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Large Deviations in Some Queueing Systems

. D. Vvedenskaya E. A. Pechersky* Yu. M. Suhov

Logarithmic asymptotics of probabilities of large delays are derived

for the “last come—first served” system and system with priorities.

Trajectories that determine the mean dynamics of arrival flow under

the condition of large delay are described.

1 Introduction

‘We investigate probabilities of rear events in several queueing systems. More

precisely, we are interested in the probability of large delay. One-server

systems, which obey various service rules, are considered. This paper is

mainly devoted to two rules: (1) the “last come—first served” rule and (2)
rule with priorities. It is assumed that all systems under consideration are
in a stationary regime. Our results have the following form. For a random
variable w equal to the delay in a system, the limit

urn in Pr(w > ax) (1)
x—

is found under the conditions of a Poisson arrival flow and the existence of
exponential moments of message lengths.

Such problems belong to the theory of large deviations (see [1. 2]). Our
method is based on the large deviation principle from [3]. In this framework, a
Poisson process which describes an arrival flow is constructed. In terms of this

process, the event under consideration, namely, a large delay, is represented.
After that, the infimum of the rate function on this event is found, whose

*The first two authors supported in part by the Russian Foundation for Basic Research,
project nos. 96-01-10020 and 99-01-00003.
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value is equal to the value of the limit (1). Such approach permits us also

to identify the trajectory on which the infimum is achieved. We call this

trajectory the optimal one (see Theorems 3 and 4). In accordance with the

large deviation principle, one can conclude that under the condition of large

delay a trajectory of the Poisson process is close to the optimal one with

large probability.

Apparently, results that give the limit can be derived from the known

exact solutions for the systems under consideration (see [4]). But such an

approach does not seem to be simpler (see, for example, the asymptotic anal-.

ysis in [5], from which one can derive the asymptotics of the delay probability

in a “first come—first served” system). Also, as was already mentioned, our

approach permits us to identify the conditional mean dynamics of arrival

flow under the condition of large delay, which is a more difficult problem in

the case where exact solutions are used.

2 Main Results

As usual, the arrival flow is described by a marked Poisson point flow

— i
— —

Below, assumptions imposed on E are presented:

Al. The sequence of random variables () with values in R is formed

by identically distributed independent random variables. There exists > 0

such that

(6?)=Eexp{O1}<cxD for 9<0÷. (3)

A2 The sequences (ti) and () are independent.

A3. The sequence of random variables (ti) forms a stationary Poisson

point process on R, where t < t1 and t < 0 < t0. The rate of this process

is denoted by ).

We assume that queueing systems under considerations have stationary

regimes. The following condition guarantees this property.

A4. Ao’(0) < 1.

Finally, we assume that

A5. lim (9) = oc.
oto±

The main functional to be investigated here is the message delay in a

system with a queue. It is convenient to define this functional not in terms

C)



of the process E but in terms of the generalized Poisson process

4 ift>O,

u(t) =
z:O<t<t

(4)
I— ift<O.
1%

It is assumed that the sum of a zero number of summands is equal to 0.
Observe that the process (t) is defined on the whole axis R. Below, the
word ‘generalized’ is omitted, and all processes considered are called Poisson

processes.

A delay of the so-called virtual message is investigated. A virtual message

has no length and is associated with some nonrandom time instant (most

often, this is the instant 0). It is assumed that at this instant a virtual
message arrives and waits to be served obeying the service rule. Being of
zero length, a virtual message does not affect delays of real messages nor

occupy any buffer space. For example, in a system that obeys the “first

come—first served” (FCFS) rule, the delay of a virtual message, which arrives

at instant t, is

u(t) = sup {u(t) u() - (t
- )}. (5)

By condition A4, ii(t) is finite with probability one.

To define a virtual-delay process in a system with the “last come—first
served” (LCFS) rule, the process (.) is used. Its value at instant t equals

the time until the service end of a message processed at t. The precise
definition of the process ó(.) and some of its properties are given in Section

3. The virtual-message delay in an LCFS system at instant t is

w(t) = inf { 0: (t) + u(t + ) - u(t) - <o}. (6)

This delay is the sum of the time 5(t) and service time of messages that arrive

after t and are processed without interruption.

In the following theorem, we present a logarithmic asymptotics of the

probability that the delay w = w(0) of a virtual message that arrive at
instant 0 is large.

Theorem 1 For any a> 0,

lim lnPr(w > ax) = —a
(1

—

— ii), (7)
I
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where is the solution of the equation

= 1. (8)

Observe that, by A5, equation (8) always possesses a solution.

It is well known (see. for example, [3, Theorem 3]) that

lim —lnPr(zí(O) > ax) = _aO*. (9)
x—+oo —

where 0* is the positive root of the equation

(10)

which exists by A4 and A5. The expression in (9) presents the asymptotics

of the large-delay probability in an FCFS system. It is easy to understand

that 0 > & and, moreover,

0* >6’ — A[(61) —i]. (11)

Therefore, the large-delay probability in an FCFS system is less than in an

LCFS system. The mean delay values in these systems are equal but the

delay variance in an LCFS system is larger than in an FCFS system (see

[6, 7]). Relation (11) indicates that from the large-deviation point of view,

an LCFS system is also worse than an FCFS one.

The following result gives a detailed description of the large-delay proba

bility for a virtual message of the lowest priority in a system with priorities.

It suffices to consider a system with two types of messages, where one type

has a priority. One may assume that there are two queues with messages

of only one type in each queue. If. by the end of processing a message. the

queue of messages of the higher priority is nonempt, then the next message

of this queue starts its service obeying the FCFS rule. In the opposite case.

a message from the lower priority queue starts its service obeying the FCFS

rule (of course, if this queue is nonempty). Thus, two independent flows

= (,) and E2 = (t,) with different priorities arrive at the system.

The cumulative arrival flow = (ti, j) = E1 V E2 is the “superposition” of

two flows. The easiest way to define this notion is to pass to the correspond

ing Poisson processes u,(t) and u2(t) that are defined by the flows E and 2

according to (4). Thus, the process crQt) that corresponds to the cumulative

flow is u(t) = u,(t) + u2(t); i.e.. it is also Poisson flow. Let A, and A2 be

4



the flow rates of E and E2 respectively, and let O > 0. j = 1,2, be such that

= Ee8 <cc if < 9. Then the flow rate of is equal to A + A2,
and the Laplace transform of a jump l of a(t) is

(O)
= A1

(8) +
A2

p2(8) (12)
A1+A2

if 0 < 0- = min{8, 9i}. We assume that conditions A1—A5 are fulfilled for
each of the flows E, j = 1, 2. Therefore, they are fulfilled for the cumulative
flow E. Assume that messages from E2 have the lower priority. Then the
delay of virtual message from this flow that enters the system at time instant
t is

zi2(t) =inf{>0: ií(t)+ai(t+) —i(t---0)—<0}; (13)

here, v(t) is defined by formula (5), where u(t) is now the cumulative flow.
One can see from this formula that the delay of a virtual message with the
lower priority that arrives at instant t is a sum of two quantities: the workload
accumulated at time t and the workload that is brought by the first-priority
messages that enter the system after t until the service end. As in Theorem
1, the delay u2 = v2(0) is investigated at time instant 0.

Theorem 2 For any a> 0,

urn lnPr(v2 > ax) = _a(O_Ai [(0) — i]), (14)
s— x

where = min{0*, 0i}, 0j is the solution of the equation

= 1. (15)

and O’ is the solution of equation (10) for A = A1 ± A2 and defined by (12).

By A4—A5, equations (15) and (10) possess solutions. Note that, as
A2 — 0 and A1 — A, the right-hand side of (14) tends to the right-hand side
of(9).

Process (.)
To construct the process 5(.), we divide the time axis into two regions: the
region where the server is idle; and its complement the busy
region. In an FCFS system,

= {t: v(t) = 0}.
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It is well known that busy and idle periods are the same for all systems with

conservative service.’ Therefore, the set R° is also the set of idle periods

of an LCFS system. Since trajectories of the process u(t) are monotone step

functions, it is easily seen that R° is the union of half-open intervals of the

[ii, v) type. Note that by A4 all intervals in as well as in are

finite with probability one. Intervals that form the set R1 are called busy

intervals. Thus,

= U
j=-oG

where 4 is a busy interval. The set of message arrival times (ti) C

Therefore, the whole sequence (ti) is split into finite subsets F3 =

{t, . . , t?1c+1}, which include those and only those points of (ti)

that belong to some interval 4. We rearrange the points of this set to

put them into an order in which corresponding messages are processed by

the LCFS system. Let the rearranged sequence be (ski, 3k+1

It is clear that Sk = tk is the arrival time of the first message of the

group that forms the busy period 4. The server processes this message

for some time during the interval B° = (ski, Sk + k3j• During this

interval, new messages arrive at the system. Let them arrive at instants

F39 = {tk+1,. . . , tk+r0}. If F,P is empty, then tk+i > tk + and tk +

is the right end of the busy interval 4; thus. F consists of one point tk.

In the case F39 0, the next message to be served is the one that arrived

at instant tkjro, that is, Sk+, = tk+ro. Let F’ be the set of arrival times

{ tkj tk+ro, tkj+ro+i tkj+ro+ri} of all messages that arrived at the sys

tem during the time interval B = (sk 3k + ± kj+ro]. Introduce a set

14 = \ {tT} of arrival times of messages that arrived during the inter

val 14 and are not processed during this interval. Note that r1 can be equal

to 0. After the service end of a message that arrived at instant tk+ro, the

next message to be served is a message with the last arrival time among all

arrival times from FJ. Therefore, we have

f tk+ro+r1 if T1 0,
=

tk±ro_i if r1 = 0.

Continuing this construction, we get a rearranged sequence (ski sk÷1_i).

Let ir 1.+ik. be the lengths of messages that arrived at instants

1A service is conservative if the server is idle in the case where there is no work only.
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• . 3k1—1 respectively. By definition.

10 iftR°,

6(t)=) r r—1

An important relation is given by the following lemma.

Lemma 1 With probability one, Vt e

6(t) < iJ(t). (16)

A proof is required for the case where t e R’ only. First of all, note that
for any t E [t7, ti), we have v(t) = u(t) o(t —0) — (t — t). Let a message

of length be processed at instant t e [t7, t), and let its processing start at

< t. Recall that 6(t) = 77 — (t — tfl). Before the instant t, the server “non

stop” processed messages that had arrived before t. This set of messages

does not include the message of length i whose service started at instant t.

Therefore,

(17)

Using (17) and the monotonicity of u(t), one gets

u(t) = [u(t) - u() + - (t
-

+ [u()
-

77- (t-) =6(t).

3 Reduction to the Large Deviation Principle

Proofs of the theorems formulated above are based on the large deviation
principle. We describe this reduction for a system with priorities, which
appears in Theorem 2. The proof of Theorem 1 uses the same ideas and
some estimates presented in Section 4.

To arrival processes E, E2, and at a system with priorities. we assign

the sequences of Poisson processes (t)
= u(nt)

j = 1,2, and u(t) =

= (nt)
Introduce the following functionals on these processes:

= sup {(t) — (t
— ) —

v2(t) = inf {> 0 v(t) + a(t + E) — (t) — <o}.



Lemma 2 The following identity of events takes place:

(v2(O) an) = (vfl,2(O) > a).

The proof follows from the equalities z’(t) = —(nt) and ii.2(t) =

which in their turn follow from the definitions.

For Il > 12, the following inclusion takes place:

(v2(t) ax) C (v2(t) ax2).

Therefore, it suffices to find the limit of the left-hand side of (14) for a natural

I = fl.

Let us introduce the space X of the nondecreasing-on-il functions with

numerical values which satisfy the following conditions: If x e X, then

Bi. limx(u) =
u4t

B2. limx(t) <0 <x(0).
tto

Use a simple generalization of the topology introduced in [3, Section 2]

(see also [8]). In [3], the space of trajectories defined on the semiaxis [0, cc) is

considered. A generalization to the case considered here, i.e., to trajectories

defined on the whole axis R, is obvious. To give a short description of this

topology, one can say that, in this topology, convergence of trajectories from

X restricted onto a compact subset in ]R is equivalent to weak convergence

of these restrictions. But this topology is stronger than that generated by

the weak convergence of restrictions on compacts.

A sequence of processes (o(t). o(t)) generates a sequence of probability

distributions P,. on a Cartesian product X2. Here P7 as n —* oc.

where Y(11,12) is a Dirac measure. denotes the weak convergence of measures

on X2 with respect to the topology mentioned above, and 11 and 12 are linear

functions:

i1(t) =1\1(0)t. i2(t) =2o(0)t.

In terms of the space X2. the event (zJ,2 a) is a set of trajectories

Ua = {(Xi,12) : 172(1112) a}

where

r2(xiI2) =inf{: N(x1.x9)±x1()—x(0) —t< 0}andN(xi,12)
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= sup {xi(O) + x2(O) — x1(t) x2(t) + t}.
t<o

Thus, Pr(zi2 a) = Pm(Ua). Such reduction permits us to use the large

deviation principle from [3]. which implies the following inequalities:

inf I(xi,x2) < urn lnPn(Ua) <— inf I(xi,x2). (18)
(X1,X2)EUa

n-+oo ‘1 (X1,X2)EUa

In this expression, Ua and 1-’1a are the interior and closure of a set Ua respec

tively. The rate functional I has the form

I(xj,x2)=fA(thi(t),±2(t))dx (19)

where ± is the derivative of x with respect to t and

A(si, 82) = sup {se + 8282 — ‘[‘(8’) — 1] — 2[2(82) —

01,02

where 51, s e R’. These formulas are valid for a pair of absolutely continuous

trajectories (xi, x2). We do not present here the general definition of a rate
function because it is not needed in this paper. One can find in [3] (see also

[8] and [9]) a detailed description of the rate functional defined on trajectories

along a semiaxis.

Any trajectory (x1,x2) e X2 specifies the macro-scale behavior of our

process. This means that the probability that a process (up, o) is located

in a small neighborhood of (xi,x2) is approximately equal to e_r1,T2).

The following theorem characterizes the behavior of the mean arrival flow

under the condition that a large deviation of a delay value takes place. The

theorem can be considered as an addition to Theorem 2.

Recall that t9 and & are solutions of equations (10) and (15) respectively.

Theorem 3 The infimum on the left- and right-hand sides of (18) is

achieved on the trajectory (x(t), x(t)) whose derivatives are defined in the

following way:

9



If 0* <0, then

if t
(_a1*a)

)p (0) otherwise.

= 2(0*) ifte

I 22(O) otherwise.

If 0* 0, then

= 11 if t e (0,a),

1)i(0) otherwise, (21)

=

As one can see from this theorem, in the case 0* < 0, the optimal

trajectory that describes the mean dynamics looks as follows. Entering the

system at instant 0. a virtual message meets a queue. This queue needs

macro-scaled time a(1 — )içd(8*)) to be processed. Thus, during this time,

the virtual message stays in the system and waits while the messages of

both types that have arrived before 0 are processed. During the waiting

time. new messages of the first type, which have priority, enter the system.

Therefore, the virtual message also waits for the time needed for processing

first-type messages that arrive after instant 0 during the waiting time of

the virtual message. This waiting time is equal to aip(9*). Note that a

trajectory x (t), which describes the mean flow of first-type messages under

the condition of large delay have no break at 0. That is. the arrival rate

of these messages is the same during both some interval before the virtual

message arrival and some interval after this instant. The trajectory that

describes the flow of second-type messages has a break at zero because after

the virtual message arrival this flow does not affect the delay value.

In the case 0* > 0, the mean dynamics of the arrival flow does not cause

a long queue at the arrival time 0. The macro-scale queue is equal to zero.

But new messages of the first type can arrive before the service end of a

message that was processed at the virtual message arrival time 0. These

messages are processed before the virtual message. Such flow dynamics is

characterized by the absence of a large queue (the macro-scale queue is zero).

10



But the waiting time of a virtual message is large. We call such dynamics

sliding dynamics.

Theorems 2 and 3 Our goal is to find the minimums in (18). To describe

the sets Ua and Ua, some functionals on are introduced. Let

T(xi,x2) = inf {t 0: N(xi,x2)+x1(t) —x(0) <t},

= inf {t 0: N(x1,x2)+ x1(t) — x(0) <t}.

Note that N is a continuous functional in the topology of X2; hence,

{(.x1,x) : N(x1,x2) > h} is an open set, and {(X1,12) : N(xi,x2) h}

is closed. The functionals T and T are discontinuous but T is semicontinu

ous from above and T is semicontinuous from below, i.e.,

1iminfT(x,4) <T(xi,x2), 1imsupP(x,4)
ji(1)

(22)
n—oo n-+oo

if (xv, 4) —÷ (xi, 12) as n —* oc (details can be found in [10], where func

tionals of such kind are considered). Let

= {(1I,12) : T(xi,x2) > h}, h = {(X1,12) : (11,X2) >

where h > 0. By (22), the set l’Vh = {(x, 12) : T(xi, ‘2) > h} is closed.

Since Ua = Wa, we have that Ua is also a closed set.

Next, consider the set Ua. Note first that 3’Vh is open. Since T < T, we

have )/Vh VV for ii > 0 and therefore ‘1/Va C Ua. Since ‘1/Va is an open set,

which is contained in 14, we have Wa cua. ow let us calculate

1= inf{I(xi, 12): (i’, 12) e Wa} (23)

and

I = inf{I(x1,i2): (‘1’2) e (24)

and show that 1= I. To calculate (23), the set Wa is represented as a

continual union

a U (Vhfl7),

g>h>O
g>a

where Vh = {(‘1,’2) : N(x1,x2)= h} and = {(‘1,’2) : (‘1,X2) = g}.

Hence,

1= inf J(h,g), J(h,g)=inf{I(xi,x2): (x1,x2)eVhfl}. (25)
g>h>O

g>a

11



Let us show that (25) is achieved on the trajectory (x,x) introduced in

(20) and (21).

The event Vh means that, by instant 0, a queue accumulated in the system

needs time h to be processed. This queue consists of messages of both types.

The event 14 is determined by the behavior of the trajectory (x1, ‘2) 14
before 0. Therefore. the rate functional depends on the derivatives (±, ±2)

before 0 (see (19)). The event 7 is determined by the trajectory (“‘2) 7

after 0. Therefore, the rate functional depends on the derivatives (±,, ±2) in

the region R. In fact. the rate functional does not depend on ±2 in the

positive region. Since the rate functional is an integral over R, by finding its

minimum for fixed h and g we can minimize the parts of this integral over

(—oc, 0) and (0, oc) separately. Let (x, x) be the trajectory that minimizes

(19) for fixed /i and g. Then

!(*) if t E —

h

±(t) +±(t) =

(*) -1 (26)

‘(0) if t<
h

On the interval (_oc
— ), this trajectory does not contribute to

the rate functional.

On the positive axis,

(g — /i

•0 J t if t e (0.g),
= g (2)

A,(0) ift>g

(see [8, Lemma 5.5]). On the interval (0, g), the second component x(t)

does not contribute to the value of J(hg), therefore ±(t) = ‘\2P2(O) at this

interval.

The value of I(x, x) is a sum of tree summands, I +12+13, correspond

ing to three regions: [ (A, +A2)(8*)
—

o] {o g]. and the complement

to these intervals. The third summand 13 is equal to zero by (26). The

first summand is I, = h6* (see [3, Section 7]). The second summand is

‘2 = (g — h)O°
—

A,g[,(&°) — 1], where ° is the unique solution of the

12



h
equation 1 — — = \(8). Thus, we get

J(h,g) = h* + (g — h)O° — —1]. (28)

Note that °
< f. In the opposite case, for h> 0 the trajectory x1(t) would

not intersect the line t — Ii. on [0, cc).

Let us calculate I, which is equal to the minimum of J(h, g) in h and g
for g > h > 0 and g > a. First, consider the case t9 < 9f, By the strong

convexity of — 1j and since 0° < 0, we get 1 > Aicp(&*). The partial

derivative of J(h, g) with respect to h is

(29)

Setting 0 = 0°, we obtain the optimal value

= g(1
((9*))

(30)

Therefore,

J(h°,g)
=

— i[i(o*)
— i]).

It follows from the definition of t9 that the value in the parentheses is positive.

Thus, the infimum J(h°, g) in g is achieved at the minimal possible value

g = a.

In the case t9’’ > 9, the derivative (29) is positive for all 0° 0, which

gives h° = 0. Hence, 0° = and

J(0,g) =g(0 -[i(0)
-

i]). (31)

Arguments similar to those presented above give g = a. Observe that the

trajectory where (31) is achieved does not belong to Wa.

Finally, we get that

1= a(O
-
1[1(ê)

-

1]),

where 0 = min{8*, 0}

Using similar arguments. one can find that 1 =.

Now it is easily seen that the trajectory (xi, x) is optimal. Indeed, in

the case > O the optimal value is g° = a and, therefore, the optimal

13



queue is h° = a(1 — A11(O*)) (see (30)). Among the trajectories that, at

point 0, have a queue causing the delay h°. the optimal one is the trajec

tory for which the sum of the derivatives of the components on the interval

(_a11), o) is ±(t) + ±(t) = (9*). Hence, we get (20) on this

interval. Substituting g = a into (27), we get (20) on the interval (0, a). In

the case of sliding dynamics and for 6i < 8, the queue is such that h° = 0.

Therefore, the total delay is determined by the flow of first-type messages

only. It is clear that in this case we get the formula (21).

4 Proof of Theorem 1

The proof is based on Theorems 1 and 2 already proved and on two estimates.

The first estimate is obtained in Lemma 1. The second one is presented in

Lemma 3 (see below). Let

C(t) = inf { 0: v(t) ± a(t + - a(t) - < o}.

By inequality (16), (t) w(t) with probability one. Hence,

Pr (w(0) > an) <Pr ((0) > an). (32)

For any c> 0, let

A(t) =inf{0: A±a(t+) —a(t)_0}.

Lemma 3 Let t E R and let c> 0 be such that p = Pr((t) > c) > 0. Then.

for any x > 0.

1Pr (w(t) x) > Pr ((t) x).
Pc

Recall that a(t) is a process with independent increments. Therefore.

the random variable u(t + f) — a(t) does not depend on the a-algebra F

induced by all random variables a(s) with s <t. The random variable a(t)

is measurable with respect to F. Therefore, 5(t) and a(t + ) — a(t) are

independent, and hence, random variables ó(t) and CA(t) are independent.

The following relations between random variables are obvious:

Ac = (A(t) x, (t) > c)

c (inf {> 0: (t) + a(t + ) — a(t) — <o} > . (t) > c) c (w(t) > x).

14



By the independence indicated above,

Pr(A) <Pr (((t) > x)) Pr (ö(t) c)) <Pr (w(t) x)).

Thus, to find the limit of ln Pr(w an), it suffices to show that the

limits
1
-lnPr((O) an) (33)

and

1nPr(C(O) > an) (34)

are equal, where c> 0 is such that Pr((0) > c) > 0.
Let us return for a while to a system with priorities. If the flow with

the lower priority is small, then f < 8. For example, this can be achieved
taking A2 small. One can see that by Theorems 2 and 3 the limit of the
expression

—lnPr(zi2 an) (35)

does not depend on A2 for small values of A2 such that 9f < 8. Therefore,
for A2 = 0, the asymptotics is the same. Thus, we get that, as n —* cc, the
limit of the expression (33) coincides with that of (35) and is equal to

-a(O’ A[(O’) - 1]). (36)

One can find the limit of the sequence (34) by using again the large deviation
principle. In this case, the set of trajectories Sa C X corresponding to the
event under consideration is

5a{x: inf{x(t)—t}0}.
tE[O,aj

Carrying on the analysis similar to that in the proofs of Theorems 2 and 3,
we get that the derivative of the optimal trajectory x(t) is

= fi if t e [0,a],
(37)

A’(0) otherwise.

Therefore, the limit of (34) coincides with the limit of (33) and is equal to
(36).

1.5



In the cause of the proof, we have found the mean dynamics of an LCFS

system under the condition of large delay. This is the sliding dynamics, which

was already found in a system with priorities in the case of weak low-priority

flow rate. This fact is stated by Theorem 4. which is the corollary of Theorem

1.

Theorem 4 Let = {x X : inf {x(t) — t)} > o}. The macro-scaled
O<t<a

set of this trajectories corresponds to the event (w(0) an),

inf 1(x) = inf =

XETa

where the optimal trajectory x* is defined in (37).

5 Final Remarks

An analysis similar to that used in this paper can be done for a preemptive

LCLF system. Obeying such a rule, a newly arrived message interrupts

the processing of the previous message and starts to be processed. The

processing of the interrupted message resumes at the first instant t when all

messages that arrived after the interrupted one, but before t, are already

processed. In such a system. a virtual message has nonzero length because

in the opposite case its delay would always be zero. It is natural to assume

that the length of a virtual message is random, distributed according to the

arrival-flow messages. and independent of the arrival flow. The message delay

r(t) in such a system is the time between the instant of its arrival t and the

instant when it is completely processed. The asmptotics of a large delay is

lim lnPr (r(0) > ax) = —a(01
—

[(0) —

x—*c .r

where gl is a solution of equation (8).

The assumption A5 is mainly technical. Under this assumption. solutions

of equations (8), (15), and (10) always exist. All the analysis presented above

can be carried out without this assumption. The answers will change slightly.

Similar considerations for other models are carried out in [8, 10].
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