix elements of the type
used to obtain the quantum uncertainties Eq. (4.28) and the quantum correction
Eq. (6.14).

This work was performed in part while the author was University Scholar
in Theoretical Physics at UCLA and partially supported by U. S. Department
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APPENDIX A: THE SCHRODINGER STATE PHASE

The phase Eq. (4.18) can be found by first differentiating Eq. (4.17) with
respect to t, and then using Eq. (4.16) to write the matrix element

Oa(t)
+ (n,tIIn,t) = —i(n,tIH(t)In,t)

= + K(t)w2 + 1/w2)(n + 1/2),

where Eq. (4.13) is used to express the Hamiltonian Eq. (4.1) as a function of
b(t) and its adjoint. The matrix elements of this operator can be found from

bttn,t) = \/iIn+ 1,t) A.2

and
b In,t) = — 1,t) (n,tIb = 1,t. A.3

Making the replacement n —* n 1 in Eq. (A.2), one can derive the identity

(n,tItn — 1,t) + (n,tIbjn 1,t)

= (n,t(In,t), A.4

where
abt 1

= (i(w’th —

ui2) 2zb/w)b + i(w — th2)bt. A.5

Therefore

(n,tlIn,t) = (O,tIlO,t) +i (w — th2). A.6

Choosing

/0 j 0 t\
= i(wth th2) A.7

‘I 4

one finds from Eq. (4.5), Eq. (A.1), Eq. (A.6), and Eq. (A.7) the differential
equation

da(t) 1 1

dt =—(n+)2(t) A.8

which has the solution Eq. (4.18).

19



APPENDIX B: THE BETA LATTICE FUNCTION

In this appendix, following the methods of [6], the lattice function 3(t) used

in the numerical calculations is derived. It is found for a lattice made up of

similar cells of the FODO (focusing, drift, defocusing, drift) form. Focusing and

defocusing are achieved with thin lens quadrupole magnets, and the drifts occur

through bending dipole magnets of length L and strength B0. The function /3(t)

has period 2L, and the function on the interval L <t <2L is found from that on

the interval 0 <t < L using

f(t)L<t<2L = f(2L t)o<t<L. B.1

The beta functions for a lattice with phase advance ii per cell are found from

the (1, 2) component of the transfer matrix. The function /3(t) is found from

/3(t)sini = (O(t)FO(L)DO(L --t))12, B.2

where the focusing and defocusing matrices for lenses of focal length f are, respec

tively,

i/f ) and D
= ( ). B.3

The matrix for a drift of distance t is

O(t)=( Q. B.4

The resulting beta function for 0 <t < L is

/3(t)= B.5

where L = 2fsin(1u/2).
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FIGURE CAPTIONS

FIG. 1. The quasi-invariant in phase space usingJ3max p cm and q cm.

FIG. 2. The Courant-Snyder invariant, eo/2ir = 1 cm, and the quasi-invariant €/27r =

I cm, as a function of turn-number.
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