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Abstract

In this paper we discuss asymptotics associated with a large

number of sources using a resource in a compact time interval.

A large deviations condition is placed on the sum of the vectors

that describe the stochastic behaviour of the sources and large

deviations results deduced about the probability of exhaustion of

the resource. This approach allows us to consider sources which

are highly non-stationary in time. The examples in mind are a

single server queue and a form of the Cramer-Lundburg model

from risk theory. Connection is made with past work on stability

of queues and effective bandwidths. A number of examples are

presented to illustrate the strengths of this approach.
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1 Introduction

Large deviation asymptotics have been applied in many areas to calcu

late probabilities of exhaustion of a system resource as the size of the

system becomes large. This body of work includes large buffer asymp

totics in queueing theory with linear scalings such as Glynn and Whitt

[13], and with non-linear scalings such as Duffield and O’Connell [8];

large initial capital asymptotics in risk theory such as Martin-Lof [20]

and Nyrhinen [22] and references therein; and also large number of lines

asymptotics in queueing theory with linear number of lines/linear time

scaling such as Botvitch and Duffield [3], Courcoubetis and Weber [5]

and with non-linear time scalings in Duffield [7].

The work on large number of lines asymptotics aims to capture the ef

fect of statistical multiplexing, see Kelly [16] for a general reference.

This is where superpositions of bursty traffic lead to a smoother, less

bursty, multiplex and hence to economies of scale. The approach taken

by other authors in their work on large number of lines asymptotics is

to work with homogeneous and heterogeneous superpositions of traffic

whose workload processes display long time-scale large deviations be

haviour. This connects their work with the work on large buffer asymp

totics. Specifically Duffield [7] finds that in the case where the large

deviation behaviour of the underlying sources is on a non-linear time

scale, economies of scale can be much greater than in the linear case.

We will not approach the problem in this manner. We assume large de

viation behaviour on non-linear scalings in the number of lines and con
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sider only compact time intervals. This allows us to consider processes

which are highly non-stationary in time and still deduce large deviation

results. We have two applications in mind, one is the single server queue

with many sources each of whom has an associated arrival and service

process; the resource in question being the buffer space at the queue.

The other application is to a version of the Cramer-Lundburg model in

risk theory (for a general introduction to risk theory see Grandell [14]),

here the resource is an insurance companies capital and the sources are

the clients who make claims and pay premiums.

In section two we introduce the setup under which the results will be

developed. In section three the main results are presented. In section

four the notion of stability which was introduced in the early queueing

literature (see Loynes [19]) is revisited in the current setting. In section

five the results are considered in the presence of convex structure and a

connection is made with work on effective bandwidths (see Kelly [16]).

In section six references to the literature are given to conditions under

which the main assumption of this work is true. In section seven we

present a range of examples to highlight the features of the approach

adopted in this paper.

The first example illustrates how even in a simple i.i.d. setting the

appropriate large deviation scale may be non-linear. The second example

displays many-scale behaviour; the scale on which the large deviations

are seen depend upon the size of the deviation. The third example

is designed to show how the asymptotics of the two models, the single

server queue and the Cramer-Lundburg model, can differ. It too displays

many-scale behaviour.
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2 Setup

We consider L sources using a resource in the discrete time interval [1, T]

where T is finite. Ultimately we will take the limit as the number of

sources using the resource becomes large. Each source I has an asso

ciated vector X(i) in RT which is almost surely finite. X(i) describes

the input imparted to the resource at time t by source i. We define

the vector Z(L) := X(1) + + X(L) e RT. Zt(L) is the total input

imparted to the resource at time t from the first L sources. We consider

two cases.

(I) The resource can not grow with time. This is the case with queues

where X(i) represents the arrivals less service from source i at time t

and the resource is the buffer space at the queue.

(II) The resource can grow with time. This is the case with the Cramer

Lundburg model of risk theory where X(i) represents the claims made

less premium received from customer i by an insurance company at time

t. Here the resource is the company’s capital which acts as a buffer to

bankruptcy.

We define a scale to be a non-decreasing sequence of real numbers di

verging to infinity.

We assume that the size of the resource, {B(L)}, grows as the number of

sources attached to the resource grows. That is, there exists a scale a(L)

such that the size of the resource is given for b > 0 by B(L) = a(L)b.
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We keep b free as we shall be interested in what effect b, the resource

space-scale, plays in the multiplexing.

We only consider discrete time although it is possible to deal with con

tinuous time if a growth condition is placed on X(•) as a function of

t such that for any compact interval [1, T] it is sufficient to know the

processes at some finite number of times within the interval, this sort

of approach is taken by Duffield and O’Connell in [8] for large buffer

asymptotics.

In case (I) the resource experiences overflow in the interval [1, T] if the

total arrivals less total service imparted to the resource by the sources

exceeds a(L)b in any interval [r, s] C [1, T]. That is if

max Zt(L)>a(L)b.
1<r<s<T

— —

— t=r

We define the maximum queue length operator

= l<r<s<TYTht

so that overflow occurs if and only if

(Z(L)

a(L))
>b.

In case (II) the resource is exhausted in the interval [1, T] if the to

tal claims less total premium imparted to the resource by the sources

exceeds a(L)b in any interval [1, s] C [1, T]. That is if

max Z(L) > a(L)b.
1<s<T

—

— t=1
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We define the worst negative bank balance operator

C()
=

so that bankruptcy occurs if and only if

IZ(L)\
Cl J>b.

\a(L)J

We will calculate large deviation probabilities for these events in terms

of an assumed underlying large deviations principle for {Z(L)} as the

number of sources using the resource tends towards infinity.

3 Main results

The proofs for the results for cases (I) and (II) are almost identical, so

although the results are stated in terms of both they are only proved in

(the more general) case (I).

Assumption one: {Z(L)/a(L)} satisfies a large deviation principle on

the external scale {V(L)} with rate function I(.) which is continuous

on the interior of the set upon which it is finite. That is, there exists a

function I: RT —* [0, cc], which is continuous on the interior of the set

upon which it is finite, such that for all F closed in RT

1 Z(L)
lim sup log IP E F — inf I()

L-+oo V(L) a(L) xEF

and for all C open in RT

1 Z(L)
lim inf log IP E G — inf I(s).
L-+oc V(L) a(L)
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References to the literature giving sufficient conditions for this assump

tion to hold shall be presented in a later section. For a superb review of

large deviation theory see Lewis and Pfister [17].

Lemma 1 For each pair [r, s] such that 1 < r s < T the sequence

{Sr,s(L)/a(L)}, with Sr,s(L) := Z(L), satisfies a large deviation

principle in R on the exterior scale {V(L)} with rate function Jr,s(y)

defined by

Jr,s(Y) :=inf{I() :xt=Y}.

PROOF As the function q5(xr,.. , x3) = Zr + + x is continuous

it follows directly from the contraction principle (see Theorem 6.4 of

Lewis and Pfister[17]) and assumption one that the image measures

M [B] := IP 1(B)] = i B] satisfy a large deviation

principle in IR on the external scale V(L) with rate function

Jr,s(Y) := inf{I() :

t=r

Xt =

Jr,s() is continuous as I(.) and (•) are.

Theorem 2 {Q(Z(L)/a(L))} and {C(Z(L)/a(L))} satisfy large devi

ation principles in IR on the exterior scale {V(L)} with rate functions

IQ(y) and Ic(y), respectively, which are defined by

IQ(yj) := min{l<r<s<T}Jr,s(y)

Ic(Y) := min{l<S<T}Jl,S(y).
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PROOF A simple application of the principle of the largest term (see

lemma 2.3 of Lewis and Pfister [17]) suffices for the upper bound. We

have that

Q(Z(L)/a(L))
= i<r<s<T

Zt(L)/a(L).

For F closed

{i<[T}[a(L)
EF] [Q()

and

Q
(Z(L))

E F] <T max
Z(L)

F
a(L) {i<r<s<T} a(L)

Taking limits and using the fact that for any finite collection of sequences

(1) (N)
{a },.. . , {a } in [—oc, oo]

lim sup max = max urn sup
ie{1,...,N} iE{i ,..., N}

it follows that

limsupL7(logJP [Q (t) e F] =

max{l<r<s<T} lim5upL logIP [>r e F].

Hence

1 /Z(L)N I
limsup logIP Q ( ) e F — inf mm Jr,s(x)

L-+oo V(L) \a(L)J xeF Ijl<r<s<T}

Now for the lower bound. For G open we have that

Zt(L)/a(L) e G] < [Q (Z(L)/a(L)) E G]

for any [r, s] e [1, T] and thus

liminf
V(L)

log [ e G] limmnf
V(L)

log [Q
(Z(L))

e G]
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for any [r, s] e [1, T] and hence

max{l<r<s<T} liminfL v&;y logIP [=r G]

liminfL logIP [Q (h)).) E G].

Thus for all G open

I 1

____

— inf mm Jr s (x)> <urn inf log IP Q I I E G
xEG I{1<r<s<T}

‘ J — L—*oo V(L) \a(L)J

I(•) and Ic(•) are clearly continuous as for all [r, s] e [1, T] we know

Jr,s () is continuous and the minimum or maximum of a finite collection

of continuous functions is continuous.

Corollary 3 The rate of decay of the probability of overflow satisfies

1

____

hm()loIP
a(L))

>b =—rnfIQ(x).

The rate of decay of the probability of bankruptcy satisfies

1

____

hm log IP C I J > b = — rnf Ic(x).
L-*ooV(L) \a(L)J x>b

PROOF Using the large deviation principle and the fact that for all a

IP[Q() > a] <IP[Q() > a], we have that

—inf>bIq(x) liminfi1i7yylogIP [Q ()
> b]

lim supL log IP [Q ()
> b]

< limsup 7(ylogIP [Q (é?) b]

< —inf>bIQ(x)

= —inf>bIQ(x),

where the last line uses the continuity of Iq(•). Hence

1

____

IoV(L)l0 a(L))
>b =—rnfIQ(X).
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4 Stability

Traditionally with time stationary results for queues (see Loynes [19]) a

queue is said to be stable if the mean arrival rate is less than the mean

service rate. In this case there exists a minimum stationary sequence

of random variables that satisfy the queueing recursion (Lindley’s equa

tion) and under a regularity condition every other solution of Lindley’s

equation couples to the stationary one in almost surely finite time.

Assumption two: For each [r, s] c [1, T] we have

rs( )
hm =MrsER

L-*oo a(L)

in probability.

If X(i) is stationary then with a(L) = L, assumption two corresponds

to a weak law of large numbers.

Lemma 4 If Mr,s b for any [r, s] c [1, T] then the probability of

overflow does not decay exponentially on the scale V(L). If M1,

b for any s E [1, T] then the probability of bankruptcy does not decay

exponentially on the scale V(L).

PROOF As Mr,s b for some [r, s] C [1, T] we have that

inf Jr,s(X) = Jr,s(Mr,s) = 0.
x)’b

By corollary one

1 /Z(L)”
i1m()loIP

a(L))
>b =—lflfIQ(X)
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so that

1 IZ(L)\ .1 .

hm logiP Q I I > b = — inf I mm Jrs(x) I = 0.
L-+oo V(L) \\ a(L) J x>b \\{O<r<s<T}

‘ J

Similarly for the rate of decay of the probability of bankruptcy.

Assumption 3: For each [r, s] C [1,T] we have that Jr,s(x) is non-

decreasing to the right of Mr,s. Furthermore we assume there exists

Wr,s Mr,s such that for all x > r,s we know that Jr,s(X) > 0. We

call this the monotone property.

We note that if I(.) is strictly convex then Jr,s() is also strictly convex

and hence satisfies the monotone property with 1r,s = Mr,s.

If one proves the joint LDP in assumption one via the Gartner [12]—Ellis

[10] theorem then I(.) is automatically strictly convex. Other simple

examples of where the monotone property holds but the underlying rate

function is not strictly convex come from models in statistical mechanics

where flat spots in the rate function around the mean correspond to

phase transitions. We will provide an example adapted from Gantert

[11] where the underlying rate function is concave but still satisfies the

monotone property with Th,,9 = Mr,s.

Lemma 5 If ffEr,s < b for all [r, s] C [1, T] then the probability of over

flow decays exponentially on the scale V(L). Ifffi1,8 < bfor alls E [1,T]

then the probability of bankruptcy decays exponentially on the scale V(L).
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PROOF In this case we know that for all {r, s] C [1, T]

inf Jr,s(x) = Jr,s(b) > 0.
x>b

Hence

1

__

./‘ .
lim log IP Q I I > b = — inf I mm Jrs(x) ) > 0.

L—+oc V(L) \ a(L) J x>b \{O<r<s<T}
‘ J

We note that if X(i) is stationary in both t and i then

Mr,s = (s —r+ l)]E[X1(1)]

and hence, taking r = 1,s = T we see M1,T = TE[X1(1)]. Letting T

be large we end up with the usual condition, E[X1 (1)] <0, for a stable

queue (or insurance company) to exist.

5 Convexity and Effective Bandwidths

In the presence of convex structure large deviation theory becomes sub

stantially more powerful. It becomes possible to deal with the Legendre

Fenchel transform of the rate function, the scaled cumulant generating

function (sCGF) A(8)

1(x) = sup{x8
—

0

For a general reference to convex functions see Rockafellar [23] (specifi

cally on convex conjugates section 12). Often large deviation principles

are proved under conditions on the sCGF, the Gartner [12]-Ellis [10]

conditions, which ensure that not only does the rate function exist but
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also that it is strictly convex. There is however another way to use the

convex structure. If we know a large deviation principle holds with a

convex (but not necessarily strictly convex) rate function and that the

sCGF exists in a neighbourhood of the origin then we know that they

are dual to each other (see Theorem 7.1 [17]).

Assumption four: The rate function I(.) is convex and

A () := lim
V(L)

logE [exp (ôçz(L)))]

exists as an extended real number for all O IRT and is finite in an open

ball containing the origin.

By Theorem 7.1 [17] I(.) and A(.) are convex duals.

For each pair [r, s] [1, T] define Ar,s(O) for 0 e JR by

A (8) :=
V(L)

logE [exp
(?0Sr,s(L))].

Lemma 6 For all [r, s] C [1, T] we have that A,(8) exists as an ex

tended real number, is finite in a neigbourhood of the origin and that

Jr,s() and Ar,s() are convex dual to each other. Moreover I(.) and

Ic() are convex functions and

Iq() = mm sup{x8 —

{1<r<s<T}

and

Ic(x)
{l<s<T}

— A1,8(O)}
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PROOF We know that )r,s(6) exists as an extended real number for all El

as Sr,s(L) is a linear function of Z(L). )(.) is finite in a neigbourhood

of the origin as A(.) is. I(.) being convex implies that Jr,s(•) is convex

thus, using Theorem 7.1 of [17], we see that Jr,s (•) and Ar,s (.) are convex

dual to each other. Thus for each [r, s] c [1, T]

Jr,s(x) = sup{xO
0

Hence I(.) is given by

IQ(X)
= {l<r<s<T}

— )r,s(9)}.

Now for the connection to Effective Bandwidths. For a thorough review

of effective bandwidth functions see Kelly [16]. The notion of Effective

Bandwidth has become widely accepted as a measure of the resource

requirements of traffic in a queueing network. Only linear scalings are

dealt with in this context.

Consider a queue with fixed buffer-space per source and fixed service-

rate per source being driven by independent sources. The stochastic be

haviour of the queue length arises from randomness within the sources.

The objective is to find a service rate per source per unit time which

ensures that the probability of overflow is below some prescribed thresh

old.

For the rest of this section V(L) = L, a(L) = L and X(i) Y(i) — c,

where the Y(.) are almost surely non-negative, and c> 0 is the capacity

of the resource per source per unit time. For each [r, s] C [1, T] define

cY (r ._
9

t=r
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Lemma 7 If {Y(i)} is stationary in t, and if for each i j Y(i) and

Y(j) are mutually independent then

A (8) = logE [exp (8Ss_r+i(1))] — (s — r + 1)8c.

PROOF

A (8) = limj÷ log E[exp (8Sr,s(L))]

= limL_÷ logE [exp (8S(L))] — (s — r + 1)Oc

= limL4
1ogE

[exp (eS_+1(l))]L
— (s —r+1)8c

= logE [exp (8Ss_r+i(1))] — (s — r + 1)8c.

The function

c(8,s) := —1ogE[exp(8S8(1))]

is the effective bandwidth of a source (see Kelly [16]). Then, in this

setting

Ar,s(0) = (s — r)8(8, s — r) — (s — r + 1)Oc.

Therefore in this scenario we have that the probability of overflow and

the probability of bankruptcy both satisfy

IQ(b) = I(b) = mm sup {Ob — s8(8, s — r) + (s — r + 1)0c}.
O<s<T

For an article on measuring effective bandwidths and its uses see Györfl

et al. [15] and references therein.
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6 Joint Large Deviation Principles

The main underlying assumption (assumption one) has been the exis

tence of a joint large deviation principle for the underlying sources, that

is, a large deviation principle for their vectors. For a general reference

to large deviation techniques see Dembo and Zeitouni [6]. Here we will

try to illustrate the conditions under which this holds. Essentially we

expect that it will hold when for each t e [1, T] the partial sums of X(.)

satisfy large deviation principles.

It is difficult to pin down a simple set of general mixing conditions for

which the assumption is true. Ellis [10] proved a large deviation principle

for random vectors under what would ultimately be called the Gartner-

Ellis conditions. These conditions essentially amount to assuming the

sCGF exists, is finite in a neighbourhood of the origin and has steepness

properties. There are plently of examples where large deviation prin

ciples hold but these conditions are not true; see section 2.3 of Dembo

and Zeitouni [6] for ones motivated from applied probability. In statisti

cal mechanics any Ising model which allows a phase transition fails the

steepness property. In heavy tailed distributions of risk theory (see for

example T. Mikosch and A. V. Nagaev [21]) the sCGF’s are not finite

in the neighbourhood of the origin.

There are other general mixing conditions under which large deviation

principles can be deduced. See Bryc and Dembo [4] for conditions mo

tivated by mixing conditions under which central limit theorems are

proved and Lewis et al. [18] for a condition motivated by Gibbs mea
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sures of statistical mechanics.

It is certainly trivially true that if for each t e [1, T] the partial sums of

X(•) satisfy large deviation principles on the scales a(.) and V(.) with

rate functions It(•); and if Xr(•) and X8(.) are independent for all r S

then the partial sums of the X(.) satisfy a large deviation principle on

the scales a(.) and V(.) with rate function I(s) = Ii(x1) + + IT(XT).

7 Examples

7.1 Example 1

This example presents a simple set of independent sources consisting of

i.i.d. random variables which satisfy a large deviation principle on a

non-linear scale.

We consider fixed capacity (or premium) c> 0 per source per unit time

and model the arrivals (or claims) process.

The behaviour is described by a heavy tailed i.i.d. sequence adapted

from Gantert [11]. Gantert has extended these results to include de

pendent random variables satisfying a mixing condition along the lines

of of that found in Bryc and Dembo [4]. Heavy tailed distributions are

often studied in risk theory (see Mikosch and Nagaev [21] and refer

ences therein) and more recently in queueing theory (see Asmussen and
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Collamore [1]). For these models it is possible to get much more infor

mation than is available on a logarithmic scale. Interesting features are

still displayed even after taking logs.

For each t e [1, T], we define the sequence {X(L)} to be an indepen

dently and identically distributed sequence of random variables each

with distribution equal to that of Y1 (1) — c where

IP[Y1(1) x] :=d(x)exp(_E(x)xZ),

z (0, 1) and d(.) and E(.) are slowly varying, that is for all ‘i7 E (0, oc)

dQqx) . E(ix)
lim = tim = 1

x-*oo d(x) x—+oo E(x)

(see Bingham et al. [2]). Define := E[(1)] — c. This example

belongs to the class of semi-exponential distributions where all moments

are finite but the cumulant generating function A(8) is infinite for all

0>0.

The sCGF for X(•) is not finite in a neighbourhood of the origin so the

Gartner-Ellis conditions are not satisfied. It is possible to show using a

sub-additivity argument that a large deviation principle is satisfied on

the internal scale a(L) = L and external scale V(L) = L. The rate

function however is trivial; it is zero above it’s mean and infinity below

it. The scales on which the rate function is non-trivial are a(L) = L and

V(L) = E(L)Lz. On these scales

I oc
J,(x) =

I (x_Mt,t)z xMt,t.

Note as z e (0, 1) that J,(•) is concave hence it is not surprising it

fails the Gartner-Ellis conditions. We note also that in this case

18



3.5

2.5

1.5

0.5

Heavy tailed rate tuvction

Figure 1: Jt,t(y) vs. y for a heavy tailed r.v.’s on the scale V(L) =

as defined in section four can be set equal to For example if

E(L)=d(L)=1,c=3andz=1/2,thenMt,t=—1. Seefigurelfora

graph of Jt,t().

By the comments at the end of

E(L)LZ the partial sums of X(.)

rate function, I(.) given by

the last section, on the scale V(L) =

satisfy a large deviation principle with

00

L1(xt —

C [1, T] by lemma one,

Jr,s (Y) = inf{I() : = y}

= inf{r Jt,t(xt) : = y}

but as for each t, J,t() is concave and unbounded we have that

Jt,t(y) = inf : =

Therefore on the scale V(L) = E(L)Lz, by corollary one and lemma

I(s)

= {
For each [r, s]

if Xt <

if Xt > Mt,t

for any t E [1,T]

for all t [1,Tj.
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three the rate of decay of the probability of overflow is given by

1
iflflQ(y) = inf mm Jrs(y) = infJtt(y) =

y>b y>b {1<r<s<T} ‘ y>b ( (/ — ‘v’t,t)z b ]V-[t,t.

The rate of decay of the probability of bankruptcy is also

1oo
inflc(y) = inf mm J15(y) = infJjt(y) =

y>b y>b {1<s<T} y>b ( (b — Mt,t)z b

7.2 Example 2

The purpose of this example is to illustrate how many-scale behaviour

can arise. The scale on which large deviations are observed depends

upon the size of the deviation.

Again we consider constant service rate (or premium), c> 0, per source

per unit time. The stochastic driving force is a sequence of almost surely

non-negative random vectors Y(L) that describe the arrivals (or claims)

process, that is Xt(L) := Y(L) — c. Consider time stationary sources

which are made up of two independent parts. A large part, U(L), which

has no correlation across the sources, and a small part, Wt(L), which is

highly correlated accross the sources. Y(L) := U(L) + W(L).

We model U(L) by i.i.d. bernoulli random variables which take the

values {0,A} with IP[U1(1) = A] = p and IP[U1(1) = 0] = 1 —p. The

mean of Ut(L) is M? := Ap. The partial sums of U(L) satisfy a large

deviation principle on the scale V(L) = L with rate function This
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Bemoulil rate function

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2: J(y) vs. y for a bernoulli r.v.’s on the scale V(L) = L.

rate function is simple to calculate by means of the sCGF.

— f (1
— ) log (p) + log — log A if y E [0, A]

tt(Y) —

( oo otherwise.

For example, with A = 10 and p = 1/2 see figure 2 for a graph of J()

On the scale V(L) = 1/L the rate function for U() is trivial

1 0 ifx=M?

oc otherwise.

We model Wt(L) as follows. Define the discrete heavy tailed distribution

W by

for m E Z+, and define {W(.)} to be a stationary sequence of two

state random variables taking values in {0, B}, whose sojourn ‘times’

spent in the 0 and B states are distributed by an i.i.d. sequence with

distribution W. On the scale V(L) = L the partial sums of W() satisfy

10
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a large deviation principle with a rate function, J(), which is trivial,

1 0 ify[0,B]
J(x)=

co otherwise.

In [24] Russell lays down a prescription to calculate the large deviations

rate function for the partial sums of a two state source which can be

described in terms of the sojourn times it spends in the ‘on’ and ‘off’

states. Under technical conditions, Russell proves that the large devia

tions of a randomly sampled partial sums process is a simple functional

of the large deviations of partial sums process itself, and of the large

deviations of the random sampling. Hence setting random sampling to

occur at the end of sojourn times, one can calculate the rate function

for the two state process by way of a functional of the rate function for

the sojourn times.

In [9] Duffy uses this prescription to calculate the large deviations rate

function, K(.), for the partial sums of {W(.)} on the scale V(L) =

K(.) is defined by

1/2

(i-_v) if OyB/2

1/2
K,(y)

=
(j — i) if B/2 <y < 1

+oo otherwise.

Note that {W(•)} has mean M’- := B/2 as it’s sojourn times spent in

the ‘on’ and ‘off’ states have finite and equal, expectation. For example

if B = 1, see figure 3 for a graph of K(.).

On the scale V(L) = L by the contraction principle,

Jt,t(y) = inf{J(yi) + J(y2) : Yi + Y2 = y + c}
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Heavy tailed sojourn tate tunction

0.8

0.6

0.4

0.2

Figure 3: K(y) vs. y for heavy tailed sojourn times on the scale

but J(x) = 0 for x [0,B], thus

lo
Jt,t(y) =

As J(.) is convex and the sources are time independent

Jr,s(Y) = inf{r J,(y) : Yi = Y}= (s
— r)Jt,t ()
0 ifye[0,(s—r)(B+M’—c)]

(s
— r)J’t (-- + c — B) otherwise.

For each r, s we have Jyr(•) = J’8(.) and we know that is convex,

hence for y > 0

Jr,s(y) = (s — r)Jt,t ( r)
Jt,t(y).

Thus on the scale V(L) = L, by corollary one and lemma three, the rate

of decay of the probability of overflow is given by

= y>b{1<r<s<T}
r,s(Y) = Jl,T(y) = Jl,T(b).

J(y+c—B)

ifye [o,B+M1—c]

otherwise.

={
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Figure 4: inf>bIQ(x) vs. bon the scale L.

The rate of decay of the probability of bankruptcy is also

inflc(y)
= Y>b{l<S<T}

= ir J1,T(y) = J1,T(b)

For example if A = 10, p = 1/2, B = 1, c = 5 and T = 11, see figure 4

for a graph of inf>bIQ(x) vs. b on the scale V(L) = L. Note that the

rate function is zero for b below (s—r)(B+M—c) = 2. On this scale

exhaustion of the resource is a concentration set if the resource space

scale is below 2

By the contraction principle on the scale V(L) =

Jt,t(y) =inf{K(yi)+K(y2): y +y2 =y+c},

but K1’ is infinite except at where it is zero, therefore

Jt,t(y) = K(y + c —

Note that Jt,t(y) is infinite for y > B + M’ — c as K(x) is infinite for

x>B.

10 20 30 40 50
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By the comments at the end of the last section

Jr,s(y) = inf {z J,(y) : =

However as K is concave

Jr,s(y)
= [B+_Cj Jt,(B + M — c)

+t,t (v — [B+J_Cj
(B + M —

and as J,t(B + M1’ — c) = K(B) = 1, we have that

Jr,s(y)=

[B+_Cj [B+_Cj
(B+M_c)).

Jr,s() Ji,T() as for all y (s — r)(B + — c), Jr,s(y) = Ji,T(y)

and Jr,s (y) is infinity elsewhere.

If y > (s — r)(B + M? — c) then it is not possible for the sources to

cause a large deviation on this scale and hence Jr,s = oc. As K(.) is

concave we have the following structure, the minimum amount of time

is used to cause the deviation. If it is possible for one time instance to

cause all of the deviation then due to the concavity this has a lower rate

than sharing the deviation over time. This is in stark contrast to the

convex case where the deviation is shared equally over time.

Thus on the scale V(L) = 1JL, by corollary one and lemma three, the

rate of decay of the probability of overflow is given by

IQ(y) = y>b {1<r<s<T}
r,s(Y) = inf Jl,T(y) = Jl,T(b)

The rate of decay of the probability of bankruptcy is also

inflc(y) = inf mm Ji,(y) = infJlT(y) = J1T(b).
y>b y>b{1<s<T} y>b
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10

0 2 2.5

Figure 5: inf>b IQ(X) vs. b on the scale /L.

For example if A = 10, p = 1/2, B = 1, c = 5 and T = 11, see figure

5 for a graph of inf>b IQ(X) vs. b on the scale V(L) = Note that

the rate function is infinity for b above (T — 1)(B + M? — c) = 2. On

this scale exhaustion of the resource will not happen (in probability) if

the resource space scale is above 2.

Hence if A > B we observe many-scale dehaviour. The scale on which

large deviations are observed depends upon the size of the deviation in

question.

7.3 Example 3

The purpose of this example is to highlight the effect of non-stationarity.

Many-scale behavior also appears. The rate of decay of probability of

overflow and rate of decay of probability of bankruptcy differ on the

slower scale.

0.5 1 1.5
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Two state bernoulli rate function
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Figure 6: J,(y) vs. y.

We consider fixed service rate (or premium), c per source per unit time,

and model the arrivals (or claims) process {Y(.)}, that is X(L) :=

Yt(L) — c. At all times bar one the sources are uncorrelated. At one

instant they are highly correlated.

Y(L) will take one of two values, {O, A}, for all t and all L. Fix t e [1, T].

At all times r t we model Yr(L) by bernoulli random variables taking

the values {O,A}, with IP[Yr(L) = A] = p and IP[Yr(L) = 0] = i_p.

Mr,r = Ap — c. The partial sums of Xr(L) satisfy a large deviation

principle on with non-trivial rate function Jr,r(•) on the scale V(L) = L,

where Jr,r(y) = J(y+c) andJ1(y) is defined in the previous example.

With c = 3/4 and A = 1, see figure 6 for a graph of Jr,r(y) vs. y. On

the scale V(L) = /L the rate function is trivial, it is zero at Mr,r and

infinity elsewhere.

At time t we model the source by the heavy tailed sojourn source de

scribed in the previous example, setting B := A. On the scale V(L) = L

-0.6 -0.4 -0.2 0 0.2
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Heavy tailed sojourn rate function

0.8

0.8

0.4

0.2

Figure 7: Jt,t(y) vs. y.

the rate function for X(.) is trivial, it is zero in [—c, A — c] and infinity

elsewhere. On the scale V(L) = /L the rate function is non-trivial,

Jt,t(y) = K(y + c), where K(y) is defined in the previous example.

With c = 3/4 and B := A = 1, see figure 7 for a graph of J,t(y) vs. y.

If t [r, s] then on the scale V(L) = L,

nlr,s(y) = iflf{ —r J,(y) : >=r Yi = Y}

= (s
— r)Jr,r ()

as Jr,r() is convex and the sources are time independent. If t E [r, s]

then on the scale V(L) =

1 0 ifye[0,A—c]

Jrs(Y) =

( (s
— r)Jr,r

(Y_A+c) otherwise,

as at t a deviation of A — c has rate zero. Note that Jr,s(y) is infinite

if y > (s — r + l)(A — c) as it is not possible for the sources to create a

deviation that large. Thus, as Jr,r (.) is convex,

Jl,T Jr,s(y)

-0.6 -0.4 -0.2 0 0.2
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for all [r, s] [1, T]. Thus on the scale V(L) = L, by corollary one and

lemma three, the rate of decay of the probability of overflow is given by

inflQ(y) = inf mill Jr,(y) = infJl,T(y) = Jl,T(b).
y>b y>b{1<r<s<T} y>b

The rate of decay of the probability of bankruptcy is also

inflc(y) = inf mm Ji,8(y) = inf Ji,T(y) = Jl,T(b).
y>b y>b{1<s<T} y>b

On the scale V(L) = /L if t 0 [r, sj,

1 0 ify(ST)Mr,r

Jr,s(Y) =

oc otherwise.

If t E [r, s] then,

I (y — (s —r — 1)Mr,r) ify> (s —T
— 1)Mr,r

Jr,s(y) =

oc otherwise.

If on average there is more arrivals than service for r 5Z t then Mr,r =

Ap — c < 0; but Jt,t(x) = oo for x > A — c, hence if (s — r — 1) >

(A — c)/(Ap — c) then J,8(y) = oo.

Note that J,() <Jr,s() for all [r, sj and J,(•) J1,8(•) for all s.

Thus on the scale V(L) = by corollary one and lemma three, the

rate of decay of the probability of overflow is given by

inflQ(y) = inf mill Jr,s(Y) = infJt,t(y) = Jt,(b).
y>b y>b{1<r<s<T} y>b

Note that Jt,t(x) is infinite if x > A—c thus this scale is only appropriate

for deviations in the range [0, A — c]. The rate of decay of the probability
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of bankruptcy is given by

inflc(y) = inf mm Ji,3(y) = infJi,t(y) = Ji,(b).
y>b y>b{1<s<T} y>b

However, if t is greater than (A—c)/(Ap—c) then the heavytailed sojourn

effect is not enough to cause a large deviation on this scale as it can not

compensate for the downward pull of the eariler bernoulli effects. Hence

no deviation would be seen on the slower scale.
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