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Abstract

Static vortices close together are studied for two different models in 2-dimen

sional Euclidean space. In a simple model for one complex field an expansion

in the parameters describing the relative position of two vortices can be given

in terms of trigonometric and exponential functions. The results are then

compared to those of the Ginzburg-Landau theory of a superconductor in

a magnetic field at the point between type-I and type-IT superconductivity.

For the angular dependence a similar pattern emerges in both models. The

differences for the radial functions are studied up to third order.
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1 Introduction

Ever since ‘t Hooft [1] and Polyakov [2] found a monopole solution in the

SU(2) Yang-Mills-Higgs theory, solitons in field theories have been studied

extensively. Our understanding of monopole solutions has been greatly en

hanced by an existence proof for static solutions by Taubes [3] and the con

struction of monopole solutions started by Ward [4]. This process was not

matched by quite the same progress in our understanding of the Abrikosov

solutions of the Ginzburg-Landau theory, although one might have expected

that the Abelian Higgs theory in 2+1 dimensions is actually simpler than the

SU(2) Yang-Mills-Higgs theory in 3+1 dimensions. Again an existence proof

was given by Taubes [5]. However, only superimposed vortices can be de

scribed explicitly and no explicit construction of separated vortices is known.

In this paper, we want to give the solution for two vortices close together in

terms of an expansion in the parameters which describe the relative location.

In Sections 2 and 3, we study a model for one complex field. Here the

calculations are simpler than in the Ginzburg-Landau theory which is our

second model. The first model has, however, some peculiar (unphysical)

features. Assuming the most symmetric form in terms of angular dependence,

only two smooth vortices can be superimposed, and when ‘pulled apart’, they

develop a singularity at third order. In the Ginzburg-Landau model this does

not happen. In fact, delicate cancellations take place to make the expansion

smooth, at least up to third order. In this model the radial functions are

given as solutions of certain linear ordinary differential equations. This is

discussed in Section 4.

2 Vortex solutions and zero modes in a simple model

Our first model is a model [6][7] for a pair of real fields qY1(), a,b = 1,2, or

equivalently, for a complex field q = q + içb2. The Lagrangian density of the

model reads
= + (1 — J2)22 (2.1)
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where a, b = 1,2 labels the components of the Riggs field and i,j = 1,2 are

the space indices. The square brackets mean antisymmetrization,

=(6a)(b) — (a)(b) (2.2)

We are working in 2-dimensional Euclidean space, i.e., the space indices

can be raised and lowered without any change in the formulas. The indices

which label the components of the Riggs field can also be raised and lowered

without any change. In terms of the complex field the Euler-Lagrange

equation reads

= (1-
- (2.3)

Any solution of the equation

2 det() = +(1
- (2.4)

solves the equation of motion (2.3). Note that Eq. (2.4) is a first order

equation whereas Eq. (2.3) is of second order. So we would expect that

(2.4) is somewhat easier to solve than (2.3). For different types of models,

this reduction of order was first introduced by Bogomolnyi [8]. That is why

we call Eq. (2.4) the Bogomolnyi equation here. Any solution of (2.4) also

attains the lower bound in the following inequality,

2
l6ir

A= I £dx>—QI, (2.5)
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where

=

8 fR2
iE(1 - 2)(8i)(0i*)d2x (2.6)

is the winding number. Finally, all finite-action solutions actually solve the

Bogomolnyi equation, so we do not miss out on any by concentrating on the

first order equation.

We now seek to attain a smooth finite-action solution of Eq. (2.4). For

= f(r)e° (2.7)
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Eq. (2.4) reduces to

nf(r)f (r)
=

-

(2.8)
r 2

Since f —+ 0 as r —+ 0 (otherwise in (2.7) is not defined at the origin), we

have
2

f=tanh—. (2.9)

The solution in (2.7) with f(r) given by (2.9) is defined in the whole of

R2 and is clearly a G°° function in R2 \ {0}. Since

r2
f1—2exp— as r—+oo, (2.10)

2n

has the right asymptotic behaviour for a solution with winding number n.

We still have to ensure that is C°° at the origin. There we use the Taylor

expansion of f,

f =

2k(2k
1)B2k(r)2k_l = — + ... (2.11)

K=1
(2k)! 4n 4n 3 4TL

where Bk is the kti Bernoulli number. We see that for n = 2 and only

for n = 2, is a polynomial in In this model, we have the (somewhat

peculiar) situation that within the most natural ansatz (2.7) smooth finite

action solutions exist only for n = 2, i.e., we only have a solution of the form

(2.7) for 2 vortices.

We have found the solution for two vortices sitting on top of each other,

which we now denote by . To extend our study to two vortices slightly apart

we consider = + ‘y, where is very small, and we solve the Bogomolyni

equation, linearized in y. Equation (2.4) becomes

9 62 9 31

(f cos9cos29+ fsin9sin29)_L +(f sin&sin29+ fcos9cos29)_L
r 3x2 r 3x’

—(f’ sinOcos29 — fcos&sin29)L — (f’ cos9sin29 — fsinOcos2)
r

(1 — 3f2)(’ cos 29 +
72 sin 29) (2.12)
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We find a 2-parameter family of zero modes,

h
r2

7(r)
= [ + 3 + z( — )]h(r) with h(r)

=

(2.13)
cosh --

These zero modes are C°° functions which vanish exponentially at infinity.

By a rotation, one of the parameters could be removed and the vortices could

be positioned on the x-axis, say. Since this does not simplify the calculations

significantly, we will retain both parameters. Retaining the two parameters

would also be necessary for a study of vortex scattering in the slow-motion

approximation. This study is not done in this paper.

3 The quadratic and cubic terms

We now consider + + , and equate the second order terms in the

Bogomolyni equation (2.4). This leads to the equation

cos 29- + 2f sin 20-
— f’ sin 29- ± 2f cos 29-)

= (2
+ 2)f/i2(

— 3) — fk2(3 + ) [(cos 20+ sin 29)2

+2a3(cos229 sin2 20) +32(cos 29 — sin 29)2)

— 3f2)(’ cos 29+ 2 sin 29) (3.1)

with f(r) given in (2.9) and h(r) given in (2.13).

With ó of the form

= cF(r, 0) + 2/3G(r, 0) + /32H(r, 9), (3.2)

we obtain the following equation for F(r, 0),

8F2 . 8F’
cos 20-— + 2f sin

2O——-
—

h:”

20-- + 2f cos

= k2( — 3f) — --(3f +7)(cos29 + sin 29)2

— 3f2)(F’ cos 20+ F2 sin 20). (3.3)
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To solve this equation we seek a solution of the form

F =f1(r) expz2O —zf2(r)exp20. (3.4)

The ansatz (3.4) leads to two decoupled equations for fi and f2. In terms

of the variable =r2/8, they read

+ -1-
cf)f = h2(1

- 9f2), (3.5)

df2 + (3f2
- 1+ )f2 = -(1 ± 3f2). (3.6)

The general solutions to equation (3.5) is

1 3sinh sinh
fi = 2 ( 3 + C) (3.7)

cosh 2 cosh cosh

The function f’ is a C°° function for 0 < < , For — 0, f —* C holds.

This implies that C1 = 0; otherwise F in (3.4) is not defined at the origin.

Therefore, f reads
— 3sinh sinh

38
— 2cosh5 — cosh3

The expansion of fi near the origin is of the form

f =
= a(r)k (3.9)

Hence, the first term in (3.4) is a 000 function of x1 and x2 at the origin. We

also see that fi vanishes exponentially at infinity. So its contribution to

does not change the winding number (2.6) which is a multiple of the action.

A similar calculation yields a one parameter family of solutions to Eq.

(3.6), namely

sinh 3 sinh3 sinh2
f2

= 2cosh3 — 2cosh5+C2h4 (3.10)

In contrast to fi, all the solutions f2 are acceptable. In fact, for all 02, f2 is

of the form
00 00

(3.11)

k=1 k=1
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near the origin, and therefore the second term in (3.4) is in C°°(R2). The

winding number and the action are also not altered because f2 decays expo

nentially at infinity.

The functions G and H in (3.2) can be found in the same way. If we put

all results together, we obtain the second order terms,

= (2
± /32)f1(r) exp’20 +z(c — i/3)2f2(r) exp20, (3.12)

where fi and f2 are given by (3.8) and (3.10), respectively.

To find the cubic terms, we consider = q + y + (5 + , with given in

(2.13) and (5 given by (3.12). We set = 0 and concentrate on

= I(r, 6). (3.13)

For the Bogomolnyi equation to hold, I must satisfy

cos 20- + 2f sin 20-
— f’ sin 20- + 2f cos 26-)

+h’ (2ff cos 20 + 2f2 sin 20) + k’ (2ff sin 20+ 2f2 cos 20)

= —3f2(I’ cos 20+12 sin 20) —f2(cos 20 + sin 20)

—3fh(cos 20+ sin 20) (f — 2f2 cos 26 sin 20) — 3(cos 26 + sin 20)h2

cos 20+ 12 sin 20) + [f1(cos 20 + sin 20) —f2(cos 20+ sin 20)]

h3
+--(cos 20 + sin 20) — j(cos 20 + sin 20)

—(cos 20+sin 20)(f 2f2 cos 20 sin 20) + (I’ cos 20+12 sin 26) (3.14)

To solve equation (3.14) we seek a solution of the form

I’ = g1() +g2()(cos40 — sin 40),

j2
= g1() —g2()(cos40 + sin 40). (3.15)

This implies that g1 and g must satisfy the equations

d 1

______

dh 9 Ii
—+(3f-7)g1=- ‘ (3.16)
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cIg2 1 2 df hf2 3hf2 h3 h3 -

2 4f34f
(3.le)

The general solution to Eq. (3.17) is

— sinh — 5 sinh ( sinh2 — 3 sinh sinh
(3 18)

— 4cosh° 4cosh7
+ 2

2cosh4 2cosh6)
+

All solutions (3.18) decay exponentially at infinity. For r — 0, however,

1
g2(r) = +... (3.19)

Hence, I in (3.15) is not a C function on R2. Our expansion gets singular

at third order for the ansatz (3.15). In the next section we will discuss a

realistic model in which a similar pattern emerges but no singularities occur.

4 Abrikosov vortices

The Ginzburg-Landau theory of a superconductor in a magnetic field in di

rection z is given by the Lagrangian density

£=
2_2,

(4.1)

where is the complex Higgs field, and = — iAj and =

in terms of the gauge potentials A, i = 1, 2. The Euler-Lagrange equations

are

DD = (1
2) = [(D3)* *Di1 (4.2)

In the special case = 1 it can be shown [9j that all finite action solutions

of Eq. (4.2) satisfy the first-order Bogmolnyi equations [8],

F12 = (1— 2) = —iD2. (4.3)
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It has also been shown [9] that a 2n-parameter family of solution of (4.3)

exists with winding number

n =
— I F1 d2x. (4.4)
2r JR2

This family describes n vortices sitting at n position in space.

Even for n vortices sitting on top of each other, the solution is not known

explicitly in terms of elementary functions. It is known [10], however, that

this solution is of the form

= f(r)e8, A
= na(r)j (4.5)

where f and a satisfy

rf’ — n(1 — a)f = (2n/r)a’ + f2 — 1 = 0 (4.6)

and

f(0) = a(0) = 0, = lirna(r) =1. (4.7)

In the following, we restrict our attention to n = 2 and use the solution

(4.5) as the zero order term in an expansion in the separation parameters.

The first order terms are given by the two zero modes describing the sepa

ration of the votices. These were found by Weinberg [11]. Using his results

we can write, up to quadratic terms,

= fe° + 2( + z3)kf + + + + (4.8)

A1 + zA2 =
— 2z( + i)(k’ +

+2(B1+ zB2) + (C +102) +2(D1 + zD2) +... (4.9)

Here the radial function k(r) satisfies

k” +
— (f2 + )k = 0, (4.10)

with

limr2k = 1, lim k(r) = 0. (4.11)
r—*O r—*oo

Our task is to determine ‘z/’, q, , B, C, D, which are functions of r and .
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Equating the2-terms in the Bogomolnyi equations (4.3), we obtain

( + z6 + f(B1 + = 4kf(k’ + )e°, (4.12)

— 62B1 + (fe_2z8 + fe2°) = —2k2f2. (4.13)

A Fourier expansion with the minimal number of nonzero terms leads to the

ansatz

= g(r)f(r)e2z+

B1 + zB2 = b(r)e° + zb(r)f(r)e3°, (4.14)

and to equations for g(r), (r), b(r) and b(r). The equations for (r) and b(r)

read
1 +2ab

— b’, b = —zh’. (4.15)

The functions g(r) and b(r) must satisfy the equations

g” + — f2g = 2k2f2, (4.16)

+ 1+4a+4a2)b4kf(k/2k) (4.17)

Equating the c3-terms and the /32-terms in the Bogonolnyi equation (4.3),

we obtain equations for and C, and for x and D respectively. These

equations, which are very similar to equations (4.12) and (4.13), can again

be solved by functions with the same 9-dependence as in (4.14) but with

slightly different radial functions. Collecting all results, we can write the

solution, up to quadratic terms, in the form

=fe2°+2(+z)kf

+(2 +2)gfe2°+ ( + +2ab
— b’)e28 +

A1 + zA9 = zel0
— 2z( + z)(k’ +

_z(2 +2)gIe1O + z( + z13)2bfe3° + . . (4.18)
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It remains to be shown that the quadratic terms in (4.18) are C°° func

tions on R2 which do not change the action (and the winding number). To

this end we use the asymptotic expansions of f, a and k at zero [12],

f(r) = fir2+fir4+..., a(r) = r2_f?r6+..., k(r) =r2+k1r2+.

(4.19)

where fi = .236 and k1 = — .025 from the numerical analysis. We find that

the solutions of (4.16) and (4.17) have the following expansions at the origin,

122
g(r)=g_11ogr+g1+f1r +...

b(r) = b_1r’ + b1r + (b1 — 2fiki)r3+... (4.20)

The higher order terms in g(r) are even powers of r, whereas the higher order

term in b(r) are odd powers of r. Hence, the quadratic terms in (4.18) are
000 near the origin if and only if h_1 = = 0. So far the constants g1 and

are arbitrary.

For large r the functions f, a, and k have the following asymptotic be

havior [12]:

f(r) = 1 + fi(r)e_r +.

a(r) = 1 +ã1(r)e +..., (4.21)

k(r) = ki(r)e_r +

with coefficient functions which are polynomially bounded. This leads to the

existence of exponentially decaying solutions which asymptotically are of the

form -

g(r) =1(r)eT +..., b(r) = bi(r)e_r +... (4.22)

Here and b1 are polynomially bounded.

By numerical integration, the coefficients g and b1 which lead to an

exponential fall-off at infinity, are found to be g1 = —.144 and b1 = — .026.

The existence of such functions can be explained analytically as follows:

Equation (4.16) shows that for positive g1, g cannot have a maximum for

any r. So the function diverges exponentially. For very small g1, the term

on the right-hand side of (4.16) will force the function to cross the r-axis,

and then, as before, diverge exponentially. For very large negative g1, the
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third term in (4.16) will force g to go through a maximum for large r. After

that, the function cannot have a minimum and must go to minus infinity.

Because of the continuous dependence on the initial data. we have an open

set of data for which g crosses the r-axis, and an open set of data for which

g goes through a maximum below the r-axis. Therefore, we have at least one

value of g1 for which the function does neither. This function must converge

and does so to zero, exponentially.

A similar argument explains the existence of an acceptable solution b(r)

to Eq. (4.17). The right-hand side of that equation is positive. So again

b cannot have a maximum above the r-axis. Also, for very small negative

b1, the right-hand side will force b to go through a minimum and then cross

the r-axis. For very large negative b1, the third term in (4.17) prevents b

from going through a minimum. In between these two possibilities we find

the desired solution which goes through a minimum but does not cross the

r-axis. Such a solution must decay exponentially.

The cubic terms can be calculated in the same manner. We find, at third

order

= ... + ( + z)(2 +2)fh + ( +z)3(—c’ +
+2a)_4Z0

+...,

+z( +z)(2+2)[—h’ — + 2g(k’ +) + 2kg’Je° + z( +z)3fce58+...

(4.23)

The new radial functions, h(r) and c(r), satisfy the equations,

ii” +
— (f2 + )h = 4k’g’ + 2fk(2fk2+ 3fg +

1 ±2ab
— b’), (4.24)

c”+c’—(1
+

4a)c = 2kf2b_2(k!+)(’+2ab_bI). (4.25)

Near the origin, Eq. (4.25) has a series solution in powers of r2 of the

form

h(r) = f + h1r2 + h2r4 + .., (4.26)

The constant term is given in terms of the coefficient f of the leading term in

the expansion (4.19) of f(r). The form of this term leads to the cancellation

of the r’-terms in the radial function multiplying e_2O in (4.24), and thus
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ensures that this term in (4.23) is G on R2. The series in odd powers of r

for c(r) which solves Eq. (4.25) near the origin, is

c(r) = c1r3 + c2r5 + ,. (4.27)

The form of the series solutions at the origin guarantees that the cubic terms

in (4.23) are C°° functions on R2. For large r, Eqs (4.24) and (4.25) have

exponentially decaying solutions.

5 Conclusions

Our expansions show a simple 9-dependence in terms of trigonometric func

tions. In both models, the expansion of exhibits the following pattern:

e4

e60 e20

e80

Here the first line gives the 9 dependence of the zero order term; the second

line gives the first order term, and so on. We get a similar triangular pattern

for the 9 dependence of A1 + zA2 at any order. For the radial functions we

find differences between the two models. In the model for one complex field,

the radial functions can be given explicitly in terms of exponential functions.

However, for the angular dependence (3.15), a singularity occurs at the origin.

(We have found no solution to (3.14) which is not of the form (3.15); we have

no proof that there is none.)

For the Ginzburg-Landau theory on the other hand, the expansion is

smooth, at least up to the order to which we carried out our calculations. In

this model the radial functions are not given in terms of well-known functions.

Having used the technique to calculate the terms up to third order, it is quite

clear how to proceed to any order, and also how to proceed in the case of

more than two vortices. We expect these expansions to converge for small
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separation parameters in the physical Ginzburg-Landau model. However, we

do not have an estimate of the radius of convergence.
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