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CLEBSCH-GORDAN AND RACAH-WIGNER COEFFICIENTS FOR A CONTINUOUS
SERIES OF REPRESENTATIONS OF 1/, (s!(2,R))

by B. PONSOT, J. TESCHNER

1. INTRODUCTION

Noncompact quantum groups can be expected to lead to very interesting generalizations of the rich
and beautiful subject of harmonic analyis on noncompact groups. Important progress has recently
been made concerning an abstract (C*-algebraic) theory of noncompact quantum groups, see [m] for
a nice overview and further references. However, an important problem is still the rather limited
supply of interesting examples. Results on the harmonic analysis are so far only known for the
quantum deformation of the group of motions on the euclidean plane[ﬂ, E], the quantum Lorentz
group , E] and SU,(1,1) [ﬁ][ﬂ]. Moreover, there sometimes exist subtle analytical obstacles to
construct quantum deformations of classical groups such as SU(1, 1) on the C*-algebraic level, cf.
(B,

Recently some evidence was presented in [E] that a certain noncompact quantum group with
deformation parameter ¢ = ™" should describe a crucial internal structure of Liouville theory,
a two-dimensional conformal field theory (CFT) that can be seen to be as much a prototype for a
CFT with continuous spectrum of Virasoro representations as the harmonic analysis on SL(2,C) is
a protoype for noncompact groups. The relation between Liouville theory and that quantum group
which was proposed in [H] generalizes the known equivalences between fusion categories of chiral
algebras in conformal field theories and braided tensor categories of quantum group representations,
cf. e.g. [, . These equivalences concern the isomorphisms that represent the operation of
commuting tensor factors as well as the associativity of tensor products, and can be boiled down
to the comparison of certain numerical data, the most non-trivial being some generalization of the
Racah-Wigner coefficients (or fusion coefficients in CFT terminology).

The quantum group in question is U,(sl(2,R)). A class of “well-behaved” representation of
U, (s1(2,R)) on Hilbert-spaces was defined and classified in [[L(]. We will study a certain subclass
of the representations listed there. Some of the representations found in reproduce known
representions of principal or discrete series of s[(2, R) in the classical limit b — 0, others do not
have a classical limit at all. The representations we will consider are of the latter type. Let us remark
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that representations that are essentially equivalent to the class of representations dicussed in our
paper were recently also discussed in [EI]. The main result of the latter paper is a very interesting
proposal for a braiding operation on such representations.

In our present paper we will present explicit descriptions for the decomposition of tensor products
of these representations into irreducibles, as well as the isomorphism relating two canonical bases
for triple tensor products. What appears to be remarkable is the fact that the subseries we have picked
out is actually closed under forming tensor products, which one would generally not expect if there
exist other unitary representation. The maps describing the decomposition of tensor products lead to
the definition and explicit calculation of the generalization of the Racah-Wigner coefficients which
represent the central ingredient for the approach of [E] from the mathematics of quantum groups.

From the mathematical point of view one may view our results as providing a technical basis for
further studies of a C* algebraic quantum group that may be generatedﬂ from U, (s!(2,R)) and its
dual object, which is expected to be a C* algebraic quantum group generated from SL4(2,R). In
[E] we presented the definition of S L;r (2,R) as a quantum space, a C* algebra A™ that is generated
from SL,(2,R) and is acted on by analogues of left and right regular representation of U, (sl(2, R)).
An L2-space was introduced there, and the result describing its decomposition into irreducible rep-
resentations of U, (s[(2,R)) (Plancherel decomposition) was announced.

Two aspects of these constructions were unusual: AT was introduced such that the elements
a, b, c,d generating S L, (2, R) have positive spectrum and the L?-space was introduced by a measure
that has no classical ¢ — 1 limit. It turns out that it is precisely the subset of unitary U, (s((2, R))
representations studied in the present paper which appears in the Plancherel decomposition of that
L2-space. We view these results as hints towards existence of a rather interesting C*-algebraic
quantum group related to SL,(2,R) that has no classical counterpart, but other beautiful properties
such as a self-duality under b — b~! which are crucial for the application to Liouville theory [E].

A first hint towards this self-duality can be found in the observation made in [E] ] (see also [E]
for closely related earlier observations) that the representations that we consider may alternatively be
seen as representations of U;(s[(2, R)), where § = €™/ b This led L. Faddeev to the proposal [@I]
to unify U, (s((2,R)) and U;(sl(2,R)) into an object called “modular double”, which exhibits the
self-duality under b — b~! in a manifest way. And indeed, it is found in the present paper that the
Clebsch-Gordon intertwining maps, as well as the Racah-Wigner coefficients can be constructed in
terms of a remarkable special function Sy(x). This special function is closely related to the Barnes
Double Gamma function [@], and was more recently independently introduced under the names
of “Quantum Dilogarithm” in [E], and as “Quantum Exponential function” in [E]. The function
Sp(x) has the property to be self-dual in the sense that it satisfies S, () = Sy /(). It follows from
this self-duality of the function S that the Clebsch-Gordan maps constructed in the present paper
can be seen as intertwining maps for the “modular double” of L. Faddeev.

We would finally like to point out that our techniques for dealing with finite difference operators
that involve shifts by imaginary amounts, in particular the method for determining the spectrum of
such an operator, seem to be new and should have generalizations to a variety of other problems
where such operators appear. Moreover, the investigation of the class of special functions that we
use is fairly recent, so we will need to deduce several previously unknown properties.

'In a similar sense as the bounded operators on L?(R) are generated by the unbounded operators p and g that satisfy
[p,q] = —i, cf. [] for more details
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The paper is organized as follows: In the following section we will introduce some technical
preliminaries. Since we have to deal with finite difference operators that shift the arguments of
functions by imaginary amounts, a lot of what follows will be based on the theory of functions
analytic in certain strips around the real axis, and the description of their Fourier-transforms via
results of Paley-Wiener type.

The third section introduces the class of representations that will be studied in the present paper
and discusses some of their properties.

This is followed by a section describing the decomposition of tensor products of representations
into irreducibles.

We then define and calculate b-Racah Wigner coefficients as the kernel that appears in the integral
transformation that establishes the isomorphism between two canonical decompositions of triple
tensor products.

Appendix A is in some sense the technical heart of the paper: It contains the spectral analysis of
a finite difference operator of second order that is related to the Casimir on tensor products of two
representations.

Appendices B and C contain some information on the special functions that are used in the body
of the paper.

Acknowledgements B.P. was supported in part by the EU under contract ERBFMRX CT960012.
J.T. is supported by DFG SFB 288 “Differentialgeometrie und Quantenphysik”. Most of this work
was carried out while the second named author was at the Dublin Institute for Advanced Studies. He
would like to express this institution his sincere gratitude for support and hospitality.

2. PRELIMINARIES

We collect some basic conventions, definitions and standard results that will be used throughout
the paper.

2.1. Finite difference operators

The quantum group will be realized in terms of finite difference operators that shift the arguments
by an imaginary amount. On functions f(z), x € R that have an analytic continuation to a strip

containing {z € C;Im(z) € [ — a—,a+]}, ax > 0 one may define the finite difference operators
T, a€[—a_,a;]by
(D) Ty f(w) = f(z + ia).
As convenient notation we will use
Y A

sin(wbx) 1 eribaz _ o—mibap T2
2 =— 7 dy = — 0Oy, dy = : .
@) (=T sin(7b2)’ o [+ aly emib? _ g—mib?

2.2. Fourier-transformation

Our notation and conventions concerning the Fourier-transformations are as follows: Let S(R) de-
note the usual Schwartz-space of functions on the real line. The Fourier-transformation of a function
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f € S(R) will be defined as

o0

3) flw) = / da e 2 f(x).

— 00
The corresponding inversion formula is then

oo

4) flz) = / dw €™ f(w).

— 00

The Fourier-transformation maps the finite difference operator T to the operator of multiplica-
tion with e =272 It will therefore be a useful tool for dealing with these operators. Of fundamental
importance will be the connection between analyticity of functions in a strip to exponential decay
properties of its Fourier-transform and vice versa that is expressed by the classical Paley-Wiener
theorem:

THEOREM 1. — (Paley-Wiener) Let f be in L*>(R). Then (e?™*%+ + ¢=2724-) f ¢ [%(R), ax >0
if and only if f has an analytic continuation to the strip {w € C;Im(w) € (—a—,ay)} such that for

any wy € (—a_,ay), f(. +iws) € L*(R) and

5) sup / dwy |flwr +iw)|? < oo forany be(—a_,ay).
W2Sb
Proof. — Cf. e.g. [19. O

The following simple variant of this result will often be useful:

LEMMA 1. — For f € S(R), the following two conditions are equivalent:

(1) f is the restriction to R of a function F' that is meromorphic in the strip {z € C;Im(z) €
(—a—_,a1)}, ay,a— > 0 with finitely many poles in the upper (lower) half plane at Py =
{#zj;7 € To.}, Im(z;)| > 0, and all functions F,(x) = F(z +1iy), y € (—a—,a4) are of
rapid decrease, and

(2) one has the following asymptotic behavior of the Fourier-transform f(w)for w — £o0:

f(w) = — 2 Z e 2mizw Pies F(Z) + fa+ (w)
= z=z;

flw) = +2mi 37 ePm59 Res F(2) + fo_ (w),
iz z=z;

where fai (w) decay as x — +o0 faster than e=2mall for any a € (—a—,ay).

2.3. Distributions

Let 8'(R) be the space of tempered distributions on S(R). The dual pairing between a distribu-
tions & € S’(R) and a function f € S(R) will be denoted by (®, f). The Fourier transformation
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on S'(R) is defined by (®, f) = (®, f) for any f € S(R). It should be noted that if a distribution
® € §’'(R) actually happens to be represented by a function ®(x) via

oo

(@, f) = / dx ®(z) f(x)

— 00

then our definition of the Fourier-transform of ® implies that instead of () one has the following
inversion formula for ®(z):

oo

(6) O(x) = /dw e T2mVTH ().

— 00

The distributions that appear below will all be defined in terms of meromorphic functions by
means of the so-called ze-prescription: Assume given a familiy of functions ., ¢ > 0 that are
meromorphic in some strip containing R, rapidly decreasing at infinity and have finitely many poles
with e-independent residues at a distance e from the real axis. The limit ® = lim._,q ®. then defines
a distribution ® € S’(R). We will often use the symbolic notation ®(x) for the resulting distribution,
keeping in mind that ®(x) will not be defined for all x € R.

There is a simple generalization of Lemma El to such distributions in &’ (R): Poles on the real axis
correspond to asymptotic behavior of the form e2™*“* of the Fourier-transform:

LEMMA 2. — For ® € §'(R), the following two conditions are equivalent:

(1) ® =lim._,o @, where O is for € > 0 represented as the restriction to R of a function ®(x)
that is meromorphic in the strip {z € C;Im(z) € (—a—,a+)}, ay,a— > 0 with finitely
many poles in the upper (lower) half plane at P = {z; £ ie;j € T1}, £Im(z;) > 0, and
all functions O, ,(x) = Pc(x +iy), x,y € R, y € (—ay, a_) are of rapid decrease, and

(2) @ is represented by a function ®(w) € C®(R) that has the following asymptotic behavior:

i)(w) = + 27 Z e2™%% Reg D(z) + <I~)a+ (w)

JELY o
b(w) = — 2ri Z €22 Res B(2) + @, (w),
jeIi zZ=zj5

where ®,, (w) decay faster than than e=>"**! for any a € (—a_,ay).

REMARK 1. — The sign flips between Lemmaﬂl and Lemma P| are due to the different inversion
formulae for functions and distributions.

2.4. A useful Lemma from complex analysis

The following Lemma is useful for determining the analytic properties of convolutions of mero-
morphic functions:

LEMMA 3. — Let f(z0; 21, 22) be meromorphic in its variables in some open strip S around the
real axis, with singular behavior near zg = 21 = z3 of the form Ria(z1)(z0 — 21) (20 — 22) L.
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The function I(z1, z2), defined by the integral

oo

9 Ier) = [ dao fanion o)
— 00
will then be a function that has a meromorphic continuation w.rt. z;, 1 = 1,2 to the whole strip

S. If z1 and zo were initially seperated by the real axis one will find a pole with residue Ry2(z1) at
21 = z2. If not, 1(z1, z2) will be nonsingular at z, = z2 as well.

Proof. — To define the meromorphic continuation of I(z1,z22) in cases where the poles z;,
i = 1,2 cross the contour of integration of the integral (E) one just needs to deform the contour
accordingly. This will obviously always be possible as long as z;, ¢ = 1,2 were initially not sep-
arated by the real axis. We will therefore turn to the case that they were initially seperated, and
consider w.l.o.g. the case that z; was initially in the upper, 22 in the lower half plane. In this case
one may deform the contour into a contour that passes above z; plus a small circle around z;. The
residue contribution from the integral over that small circle is

Z.312(21)
Z1 — 22

(8) 2 + (contributions regular as z; — z2 — 0)

The Lemma is proven. O

3. A CLASS OF REPRESENTATIONS OF Ug(SL(2,R))

3.1. Definintion
U,(sl(2,R) is a Hopf-algebra with
generators: E, F, K, K
K2 _ K72
relations: KE = qFK, KF =q 'FK, [E,F] = ——
)
® star-structure: K" = K, E*=F, F* =T,
A(EY=E® K+ K '®E,
co-product: A(K)=K®K, L
A(F)=FK+ K " Q®F.

The center of U,(sl(2,R) is generated by the ¢g-Casimir
gK?+q¢ 'K2-2
(¢—q71)?
We will consider the case that ¢ = ™, b € (0,1) N (R \ Q).
Unitary representations of U, (sl(2, R)) by operators on a Hilbert-space have been studied in [[L0].
Since there are no unitary representations in terms of bounded operators some care is needed in
order to single out an interesting class of “well-behaved” representations. A natural notion of “well-

behaved” was introduced in [E], where the corresponding unitary representations of U, (sl(2,R))
were classified.

(10) C=FE -
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In the present paper we will study a one-parameter subclass Py, a € Q/2 + iR, Q = b+ b1
of the representations listed in [] which are constructed as follows: The representation will be
realized on the space P, of entire analytic functions f(x) that have a Fourier-transform f(w) which
is meromorphic in C with possible poles at

w =ila—Q—nb—mb ')

(11) . n,m € 22°.
w=i(Q—a+nb+mb ")

REMARK 2. — It can be shown that P,, is a Frechet-space.

One may then introduce the following finite difference operators

To(E) = et?™d, +Q — al, i
(12) ﬂ_a(F) = e—27rbac[dm +o— Q]b WQ(K)

=3

MMl
&

As shorthand notation we will also use uy, = 74 (u).

LEMMA 4. — (1) The operators wo(u), uw = E, F, K map P, into itself.
(i) 7o (u), u = E, F, K generate a representation of Uy (s/(2,R)) on P,,.

Proof. — To verify (i), note that Fourier-transformation maps F,, F,, K, into the following
operators:
E, =[—iw + a], T
(13) _ v Ko =e ™.
F, =[—iw —a], T;®
The claim follows from the fact that [z], = 0 forz = nb~!, n € Z.
(ii) is checked by straightforward calculation. O

PROPOSITION 1. — The operators () generate an integrable operator representation of
Uq(sl(2,R)) in the sense of ([rdy, i.e.

(1) E,, Fo, K, have self-adjoint extensions in L*(R),
(2) the corresponding unitary operators E¥, Fit, Kt satisfy

KEPEY = ¢ WEIKY, KEF'=¢"F'K'?, and
(3) the g-Casimir strongly commutes with E,,, F,, and K.

Proof. — 1t suffices to show that the representation P, is unitarily equivalent to one of the rep-
resentations listed in [[[(]. Consider the operator .J, defined as (J, f)(w) = Sp(a — iw) f(w) in
terms of the special function Sy () (cf. Appendix B). J,, is unitary since |S; (o —iw)|? = 1 which
follows from eqn. () in Appendix B. Moreover, it follows from the analytic and asymptotic prop-
erties of Sp(x) given in the Appendix that J,, maps P,, to the space R, of entire analytic functions
which have a Fourier-transform that is meromorphic in C with possible poles at

w=ila—Q—nb—mb')

(14) . n,m € 229,
w =i(—a—nb—mb ")
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One finally finds from the functional relations of the Sj-functions, eqn. () that

JYE, J, =TP
(15) . , JIK,J, = e ™.
J;IFOLJOL :[a + iw]bTw_lb[a - Z'(“)]b

Our representation is thereby easily recognized as the representation denoted by (I)1,—1,. in Corol-
lary 5 of [@], where ¢ = [o — %]5 +2(q — ¢~ 1) 2. Note that our notation Q) is different from that
in [[i(] and ¢ < 2(q — ¢~1)72. O

REMARK 3. — The representations considered here form a subset of the representations of
Uy (sl(2,R)) that appear in the classification of [@]. This subset has the following remarkable
property: If one introduces generators E,F, K by replacing b — b~ in the expressions for E, F,
K given above, one obtains a representation of U;(s((2,R)) ¢ = exp(rib~?2) on the same space P,,.
The generators E, F, K2 commute with E, F, K? on the space P,. This does not mean, however,
that these operators commute as self-adjoint operators on L?(R). This self-duality property of our
representations P, is related to the fact that the representations (P,, 7, ) do not have a classical
(b — 0) limit.

3.2. Intertwining operators

The representations with labels o and () — « are equivalent. The unitary operator establishing this
equivalence can be most easily found by considering the Fourier-transform of the representation @,
as already done in the proof of Proposition [I, eqns. (13): Define the operator Z,, : L?(R) — L?(R)
as

(16) (Taf)(w) = Ba@)f(@). Balw) = %

The operator Z,, is unitary since | B, (w)| = 1. It maps P, to Pg_ as follows from the analytic and
asymptotic properties of the Sp-function summarized in Appendix B. The fact that

(17) To-a(Wa =ZTama(u), u € Uy(sl(2,R))

is a simple consequence of the functional relations ([I33), Appendix B of the S,-functions.
By inverse Fourier-transformation one finds the representation of the intertwining operator on
functions f(z). It takes the form

(1) (Lo f)(@) = / a2’ Ba(z — ') (x),

R

where the inverse Fourier-transform defining the kernel B,,(z — ") may be found by means of eqn.
(, Appendix B to be given by

(19) Bo(zx —2') = Sp(2a)
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4. THE CLEBSCH-GORDAN DECOMPOSITION OF TENSOR PRODUCTS

The co-product allows us to define the tensor product of representations: For any u € U, (s[(2,R))
let w91 (u) = (Ta, ® Tay )A(u). The operators w21 (u) generate a representation of U, (s((2, R))
on Py, @ Pgy,. Our aim is to determine the decomposition of this representation into irreducible
representations of U, (s1(2, R)).

LEMMA 5. — P,, ® Py, is dense in L*(R) @ L*(R).
Proof. — Any two-variable Hermite-function is contained in P,, ® Py, . O

DEFINITION 1. — Define a distributional kernel [ ¢ @2 %1 (the “Clebsch-Gordan coefficients”)

z3 T2 T1
by an expression of the form

a3 2 @ o 4 o3 g
(20) g a] = tm i ale

where the meromorphic function | . |, is defined as

[ Q—az az ay ]e — e_%i(Aag_Aag_Aoq)
(21) T3 T2 X1

X Dy (B32; ys2 + €) Dy (B31; ys1 + €) Dp(Ba1; yo1 + €),
Ay = a(Q — ), the distribution Dy,(«; y) is defined in terms of the Double Sine function Sy(y) (cf.
Appendix) as

S
(22) Dy(a;y) = ﬁ%’

and the coefficients y;;, Bji, j > 1 € {1,2,3} are given by

ys2 =i(z3 — 22) — 3(as + a2 — Q) B3z =as + az — a;
(23) ys1 =i(z1 — 23) — 3 (as + a1 — Q) B31 =a3 + a1 — o
Y21 =i(x1 — x2) — %(042 + a1 — 2a3) Ba1 =2 + a1 — as.

The aim of this section will be to prove

THEOREM 2. — The Uy(sl(2, R))-representation o1 defined on mo, @ 7o, decomposes as follows
into irreducible representations P.,:
53]
24) Tay, @ Moy /da Ta, S= % +iRT.
s

The isomorphism can be described explicitly in terms of a unitary map Ca1 of the form

L*RxR) — L*S x R,du(as)dzs), du() = |Sy(20))?

(25) Ca
flra, 1) —  Fr(as,zs) E/dxgdxl [ @8 a2 0] f(xo 1q)

3 T2 T1
R
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such that the corresponding projections Tl (aig), (H21 (ag)f) (x3) = Fr(as, z3), map Pay @ Pa,
into Py, and intertwine the respective Uy (s1(2, R)) actions according to

(26) Hgl(ag)ﬂ'Ql (u) = Tas (U)H21 (043) u e L{q (5[(2, R))

REMARK 4. — It follows from Theorem E that the representation 7o, is in fact integrable, which
was not clear apriori.

REMARK 5. — It is remarkable and nontrivial that the subset of “self-dual” integrable representa-
tions of U, (s(2, R)) is actually closed under tensor products.

REMARK 6. — The appearance of the measure dy(«) is natural since dy(«) is the Plancherel mea-
sure for the dual space of functions L*(SL] (2, R)), cf. .

COROLLARY 1. — The Clebsch-Gordan coefficients | g‘: ;‘22 ;‘11 | satisfy the following orthogonality

and completeness relations:

lim /dfl?1d1?2 [os oz on]i[ B0z on] = |Sy(2a3)|?0(as — B3)d(x3 — y3)
27) :
leiﬁ)l /das |9y (20:3) [ /dflfs [oeozon][gooe o] =0(z2 —y2)d(az1 — y1).
S R

The main step in the proof of Theoremg will be the construction of a common spectral decompo-
sition for the operators Q21 = (7o, ® Ta, )A(Q) and Ka1. The decomposition of L2(R x R) into
eigenspaces of Ko; is simply obtained by Fourier-transformation:

L*RxR) — L*RxR)

flene) = Bl = [ ey e, s

The g-Casimir (J2; is mapped under this Fourier-transformation F into a second order finite dif-
ference operator Co;(k3) that contains shifts w.r.t. the variable z_ only and therefore leaves the
eigenspaces of Ko invariant:

Cor (k) — [0 — 9]; =

= [—iz—f(a1+a2— Q)+ (a3 — D[ — iz — J(a1 + a2 — Q) — (a3 — F)],
(29) [ —iw+ Har + az) = Q) (T O (o) — 0y +ing),
— emimbmirm(ete) (g gy — ms}b)T{fb
=iz + 31 + a9) = Q[ — iz + F(a1 + a2) — 2Q), T,
where the following notation has been used:

sin(mbzx) _ cos(mbzx)

(30) [2]s = W’ {z} = isin(mb?)’
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The spectral analysis of the operator C5; is performed in Appendix A. The result may be summarized
as follows: Eigenfunctions @, («2, a1|ks|z) of Co; are given by an expression of the form

Bl Doy (o2, an|rglr) = MR T Ros=202tim) @ (T, y ) Wy (U, V, Wsyy).

2,1
The special functions O (T'; y) and ¥, (U, V, W y) are defined in Appendix B, y are introduced as
Yy = —ix — %(042 +a1—Q)F (a3 — %) and the coefficients T', U, V, W are given as
T =05+ a1 — a3 V =—1iKk3 + a3

(32) .
U=a3+a; —a W =—iks+a; —as+ Q.

THEOREM 3. — A complete set of generalized eigenfunctions for the operator Ca1(k3) is given by
{((I)as)*; a3 € S}

By combining TheoremE with the usual Plancherel formula for the Fourier-transformation 7 one
concludes that each function f(z2,21) € L? (R x R) can be decomposed as (z+ = xo + 1)

(33) f(IQ,Il) :/dﬂg eﬁiﬁ3z+/du(a3) ((I)ag(ozg,041|I£3|$,))*Ff(01371€3),
R S

where the generalized Fourier-transformation Fy of f is defined as

(34) Filas, kg) = /dxgdxl e TiRIT D, (o, a1|rs|z_) f(x2,21).
R

The measure dy(as3) will be determined later. One may next observe that

LEMMA 6. — One has

65 (o) = [de @ (o) - T 0, (an ko),

R

if the normalization factor M in (El) is chosen as

(36) MOsiEs = erria2(a27&3)efﬂi(a3fil€3)(a3+062*Q)

2,01

o2 ¢ ] may be rewritten in terms of the function ©,(5; y) as follows:

Proof. — Thekernel | Sf:‘“

[ Q—as as al] _ eﬂialageQﬂ(wg(ag—a1)+a111—agmg)
(37) T3 T2 I1
X Op(B32; Y32)On(B31;y31)O6(B21; yo1)-

The substitution s = —i(z3 — x2) + 3 (a3 + a2 — Q) then leads to the Euler-type integral ([L44) for
the b-hypergeometric function. The rest is straightforward. o

If follows that the generalized Fourier-transformation defined in Theorem E represents a decompo-
sition into eigenspaces of the g-Casimir (J2;. Two things remain to be done in order to finish the
proof of Theorem E: On the one hand it remains to calculate the spectral measure dy (3 ), and on
the other hand one needs to verify the intertwining property (@).
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4.1. Spectral measure

We will show in this subsection that du(as) = |Sy(2a3)|?. This follows from the combination
of the following two results. We first of all determine the asymptotics of the distributional Fourier-
transform of @,:

LEMMA 7. — The function éas (w) (defined as in (ﬂ)) decays exponentially for w — oo and has
the following asymptotic behavior for w — —o0:

(38) Doy (W) = Ny(as)e?™™ + N_(a3)e’™ " + R_(w),
where R_(w) decays exponentially for w — —o0, x4 and x_ are defined by
Ty = —i—%(al + ag — Q) :ti(ag — %)
and [N+ (a3)]? = |Sy(2a3)| 72
Proof. — According to Lemmaﬂ one just needs to calculate the residues of @, for the poles at
x = x1. We will only need the absolute values of these quantities.

The pole at z = x_ comes from the G,/ G}, factor in the expression for ®. To calculate its residue
one needs the following special value of the W-function:

Ge(V)Gy(W —U —V)
G (W —U)
which follows easily from the fact that the representation simplifies to the b-beta integral ()

forx = W — U — W. We furthermore note that |Gb(% +ix)|?> = 1 from the reflection property of
Sp(x) stated in the Appendix B. It thereby follows that

(39) U (U VW, W —U—-V) =

(40) IN_(as)]> = M2 Gy(Q — 2a3)]%.

201

One has [Mg3i3|2 = m™Q(Q=293) and |G,(Q — 2a3)|* = e ™Q(Q=29)|G, (2a3)| =2 from the
connection between Sp, and G, as well as the reflection property of .S, (see Appendix B). Therefore
IN_(a3)]* = |Sp(2a3)| 2.

The pole at x = x4 corresponds to the pole at y = 0 of Uy,(U, V; W;y). One may determine
the singular term for y — 0 by applying LemmaE to the Euler integral representation () for the
function Wy:

e—27riy6 Gb(_y +v - ﬁ) _ le(W - ﬁ)
Go()Gh(-y+Q) 'y Gi(a)

The rest of the calculation proceeds as in the case of N_(«a3) and yields | N4 (a3)]? = |Sp(2a3)| 2.
O

41 27 + (contributions regular as y — 0).

PROPOSITION 2. — Assume that the generalized eigenfunctions i)o@ decay exponentially for w —
oo and have asymptotic behavior of the form (B§) with | N (a3)> = |N—(a3)|? for w — —cc.
In that case one may define the “inner product” (P, fbag) as a bi-distribution which is explicitly
given by

(42) (Pas, Pay) = |Ny(as)?d(as — aj).
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Proof. — Consider
(021 ('1413)@0(3 ) ¢O¢%) - ((ba'g ) 021 (53)(?0(&) =

w
43) ~ lim_ /dw ((5( VDo (w0 + 8i0)) oy (0) — (Pag () 85 () B (w—l—szb))
=Eow

where the Fourier-transform of the explicit expression (@) for C'21 (k3) has been used. The contour
of integration for the second term in @) can be deformed into R — isb plus contours from —W to
—W —isband W — isb to W. The integral over R — ¢sb cancels the first term on the right hand
side of (B). Only the contour from —W to —W — isb will give nonvanishing contributions in the
limit W — oo due to the exponential decay of i)as (w) for w — oo. In the remaining term one gets
in the limit W — oo contributions only from the leading terms in the asymptotics of i)as (w) for
w — —oo as quoted in Lemma @ Taking into account that

~ 1 .
(44) 0s(w) = = esmib(@-ar—az) 4 O(SwaW)
(@—q7')?
for w — —o0, it follows that (a3 = Q +ips, afy = Q 2+ iph)

(C21(k3)Pag, Pay) — (Pag, Co1(k3) P ') =

e 063 *Ne (O/)
(45) —7Wh§;o XD oo Ay

(q—q7t oo 27” (€1p3 — €2p%)

e27riW(e1p3 —egpé) .

. 6277552pr (1 _ eQﬂsb(elp3762pé))'

The expression on the right hand side of (#3) vanishes by the Riemann-Lebesque Lemma for p3 # p);
as well as €; # €5. The remainder is found to be

(C21(K3)Pay, Pay) — (Pag, Co1(K3)Puy) =

(46) e2miW (ps—pl) _ o—2miW (p3—ph)

= (lip5]; — [ips]y) I N+ (as)? i 2mi(ps — ph)

It follows that
e27riW(p3 —p/3) _ e—27riW(p3 —pg)

P, 7(1)0/ =|N. ? li )
@7 (Pag, Pay) = [N+ ()] Wibe 2mi(p3 — pj)

= |N+(Oé3)|2 d(as — 0/3)

by the corresponding well-known property of the kernel sin(Rz)/z, cf. e.g. [, Chapter IX, Exer-
cise 14]. O

4.2. Intertwining property
PROPOSITION 3. — The projections a1 (as), as € S map P, ® Pa, into P, and satisfy the
intertwining property @ ).

Proof. — Fy(as, x3) will be entire analytic w.r.t. z3 by straightforward application of Lemma ,
using that f is entire analytic in x5, 1 and the analytic properties of the Clebsch-Gordan coefficients
summarized in Lemma El, Appendix C. One similarly finds by using Lemma E, Appendix C that the
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Fourier-transform F¢ (a3, r3) will be meromorphic in x5 with poles at k = 4(Q — a+nb+mb™1),
n,m € Z=° for any € Py, ® P,,. This establishes the first claim in Proposition [§.

Note that the analytic continuation of the integral (E) that defines Fy (s, x3) can be represented
by integrating over a deformed contour C'® < C2. For later use we will present suitable contours
for the cases of analytic continuation to {z3 € C;Im(z3) € [0, 3]} and {z5 € C;Im(x3) € [-3,0]}
respectively: In the first case one may integrate x; over the real axis and instead of integrating over
To One may integrate x3; = —iys32, cf. (@), over a contour consisting of the union of the half axes
(=00, —d] and [d, +00), b > & > b/2 with a half-circle in the upper half plane around z32 = 0 of
radius . In the second case one may integrate zo over R, and x3; = —iys; over the contour Cy
consisting of the union of the half axes (—oo, —d] and [d, +00) with a half-circle of radius ¢ in the
lower half plane around x3; = 0.

Now consider the right hand side of @ The expressions for w21 (u), v = E, F, K contain the
shift operators

ib ib ib
+2 - +2

(48) TEETEE TETLE and TLETY

ib

The shift operator Ti 2 is “partially integrated” by (i) shifting the contour of integration over z; to
the axis R %, where one will pick up a residue contribution from the pole of the Clebsch-Gordan
coefficients that lies between these two contours, and (ii) introducing the new variables of integration
x,=a; + % In this way one rewrites the expression for Co1m21 (1) f in the form

(49) /d(Eg/dIl (wél(u)[ ooz ]) f(za,21),
Cq Co

where the 7r§1 denotes the transpose of o1, and the contours C;, ¢ = 1,2 are just the contours
introduced above to represent the analytic continuation w.r.t. x3. It is important to notice that due
to the fact that only the shift operators @) appear in the expressions for mo1 (u), u = E, F, K one
does not need to introduce further deformations of the contours in order to treat the poles from the
factor in the Clebsch-Gordan coefficients that depends on x5 — z; only.

It is verified by a straightforward calculation using ( that the Clebsch-Gordan coefficients
satisfy the finite difference equations

(50) Ty (W)] 08 02 ] =ma (w)[ 222221, u=E,F K
Inserting these relations into @) yields an expression that is easily identified as 7, (u)Ca1 f. O

5. RACAH-WIGNER COEFFICIENTS FOR 1/, (s((2, R))

5.1. Canonical decompositions for triple tensor products
Triple tensor products Py, ® Pa, & Pq, carry a representation msa1 of Uy (s1(2, R)) given by
321 = (Tag ® Tay ® Ta, ) © A®),

(5D
AP = (A®id)oA = (i[d® A)oA.
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The decomposition of this representation into irreducibles can be constructed by iterating Clebsch-
Gordan maps: There are two canonical ways to do so, which will be referred to as “s-channel” and “t-
channel” respectively. The first of these corresponds to first decomposing the factor P,, @ P,, into
a direct sum of irreducible representations P, _ then performing the Clebsch-Gordan decomposition
of Po, ® Pq,. This extends to a unitary map

L*RxRxR) — L3S* xR, du(aq)du(as)dry)

(52) ¢ .
s f('r37x27x1) — Ef(O[4,O[S,I4),

The generalized Fourier-transform F'f of f is defined as

Fi(ag,as;24) = lim lim | dzsdxg | ¥4 @38 X
f( 4, s, 4) €200 €140 3 S [;E4 T3 Te ]62

(53) e

X /d$2d$1 [ gf 322 311 ]61 f($3,$2,£[:1),
R2

which in the notation ¢ = (a3, z2, 21), dt = dzgdxadz can be rewritten as

F;(oz4,oés;$4 = hm /dxq) o Zz Z?]E(xhﬁ f(x),
(54)

Tg T3 Ts Ts T2 T1

where @[5 93] (z455) = / doy [01090:] [0 0201)  qya €S, o4 €R.
R

Some useful properties of the functions @7, | o | (x4; r) are collected in Appendix C.

The generalized Fourier-transformation Cs 21 is such that the two-parameter family of projections
IT* (a4, @) : Pag @ Pay @ Pay — Pa,(R) defined by f — Ff(au, as;.) intertwine the represen-
tation m32; with the irreducible representation m,,. It therefore realizes the following isomorphism
of Uy (sl(2,R)) representations

(&)
(55) Py @ Pay @ Py / dpf0s) Pay ® S,
S

where the multiplicity space S,, ~ L?(S, dp) is considered to be equipped with the trivial action of
Uq(sl(2,R)).

A second canonical decomposition of P, , ® Py, @ P, is obtained by first decomposing the factor
Pas ® Pa, into a direct sum of irreducible representations P,, and then performing the Clebsch-
Gordan decomposition of P, ® P,,. One obtains a map

L*RxRxR) — L*S* xR, du(as)du(as)dy)
(56) Cia2)1 "
flxs, o, x1) = Filag, ap,74),
where Ft is defined by a generalized Fourier-transform of the same form as @) but with ®3;
replaced by
57 @[] (e = / day [210r o] [@ o] €S, 2 € R,
R

Tg Tt T1 Tt T3 T2
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As in the case of the s-channel, one has a corresponding two-parameter family of projections
II* (4, as) : Pay @ Poy & Pay — Pa, that intertwine the representation 7321 with the irreducible
representation 7o, .

REMARK 7. — The unitarity of the maps Cs(21) and C(32); ensures existence of self-adjoint ex-
tensions for the operators w391y (u), m32)1(u), u = E,F, K,Q: Simply take the image of the
self-adjoint extensions on L2(S? x R) under C;él) or Céé)l.

However, it is not a priori clear that such self-adjoint extensions are unique. In particular, it
could be that the self-adjoint extensions that are defined in terms of the maps C3(21) and C(32); are

inequivalent. This disturbing possibility will be excluded shortly.

5.2. Relation between C3(21) and C(32):

It will be convenient to also consider the Fourier-transforms @7, [0 2] (ka;x),b = s, that are
defined as
58) B, 5 5L be) = [ dog @), (20 (o),

Unitarity of the maps C3(1) and C(32); allows us to relate the transforms F' js and F; by a transfor-
mation of the form

(59) Fiasashe) = [ dotdar [k K[ 550 5] Fialag ).
S2 R

The distribution K appearing in @) can be represented as

ayg as k _
IC[ ai vt ki} -
(60) 7 ;
= Jim tim [ des [[dadon (@, 12 221 000) 5, (55 2] ki)
A

We will first prove

PROPOSITION 4. — The distribution K is of the form

(61) K[ ot k] = §(oy — aly)d(ks — k) K[ @2 ].

aﬁl at ki; ks oy

Proof. — This will be a consequence of the following result: /C satisfies
Q12 Q12 ag as k _
(lo = 905 - 6 - 935) KL it] = 0

(kg — Ky) K[ 242k = 0.

! !
ay ap kj

(62)

To see that (62) implies the claim, consider the simplified case of a distribution 7' € S'(R)
that satisfies 7'f = 0, where f is a function that vanishes only at zy and such that fg € S(R)
if g € S(R). This distribution has support only at zy. By Theorem V.11 of [E] one has T' =
Zﬁ;o an (20)02d(x — xp). It is then easy to see that Tf = 0 implies a, = 0 for n # 0. The
generalization to the case at hand is clear.
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To verify (62) one may note that the functions @2, [ 22] (kq;x), b = s,t satisfy eigenvalue

Qg
equations for the operators Q321 = 7321 (Q) and K321 = 7321 (K) up to an error of order O(e). It
follows that

2 2
(los = 835 - [ - BL)KL 3 0 ) =

€1,e200 p—0

p
(63) = lim lim /dxg / dxsdxy ((‘I)gt [ zi zi ]61 (/Cfl, ;))* Q321 (I)ch [ zi gf ]52 (kas1)
R -pP

~ (@, (5721, 0s0) @5, (5 21, ki)

Qg

The right hand side of (@) will vanish if @321 can be “partially integrated”. To show that this is the
case, one needs some information on the form that (Y321 takes when acting on functions f(r). By
straightforward evaluation of its definition one obtains an expression in terms of shift operators

Tisbrisbrisst - where T; =Ty, si € {+,—}, i=1,2,3.
It is convenient to introduce an alternative set of shift operators
3 2 -1 2 -1
Ty = Y1515, T3 =151, T3y =TT, .

The crucial point now is that the expression for (321 when rewritten in terms of 17y, T5;, T32 takes
the following form

3 3 3
(64) Q321 = Z Z Z Pn+ n21M32 (?) Tjrn+b Tfllbnzl TS%lensz ’
ny=—3n21=0n32=0

so it contains shifts of x21, 32, 31 by positive imaginary amounts up to 2¢b only. Furthermore
note that in (@) one may replace T, by e~27%*4_ The analytic properties of the integrand in (@) as
following from Lemma@ in Appendix C now allow to partially integrate (321 by appropriate shifts
of the contours of integration over x3, x3, z; (cf. proof of Proposition ﬂ)

The verification of the second equation in (@) is similar. O

REMARK 8. — This result implies that the self-adjoint extensions of 7301 (u), v = K, @ that are
defined by the maps C3(21) and C(32); indeed coincide. A similar argument as in the proof of the
previous proposition will also cover the two other cases u = F, F.

5.3. Calculation of the Racah-Wigner coefficients I

It will be useful to also introduce

Qg s T4 —

X[ ag‘ [’ zg} -

(65) %
= [lim [ dzgdwadey (@[22 02](2050)" @5, 52 02 (@),

Proposition ff has an obvious counterpart for A’:
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PROPOSITION 5. — The distribution X is of the form

(66) X[Ot4 as x4] — 5(04_a£1)5(954_$21) a1 o zf }b'

’ ’
Qy Op Ty Q3 Qg4

Proof. — Introduce
00 P
(67) Ke)p[ gi g: :i] = / dIQ/dIngl ((I)ZS[ZZ 3?]6(]@4;;))*(1)2“[32 Z?]E(lﬁl;x).
oo Zp

The coefficient of d(ky — k) in the expression for K coinicides with the sum of the coefficients
with which e~ 27i(ka=ki)z1 ang ¢=2mi(ka—k)zs gppear in the asymptotic expansion of the integrand
in (@), cf. Lemma . Lemma E identifies the origin of these terms in the asymptotic expansion of
®°, b = s,t, with the poles in the dependence of ®°[...](x4;1), b = s,t on their variable z4. It
follows that the coefficient of (k4 — k}) in the expression for K is independent of k4. The result
now follows from standard properties of the Fourier transformation. o

PROPOSITION 6. — We have
oros o) Sp(az + s — a1)Sp(ae + a1 — o)
ag ag laz Jb Sp(ag + o — a3)Sp(ovs + g — o)

(68) 18,200 7°d8 Su(Us + 8)S3(Ua + 5)Sy(Us + 8)5y(Us + )
| % (Vi +5)85(Va + 5)55(Va + 5)Sb(Va + 5)
where the coefficients U; and V;, 1 = 1,... ,4 are given by
U =as + a1 —az Vi =2Q+as—ap —ag —ay
Up=Q+as—az— Vo=Q+as+o—as—a
©9) Us =05 + a3 —ou Vs =20

Uy =Q+as—az—oy Vi =Q,

and N is a constant.

Proof. — Let
70 Kl[gton]= / dusdwadry (@4, %7 2] (2h;1)" @5, (52 22 ] (a3 0).

The analytic and asymptotic properties of the integrand follow from Lemma [1§ in Appendix C. Let
us observe that for e > 0 one is dealing with absolutely convergent integrals, the integrand being
meromorphic both w.r.t. the integration variables and the parameters. The integral (E) therefore
does not depend on the order in which the integrations are performed, so we will assume that it is
first integrated over xo.

Singular behavior will emerge in the limit e — 0. We will call a pole relevant if it has distance
of O(e) from the real axis, irrelevant otherwiseﬂ. It then easily follows from Lemma P that the
integration over xo does not introduce any new relevant poles since all the relevant poles in the x5
dependence that have distance of O(e) are lying on the same side of the contour.

2We of course assume that e has been chosen to be much smaller than b
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Next one may integrate over x;. We find from Lemma E in Appendix C that

P @3 Qo — i)’ i4 R s
s [0‘4 a1 Je(z4,7) T1 — T3 + a3 — 2ie + T1 — T4 + g — 2i€ + (Regs),
(71) Rt Rt
@t a/3 [P / * — 13 14 R
(%, [% a1 (@4, 0) x1 — T3 + afs + 2ie + x1 — Ty + oy +ie + (Regs),

where (Reg,), b = s,t are terms that do not lead to relevant poles in the variable x; after having
integrated over z2. The following abbreviations have been used:

o3 =% (a1 + a3 — 2(Q — au)), ohs =%(a1 + a3 — 2(Q — o)),

3

(72) 4 / /
a1y =5( — aa), ayy =5(a1 —ay).

It is then easily found by using Lemma E that the result of the integration over x; will have poles at
the following locations:

ilag —al)) — 4ie =0, x5 — x4 — £(as+ ag — 2(Q — o)) — 4ie = 0,
(73) , _ .
xy — x4 + () — ag) — 3ie =0, ry —x3 + s(az + o) — 2(Q — ag)) — 3ie = 0.
The relevant residues can easily be assembled from the expressions given in Appendix C. Moreover,
it is straightforward to work out their poles. By again using Lemmaﬂ one then finds that all four
poles listed in (B) will, after doing the x5 integration, produce terms that are singular for x4 = 2,
ay = o and € — 0. The terms that lead to §(x4 — z})d(aq — o) are easily identified by means of

(74) 1im( LI )=2m'6(:v).

e=0+\x —te T+ 1€
All these terms have as residue an expression proportional to
Res Res [ %4 @ @] Res Res [ %4 & 21]
y31=0y21=0"* * * “y31=0yx=0"* * *

(75)

ag g 01 Q¢ a3 2 .
/Rdx2 yE{Ie:SO[ x X9 1 ]x1:z370c13 y];ge:SO[ Ty ¥ To ]zt:z37%(a37at)'

One just needs to assemble the ingredients to check that the expression (IE) coincides with what one
finds on the right hand side of (6§) (|

REMARK 9. — With more patience, one could of course also fix the constant /N by the method
used in the previous proof. We refrain from doing so since we will present a less tedious and more
illuminating way of calculating it in the next subsection. What will be needed there, however, is the
information on analyticity of the coefficients {. ..} w.r.t. o; that follows from Proposition E

5.4. Relation between the distributions ®* and ®*

PROPOSITION 7. — &% and ®! are related by a linear transformation of the form
(76) ®, (o) = [dor {0200 ), 04,15 5 (o)
S

The relation ( @) can be read either as (i) relation between function analytic in

AW = (g = (24, 23,20, 21) € CY Im(x1) < Im(22) < Im(x3),
Im(z1) < Im(z4) < Im(x3), Im(xs — x1) < Q},
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or (ii) as relation between functions meromorphic w.r.t. x € C*, or (iii) as relation between distri-
butions defined as boundary values of ®°, b = st for (x4,1) € R%

Proof. — We will start from equation @). By using Fourier-transformation w.r.t. the variable
k4 and equation (pd) one may rewrite (F9) as follows:

(77) Fi(ag,as,zq) = /dozt ol oy }b F;(ozil,ozt,:m).

[e e
S
Let us introduce sequences of test-functions that tend towards delta-distributions:

n % _nle—n]2
(78) i) = (52) e T = ().

LEMMA 8. — Let y = (z4,1) € AW with Im(y1) < 0. In this case one has

(79) lim F,

ol ;_)(014,0%,:174) :(I)Zq,[zi 3?](174;‘))-

Proof. — By writing out the definition of Ftbn and shifting the contours of integration over x; to
R + iIm(y;), ¢ = 1,2, 3, one reduces the claim to the standard result that

. . I Y
Jim n(9;x) = 6°(x — 1)

for Im(y;) = 0,4 = 1,2, 3 (Note that P’ is regular for these values of its arguments as follows from

Lemma , Appendix C). m
We will now consider the sequence with elements
(80) /dat Z; ZZ 2: }b Fttn(n,.)(a47 O, I4).

S

It converges for n — oo due to Lemma Eand equation (ﬁ). We would like to show that one may
exchange the limit n — oo with the integration over «; so that the limit of (E) is given by the
integral

s t 3 .

@D [ ez o), @t 15 0 o).
S

To this aim it is useful to note that

LEMMA 9. — Under the conditions on the variable v) introduced in Lemma | one finds that the
integrand in (@) decays exponentially for py = —i(a; — %) — Fo00. The integrand in @) decays
at least as fast as the integrand in @)

Proof. — By a straightforward calculation using the method in the proof of Lemma , Appendix
B and eqn. () one finds that

t

wl ool J(x4;9) decays stronger than eT"@P* and

(82)

a1 a2 | Qs } grows as e =Pt
az ag lag Jb

for p; — oo. The first statement in Lemma E follows.
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The second statement follows from the first by shifting the contour of integration over x; in the

definition of F\ to R+ ilm(yy). =

The integrals )(@) can therefore be transformed into integrals over a compact set, e.g. the interval
[0,1]. In order to justify the exchange of limit and integration it therefore suffices to prove the
following

LEMMA 10. — The convergence Othtn(n,.)(O“b Qu, T4) Is uniform in oy.

Proof. — To shorten the exposition, let us consider a slightly simplified situation. Assume that
fp(z) is analytic w.r.t. both p and x in open strips that contain the real axis and decays exponentially
for either |p| or |z| going to infinity. Let t,(z) = \/ge_mz/ 2 and study the convergence of
fon = Jpdzfp(x)tn(z) for n — co. Upon writing f,(z) = f,(0) + gy, (x), the task reduces to
the study of

1 _312
(83) D! dz gp(z) wtp(z) = \/%R dr e 2% 0,g,(2).

Convergence for n — oo will be uniform in p provided that 9, g, () is bounded as function of both p
and x. But this is a consequence of our assumptions: The exponential decay allows us to transform
fp(x) (resp. 9.g,(z)) to a function that is analytic on a compact rectangle in C2, and therefore
bounded.

The regularity properties of ®* necessary to extend the argument to the present situation follow
from Lemma , Appendix C. O

We have proved (7€) provided (x4, t) satisfies the same conditions as (x4, 1) in Lemma . Proposi-
tionﬁ follows by analytic continuation. o

5.5. Calculation of Racah-Wigner coefficients II

We have shown that the meromorphic functions ®* and ®! are related by an integral transforma-
tion of the form (E). If one fixes the values of three of the four variables x4,... ,z1 in @ one
obtains an integral transformation for a function of a single variable. In fact, the analytic properties
of ®% and ®, even allow one to choose complex values. It will be convenient to consider

3
S [az « . H 2Toaxy : —2To; T S [ a3 «
(84) WS [ e2)(z)= lim e I21—1>H—1<>o H e iTIHS s o2](x)

s L ay ag T4—>00 as lay ay

1=

. )
is1 z3=5 (Q+az—ay)

where & = () — a, and the same for \Iltat. The integral that defines @7, and @gt, (@)(@) can be
done explicitly in this limit by using (. One finds expressions of the form

w3 e = N

P o las o103, 15 o2 1()

Qg o

0. [g: o J(z) = et?rel@s—ae—a) B (0 4 ) — ag, o + a3 — i 2003 —i)

(85)
w300 )(w) = NG, (22 22180, (23 2 )

at Ll ay ag at Ll ay ay at Ll ay ag

oL, [gz o J(z) = e 2mo(@tor—as) By (0, 4 g — g, o + oy — Qu; 200 +ix),
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where Fy, is the b-hypergeometric function defined in the Appendix, and N, , N, };t are certain nor-
malization factors.

The linear transformation following from (@) can now be calculated as follows: One observes that
W, (resp. \I/gt) are eigenfunctions of the finite difference operators Q¢ and Q; defined respectively
by

Q, =[dy + a1 + a3 — ]* — ™2™ [d, + a1 + as + ag — 4] [dy + 201

(86) ) -
Qt:[dm—l—al—cm—i—%] —e” ”w[dm+a1+a2—a3—a4”dw].

It can be shown that

THEOREM 4. — The operators Q4 and Q; have unique self-adjoint extensions in L*(R, dze?79%),
Bases of L*(R, dze?™ Q%) in the sense of generalized eigenfunctions are given by the sets of functions

{5 ;a5 € S} and {O),,; ay € S}, where the normalization is given by

at?

(87) /d:z: T (00, 123 22](2)) Oy, [22 22 )(z) = b(ay — o), b =s,t.

a4 o1 A lay ag
R
The proof is omitted as it is very similar to the proof of Theorem . It follows that the Racah-
Wigner coefficients can be evaluated in terms of the overlap between these two bases:

s [Ots 042]

s tag ay TQT as *Qs [a3 «
89 {mala), - —— [arener (oL, [ mw) el 3 )
at[&;al] R

The integral can be done by using the representation () for the b-hypergeometric function. The
result is just equation (@) with N = 1.

5.6. Properties the Racah-Wigner coefficients

First of all let us note that orthogonality and completeness of the bases {®, ;as € S} and
{®! :ay € S} imply the following orthogonality relations for the b-Racah-Wigner symbols

o

(89) /das |Sp(2as)|* {21 22| oe} ({1 ez ] e })" = [Sh(2a0)[* 6(ar — B).

a3z g | o [e e
N

This may be verified e.g. by rewriting

(o, (02 02 le(@as ), (07 0212l )) =

— [Sy(200)| 50 — })d(cs — )34 — )

(90)

with the help of the inversion formula to (IE)
2

.
({oafasy,)" @0, [0 02 (zas ),

Sp(2as)
Sb(20¢t)

O @l [0 = [ da.
S

and finally using (@) with subscripts ¢ replaced by s.
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Second, by considering quadruple products of representations one finds the so-called pentagon
equation in the usual way:

B2 } ar oz
Y16l as

92) /d51 cr e[ {eoelny, = {0 Sy

asz B2 ag ag |y Qs Y2 g as
S

5.7. From intertwiners to coinvariants

Let us consider coinvariants on tensor products of representations. These will be maps B : P, ®
... ®Pq,. — C that satisfy the coinvariance property

(93) Bo ((Ta, ® ... 0 Ta ) AM (1)) = 0, u € Uy(sl(2,R)),

i
>

where A(™) is defined recursively by A = (id ® A)(A™~D) = (A @ id)(A"—D), A®?)
The basic case to consider is n = 2. Let By, : Pg—a ® Po — C be defined by

(94) Balf®9g) = (f,Tg), T =T.'%

PROPOSITION 8. — B, satisfies the coinvariance property @).
Proof. — Let us note that
(95) (T:°f,9) = (£, T."%)
if f € Pg_a and g € P,. A straightforward calculation then shows that
(96) (To-a(W)f, g) = (fimalu)g), u€Uy(si(2,R)).
It is useful to also note the commutation relations
(97) TEy = e ™E,T, TF,=¢"™F,T, TK,=K.T.
We may then calculate in the case u = E

Ba(((ﬂ'Q—a ® 7o) o A(E))f ® 9) =
= <EQ*afv TKa.g)+ <KQfo¢f7 TEuwg)
(98) = (Bg-of, KaTg) +¢ ™ Kqg-af . EaTg)
= ([, BaKaTg) —q (Tf, KaEaTyg)
= 0.

The calculation for the case u = F' is identical and the case u = K is trivial. O
A coinvariant B, : P, ® P, is then obtained by combining B,, with the intertwining operator Z,,:
99) B, = B,o(Z,®id).

In order to construct coinvariants B(™) for n. > 2 one may use intertwining maps

Ce Homuq(g[(Q_’]R))(,Panil ... Pal,Pan).
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Such maps can be constructed by iterating Clebsch-Gordan maps, as has been discussed explicitly
in the case n = 4 at the beginning of the present Section. One may associate a coinvariant B¢ to any
Ce Homuq(g[(Q_’]R))(,Panil R...Q Pal,Pan) via
(100) B, = Bo(id® ().

The maps C can be represented explicitly with the help of meromorphic integral kernels ®¢ (z,,; r),

t = (xp-1,...,x1) that generalize @b% and the Clebsch-Gordan coefficients. It follows that the
corresponding coinvariant B¢ can be represented as

i Q
101)  Be(fu®...® f1) = /danz:fnm) /dxq’c(ﬂCn;F) Focr(@n) . fr(@).

R Rn—1
It is possible to rewrite (JLO1]) as a convolution of f,,(x,,) ... fi(x1) against a kernel ¢ (z), x =
(Zn,...,x1): To this aim it is necessary to “partially” integrate the finite difference operator in

([L01) to let it act on ®¢. One should note that the analytic continuation of the integral over ¢ to
complex values of x,, may in general be represented by integrating the variable ¢ over deformed
contours, cf. e.g. the proof of Proposition E One arrives at a representation of the form

(102) Be(fn®...0 f1) = /dxn...d:cl Uo(xn,. .. x1)fu(zn) ... fi(z),

Ccn
where
,i%
(103) Uo(tn,...,x1) = T, > Pe(zn;Tn-1,...,21)-
REMARK 10. — The kernels that represent the coinvariants are in some respects analogous to func-

tional realizations of the conformal blocks in conformal field theory. We strongly suspect that we are
touching upon the tip of an iceberg at this point: Quantization of Teichmiiller space, as developed
in @] [@] conjecturally leads to a construction of spaces of conformal blocks in Liouville theory.
One may expect this to be equivalent to a quantization of certain moduli spaces of flat SL(2,R)
connections on Riemann surfaces with marked points. In analogy to results of [@] one would ex-
pect spaces of conformal blocks in the case of the punctured Riemann sphere to be represented by
spaces of coinvariants in tensor products of U, (s[(2,R)) representations. A class of these has been
constructed in the present subsection. It would certainly be rather interesting and far-reaching if
one could establish a direct relation between these spaces and the Hilbert spaces constructed via
quantization of Teichmiiller space.

In this regard we find the following observation quite intriguing: Consider the case of n = 4.
There is a canonical way to define a Hilbert space H(*4) of coinvariants by taking the sets { (I)ZA o€
S} for either b = s or b = ¢ as basis in the sense of generalized functions with the normalization
given by

(104) (B, 8°,) = [S,(20)|726(a — ).

The observation made in subsection 5.6. now implies that H(*4) is in a canonical way isomorphic
to L?(R) such that multiplication with [c, — £]? (resp. [ovs — £]?) gets mapped into the self-adjoint
finite difference operator Qg (resp. Q). Maybe there is a rather direct connection of these operators
to the geodesic length operators appearing in the quantization of Teichmiiller space. This would
establish a direct relation between the latter and our quantum group results.
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6. APPENDIX A: SPECTRAL ANALYSIS OF Cy; (k3)

This appendix is devoted to the proof of TheoremE.

6.1. Preliminaries

The difference operator to be considered is of the form

(105) Cor (I€3) _ [043 _ %]12; _ 6+e7ribQ627rbw — 80 + 5_e—wier—27rb;E7
where 5, s = —, 0, + are x-independent finite difference operators given by
(106)

64 =Ty [dy — o — iks),[dy — a1 + ika],
200 = {0}, (1Q1T, 2" = (2™ {205 = Q}, + €™ {201 — Q1) T, ™ + {205 - Q}, )
6_ =T, ®[dy + o — ik, [dy + a1 + iks],,

and k3 = —2k;. It will initially be defined on the domain ® C L?(R) consisting of functions with
the following property: There exists a function F'(z) that is

(1) holomorphic in the strip {z € C|Im(z) € [—2b, 0]} and
(2) the functions F,(z) = F(x + iy) are in L?(R, dz cosh(27bz)) for any y € [—2b,0].

PROPOSITION 9. — The operator (Cz1(ks), D) is a symmetric, densely defined operator in L*(R).
The domain D of its adjoint is dense as well.

Proof. — First of all note that one has

(107) (f. T, %)= (T;"f,9)

for any f, g € ©. This follows by shifting the contour of the integration that represents (f, T_g) to
the line R +4b. The fact that C2; (k3) is symmetric is then seen by a simple calculation remembering
thata = Q —«;,9=1,2.

The fact that © and DT are dense in L?(R) is easily seen by noting that any Hermite-function is
contained in these sets. O

The Paley-Wiener theorem provides a characterization of the Fourier-transform D of the domain
D of Cy;(k3). The action of C;(k3) on functions in © then corresponds to acting on © with the
following operator:

Ca1(k3) — [z — %}Z = Ag— ¥ A 4 YA,
Ao = [dy + a3 — Q — 3(a1 + a2)]y[dw — a3 — F(o1 + a2)],
(108) Ay = [dy + (a1 + aQ)]b(e”“dw*%(“l*“z”@{al — g — 2ik},
_ e*iﬂb(dw%(eraz)JrQ){al —an + Qik}b)

Ay = [dy + (a1 + a2)],[du + F(01 + a2) + Q).
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6.2. Strategy

The key to the proof of Theorem is the following result characterizing regularity and asymptotic
properties of distributional solutions to the eigenvalue equation of the operator Ca; (k3):

THEOREM 5. — Let ® € §'(R) be a distributional solution of (Ca1 (k3) — [z — %]2)’5 o =0.

(1) ®is represented by a function é(w) that can be continued to a meromorphic function on C,
with simple poles within &g /5 only at

w=—kz+ilag +nb+mb'), w=—ks—i(a; +nb+mbt),

z>°.
w=+ks+ilaz+nb+mb ), w=+ks—i(az+nb+mbt), e

(2) @ can be represented as ® = lim_,g ®. where ®. is for ¢ > 0 represented as the restriction
to R of a function ®.(x) that is meromorphic on C with poles only at

z=+4(on+az— Q) xi(az—2) —i(e+nb+mbt),

: z>.
a::—%(al—i-ozg—Q)—l—i(%—l—nb—i-mb*l), e

In fact, given these properties it is not very difficult to show that for any given eigenvalue [cig — %] 2
there is at most one tempered distributional solution to the eigenvalue equation (Proposition .
Moreover, no such solution exists for Re(2as — Q) # 0. It follows [@] that the deficiency indices
vanish and C2; (k3) has a unique self-adjoint extension. The spectral decomposition can be written
as expansion into generalized eigenfunctions [E]. It can be shown on rather general grounds that
only tempered distributions can appear in the spectral decomposition, as nicely discussed in [@]
The combination of Theorem EI and Proposition [13 therefore also yields a characterization of the
support of the Plancherel measure.

These remarks reduce the proof of Theoremﬂ to that of Theorem E and Proposition .

6.3. Preparations

In view of the explicit expressions for Ca1(k3) (cf. (I@)) resp. its Fourier-transform () one
may anticipate that the analysis of the asymptotic behavior of ® and ® will require some information
about properties of the operators d, §_ resp. Ap, Ay. The information that will be needed is
contained in the following Lemmas:

LEMMA 11. — &4 is invertible on C°(R). The image f(x) of a function g € C2°(R) under 53
has the following properties:

(1) f(x) is analytic in the strip {x € C;Im(z) € (—2b,0)} and f(x) € C®(R), f(z — 2ib) €
C>®(R).
(2) f(w) is meromorphic in C with simple poles at
w=—ks+i(Far+nb")  w=H4ks+i(Faz+nb') neZ
Proof. — The action of 6;1 is represented on the Fourier transform f as multiplication with
(6+) M w) = e 7 ™[iw T oy — ikg]b_l[iw Foa+ ik3]b_l.

The statement on the analyticity properties of f is then clear after recalling that the function g(w)
is entire analytic and of rapid decay being the Fourier transform of a C2° function [EI, Theorem
IX.11].
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The statement that (63 'g)(z) is analytic in the strip {x € C;Im(z) € (—2b,0)} follows from
the asymptotic decay properties of (5;1)@) by means of the Paley-Wiener Theorem. In fact, the
rapid decay of g(w) ensures convergence of the inverse Fourier transformation for any x-derivative
of (67" g)() even in the extremal cases Im(x) = 0 and Im(z) = —2b. O

We will furthermore need similar statements about the inverses of Ag and As.

LEMMA 12. — Ay is invertible on C°(R). The image f(w) of a function g € C°(R) under Ay*
has the following properties:
(1) f(z) is meromorphic in C with simple poles at
.CC:—%(O[1+O[2)—’L'(Q+TLI)71) I:—%(Ozl +Oé2)+7;nb71 TLEZ
(2) f(w) is analytic in the strip {w € C;Im(x) € (=b,b)} and f(w £ ib) € C=(R).

LEMMA 13. — Ay is invertible on the space of functions
D(Ag) = (dw + a3 — Q — 3(o1 + a2)) (dw — as — 5(a1 + a2)h, heCX(R).
The image f(w) of a function g € D(Ao) under Ay* has the following properties:
(1) f(x) is meromorphic in C with simple poles at
:cz—i—%(al—l—ag—Q)j:i(cm—%)—inb‘l n € Z\ {0}.
(2) f(w) is analytic in the strip {w € C;Im(z) € (=b,b)} and f(w £ ib) € C=(R).

6.4. Asymptotic estimates

We now want to show that the Fourier-transform ® of ® may actually be represented by integra-
tion against a function i)(w) For technical reasons it will be necessary to start by considering the
distribution @ € S'(R) defined by

op=turwd= J] w-u),
w’€I+UI,
Im(w’)|<R

where 7, (resp. Z_) are the sets of values for w where either 0 (w) or o (w) have a pole in the
upper (resp. lower) half plane. The following result characterizes the asymptotic behavior of @ .

PROPOSITION 10. — Let 73, € C°(R) have support only in [n — 1,n + 1). For sufficiently large
value of R there exists some N > 0 such that

(109) cosh(2mbn)(®r,7,) < N foralln € Z.

Proof. — We will rewrite (P g, 7,) in a form that allows us to estimate its asymptotics for large
n. One may write
<¢R7 Tn) :<q)7 6tr,RTn>7
(®,6,e*™q, g), where 0, g = e 2™%(64) " 0tr RTn;

(®,050n,R), where 65 = (89 — d_e 2™7).

(110)
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In the last step we have used that & weakly solves the eigenvalue equation, for which one needs
to check that 0,, g € ©: One point of having introduced d;, g is that it improves the asymptotic
behavior of (64) 8¢, r7y, for  — —o0 by cancelling the poles of its Fourier transform in {w €
C;Im(w) < R}.

The regularity theorem for tempered distributions [@, Theorem V.10] allows us to furthermore
write

o0

(111) (PR, Tn) = / dz O(z) pn,r(x) where p,.r = 85 6fre_2”b””(5+)_15tr,RTn.

— 00

for some positive integer k and a polynomially bounded continuous function ©(z). The functions
pn,r(x) may be represented by expressions of the form

e [ - Pr(@)70 ()
_ 2mbx 2miwe k,R
(112)  pnr(z) = ];132 Cre /dwe (1= ZriaFiian) ) (] — Zrbatian))’

— 00

where Py r(w) k = 1,2 are some polynomials in w. The functions p,, g(z) have main support
around z = n, and by choosing R large enough one can achieve decay stronger than e 27 —7
for any A > 0. It is then convenient to split the integral in () into an integral .J,, obtained by
integrating over [2, 22

In order to estimate J¢ one may use the polynomial boundedness of ©(z) to estimate its absolute
value by some constant times cosh(ex), where € can be as small as one likes. The absolute value of
pn,r(x) canin R\ [2, 3] be estimated by some inverse power of cosh(x), which is bounded by the

chosen value of R. It follows that the exist D¢, /N1 such that

] and the remainder J¢.

(113) |J¢| < Die ™" foranyn > N,

where p can be made arbitrarily large by choosing R large enough.
In the case of .J,, one may estimate |p,, r(z)| by some constant times e ~27*"e~27tlz="| and O (x)
simply by a constant, which easily gives existence of Dy, Ns such that

(114) |Ju| < Doe™2™  forany n > Nj.

This proves the claim about the asymptotics for n — co. In the case of n — —o0 one uses the
operator _ in a completely analogous fashion O
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6.5. Representation of P

Assume that the set {7,,;n € Z} represents a C>°(R)-partition of unity. It will be convenient to
choose the 7,, as translates of 79: 7, () = 7o(z — n). This can always be achieved: Let

0 it |z[ >3
1 if |z| <%
() = xz+3) if ze[—2 -1]
(115) l1-x(z—1) if ze[+1+3]

1
x(z) Nﬁl/dte p( L ) N /4dte p( L )
= X _— = X _—
(z =)@ +7) (z = D@ +7)
Z1 Z1
4 4
The result of Proposition [1(J implies convergence of the following sum

(116) Cr(w) = D (g, mae ")
nez

which defines ® »(w) as a function that is analytic in the strip {w € C;Im(w) € (—b,b)}.

PROPOSITION 11. — The function ® r(w) represents the distribution ® i in the sense that
() @ f) = [ doBr(w)fw).

Proof. — To begin with, note that ® ¢ ,, (w) = (PR, The~2™“7) represents the Fourier-transform
of the distribution 7, € S’(R) of compact support [ﬂ, Theorem IX.12]. It follows that
(® R, The 2™ is polynomially bounded. Since the convergence in () is absolute, one con-
cludes that ®(w) is polynomially bounded as well. In the evaluation of ®x(w) against a test-
function f € S(R) one may therefore insert definition () and exchange the orders of integration
and summation to get

/ dw Bp(w)fw) =Y / dw B g, (W) f(w)
(118) s nezZ
= Z (PR, Tnf) = (PR, f),
newr

where we used that fact that the set {7,,; n € Z} represents a partition of unity in the last step. O

In order to recover the sought-for distribution ® from ®r one only has to divide P r(w) by
dtr,r(w). The resulting function is meromorphic in the strip {w € C;Im(w) € (—b,b)}, with
poles at distance 3 (b~" — b) from the real axis.
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6.6. Representation of ¢

In order to get a similar result on the representation of ® in x-space we will analogously consider
the asymptotics of ® in w-space. Here it will be convenient to start by considering

r=dpr@®= [[ @-2z) J[ G@-ye
se{+,—} yeT UL
Im(z)|<R

where 7 (resp. Z_) denotes the union of the sets of zeros of Ag(z) and Ao(z) which lie in the
upper (resp. lower) half plane, and x4 are the zeros of Ag(z) that lie on the real axis, given by
4 =+i(on+ao— Q) £i(as — %)
For the asymptotics of fiJ’R one has a result completely analogous to Proposition E:

PROPOSITION 12. — Let {7,;n € Z} be a sequence of functions in C°(R) that have support only
in [n — 1,n + 1]. For sufficiently large R there exists some N > 0 such that

(119) cosh(2mbn) (@, 7,) < N foralln € Z.

Proof. — The proof'is to a large extend analgous to that of Proposition , so we will only sketch
some necessary modifications.

In order to get an estimate of (®;,7,,) for n — —oo one may use the eigenvalue equation to
rewrite it as

<~ ;%7 Tn> :<(i)7 AOAaldér,RTn>

(120) .
=(0,A§A S jTa)  where Af = 2™V A; — !V A,.

It follows as in the proof of Proposition [[{] that (&', 7,,) ~ e*2™" for n — —oc.
In the case of n — oo one may use instead

(@, Tn) =(®, €™ Dy A e TG, T

(121) _
=(0,ASA; e ™S pT,)  where Af = ¥ AL — Ay,

which gives (5, 7,,) ~ e~2™" for n — o0. O

It follows as in the previous section that ®’, is represented by convolution against a function
@', (x) which is holomorphic in {z € C;Im(z) € (—b,b)}. In this case, however, recovering ®
from @’ is more subtle since SéryR(:c) has two simple zeros on the real axis. The resulting ambiguity
in the definition of ® in terms of ®’;(x) is well-known (cf. e.g. [@, Chapter V, Example 9]) and
may be parametrized as follows:

C 1-C 1
R | e e D D(a).
I r—xs+10 x—x5—10 y€I+UI,I_y
Im(z)|<R

Lemma E then describes the corresponding asymptotic behavior of i)(w) In general one would
find terms with exponential decay weaker than e 271

d¢, r () strictly above the real axis, or from 2. in the case of Cs # 0. The occurrence of such terms
can be excluded by means of the following argument:

| for w — oo that come either from zeros of



-31-

LEMMA 14. — Let ® € S'(R) be a distributional solution of (Co1(k3) — [ag — %]Q)t ® = 0 that
is represented by a function é(w) which has asymptotic behavior for w — 0o of the form

d(w) = +2mi Z eTTEYR 4 B, (w),
JEI-

where ®y,(w) decays at least as fast as e=>™ for w — oc. Then R; = 0 if Im(z;) < b.

Proof. — Consider <<i>, Tn)» Where now 7,, is chosen proportional to e*(@=m)° One has

(123)  [ag = 9, (B.7) = (B, (80— ™A1+ Ay + [a5 - §} ) 7).

Now if there were terms with exponential decay weaker than e~27" in the asymptotic expansion

of i)(w) for w — oo one would find terms terms that grow exponentially with n — oo on the right
hand side of (). But polynomial boundedness of ® excludes the occurrence of such terms on the
left hand side of ([123). O

6.7. Completing the proof of Theorem E

Concerning the distribution ®, we previously found that away from its singular supportat z = x
it is represented by a function ®(z). The asymptotic behavior of ®(x) is via Lemma P given by the
analytic properties of ® that were stated after the proof of Proposition . The possible poles of P
at distance %(b’1 — b) from the real axis would lead to terms which decay more slowly as e =270l
for || — oo. The appearance of such terms can now easily be excluded by an argument analogous
to the proof of Lemma E in the x-representation.

Furthermore, knowing that the function ®(x) that represents ® away from its singular support de-
cays exponentially for || — oo allows us to use an argument very similar to the proof of Proposition
to further improve upon the estimate of the rate of decay as given in Proposition : In estimating
Jp, one may for large enough n replace ©(z) by ®(x). The exponential decay of the latter may then

be used to improve () to
(124) |Jn| < Doe™™" foranymn > Nj.

for some v > b, implying that ®(z) decays faster than e~27I%l for || — oco.

But this means via Lemma E that the Fourier-transformation i)(w) is analytic in an open strip
containing {w € C;|Im(w)| < b}, and that ®(w) solves (Cy (k3) — [az — %]g)ti)(w) = 0in
the ordinary sense. The meromorphic extension to all of C is then easily obtained by using the
eigenvalue equation to define the values of ®(w) outside {w € C; [Im(w)| < b} in terms of those
inside. This finishes the proof of the first half of Theorem E The completion of the proof of the

second half proceeds along very similar lines.

6.8. Uniqueness of generalized eigenfunctions

Theorem 3 also implies that the meromorphic function ®(z) that represents the distribution ®
must solve the transpose of the eigenvalue equation in the usual sense.

PROPOSITION 13. — There is at most one solution to (Ca1(k3) — [ag — %]2)’5 ®(x) = 0 that has

the analytic and asymptotic properties that follow from Theorem ﬂ
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Proof. — 1If one introduces Z(z) via (recall k3 = —2k3)

@(:Z?) _ 6771:(0434’041704277;/{3) Sb(—ix — %(al + ag) + 043)
(125) Sp(—iz + 3(o1 + a2))

X E(x — L(ar+ a2 —2(Q — a3

~

),

one may verify by direct calculation using the functional equation of the function Sy(z) that the

equation (Ca1 (k3) — [z — %]Q)t ®(z) = 0is equivalent to the following equation for Z(x):

~

((1 _ eQWib(OéaJrOtl*OQ)T;b)(l _ eQﬂib(agfin3)T;b)
(126) _ _ . .
_ 6727rbx(1 _ T;b)(l _ e27rzb(a17a2fmg)Tzzb))E(x) —0.
By using Lemmaﬂ and the properties of Sp(z) that are summarized in Appendix B one may deduce
the following properties of the Fourier transform =(w) of Z(z) from Theorem fj;
(1) Z(x) has a Fourier transform Z(w) that is analytic in {w € C;Im(w) € (—Q/2,0)}, and
(2) Z(w) has the following asymptotic behavior for w — +o00:
E(w) = Ry (w), Ew)=K_ +R_(w),

where K _ is a constant, R_ (w) has exponential decay for w — —oo and R (w) has expo-

nential decay stronger than e =4 for w — oco.
Equation ) is equivalent to the following first order difference equation for é(w):

((1_62ﬂib(a3+a170(271'0.1))(1 _ eQﬂ'Z‘b(O{g*il{:;*iw))
(127) _
—(1- eZm'b(Q—iw))(l _ e27rib(Q+o¢1—ag—ine,—iw))Tjjb)E(w) —0.

Now there exists a solution to (, namely
) Gp(asz + a1 — az —iw)Gp(ag — ikg — iw)
w) = ,

Gp(Q —iw)Gh(Q 4+ a1 — a9 — ikg — iw)
that has all the required analytic and asymptotic properties. If there was a second solution = (w) of
these conditions one could consider the ratio Q(w) = Z'(w)/E(w). This ratio must be a solution
to (T — 1)Q(w) = 0. Since Z(w) has no zeros in the open strip {w € C;Im(w) € (-Q/2,0)}
one concludes that Q(w) is holomorphic in any such strip. The function @ (w) must furthermore
be asymptotic to the constant function for w — Zoo. But this implies that ) = const.: The
function P(z) = Q(% In(z)) is holomorphic and regular on the whole Riemann sphere, therefore
constant. O

[1]:

(128)
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7. APPENDIX B: SPECIAL FUNCTIONS

The basic building block for the class of special functions to be considered is the Double Gamma
function introduced by Barnes [@], see also [@] The Double Gamma function is defined as

6 oo
(129) log Ta(s|wi,ws) = (E Z (s +niwi + ngwg)_t> .
t=0

nl,ngzo
Let I'y(x) = Ta(z|b,b~ 1), and define the Double Sine function Sy(z) and the Upsilon function
Ty (z) respectively by
- Fb(ZE) - 1
[p(Q — )

It will also be useful to introduce

(130) Sp(x)

(131) Gy(z) = e2 7@~ G, (7).

7.1. Useful properties of .5;, Gy,
7.1.1. Self-duality.
(132) Sb(.%') = Sb—l (ac) Gb(.’t) = Gb—l(CL‘).

7.1.2. Functional equations.

(133) Sp(z 4 b) = 2sin(7bx)Sy(z)  Gp(z +b) = (1 — ¥™)Gy(x).

7.1.3. Reflection property.
(134) Sb(:Z?)Sb(Q — x) =1 Gb(I)Gb(Q _ I) _ eﬂ—i(IQ,xQ)'

7.1.4. Analyticity. Sp(x) and Gy,(z) are meromorphic functions with poles at z = —nb—mb~! and
zerosatz = Q +nb+mb~, n,m € Z2°,

7.1.5. Asymptotic behavior.
(135)

e—%i(m2—wQ) for Im(x) — 400 1 for Im(:z:) — +00
Sp(w) ~ G ()

eT5 (@ =2Q) for Im(z) — —o0 etmi@®—2Q) for Im(z) — —o0

7.2. b-beta integral

LEMMA 15. — We have
1T s GilrHa) | Gy(@)G(8)
(136) By(a, 8) = - /dTe Gor T Q) ~ Golat P

7

—100
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Proof. — From the relation (recall T f (1) = f(7 + b))
T 5 Gp(T + )
(137) 0 = / dr(1 —TP) e?mmh 20~ L
_ ( ) Go(T+Q)
which easily follows from the analyticity and asymptotic properties of the G-function by means of
Cauchy’s theorem one finds the following functional equation for By («, 3):
Byla,B+b) 1 —e2m8

(138) Bo(aLb,8) 1= e2mod’

By the b — b~ ! self-duality of Bj one also has the same equation with b — b~!. For irrational
values of b it follows that and its b — b~! counterpart determine B; uniquely up to a function
of o + B. The expression on the left hand side of course satisfies (). To fix the remaining
ambiguity one may note that the integral defining B} can be evaluated in the special case of & = b1
by means of [, Chapt. 1.5., eqn. (28)]:

b 1
—1 o
(139) By(b™",8) = T ez 5"
The equation ( follows. o
Let us also introduce the combination
Gy(y)
140 O(y;0) = ————.

The b-beta-integral ( can be read as a formula for the Fourier-transform of ©;(y; «):

1 1 100 .
141 Ou(y;a) = = [ dr oo, (r 4 y; .
(141) ) = gyt [ e ety

An expansion describing the asymptotic behavior of O (y; ) for [Im(y)| — oo can therefore easily
be obtained from Lemma (E): One finds

) . ~ (__)(n,m) 277i(nb+mb71)y
b(y; @) () —s+o0 e b+ (a)e

Oyyia) = Y O (a)erBrietnbim iy,

Im(y)——
m(y)——00 I

(142)

where @g?f)(a) =1, 61(7?’_0) (a) = e~ mio(a—Q)

7.3. b-hypergeometric function

The b-hypergeometric function will be defined by an integral representation that resembles the
Barnes integral for the ordinary hypergeometric function:
l Sb(’}/) / ds eZﬂ'isy Sb(O[-FS)Sb(ﬂ—FS)
i Sy()Sy(8) Sp(v+5)Sp(Q +5)

(143) Fy(a, Biv;y) =

—100
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where the contour is to the right of the poles at s = —a —nb —mb~!and s = —3 — nb — mb~!
and to the left of the poles at s = nb+mb~lands = Q —y+nb+mb~ ', n,m=0,1,2,.... The
function Fy(cv, B;; —ix) is a solution of the g-hypergeometric difference equation

(144) ([0 +al[6: + B] — e ™%[6,][00 + v = Q) Fo(av, B57; —ix) =0, 0y = 50,
This definition of a g-hypergeometric function is closely related to the one first given in [B(].
LEMMA 16. — Consider the case that Re(a)) = Re(8) = Q/2, Re(y) = Q. Fp(e, B;7v;y) is
analytic in y in the strip {y € C;Re(y) € (—Q/2,Q/2)}. The leading asymprtotic behavior for
[Im(y)| — oo is given by
Fy(a, B;7;y) =1+ O(*™™) +
+627ri(Q—v)y Sb(/Y) Sb(Q+B _W)Sb(Q—i_O‘ _’7)
Sp(2Q =) S()Sy()
(145) oy 96(7) S (@ = B) :
F a, B;7; :e—QTrzay 1+ O e—27rzby
—2mifBy Sb(V)Sb(ﬁ - Oé)
Sb(@)Su(y — B)

There is also a kind of deformed Euler-integral for the hypergeometric function ]:

(1 +O(2mit))

+e (1 + O(=e*mitvy),

1 700
(146) \Ifb(a,ﬁ;”y;y):; / ds e

—100

2mwisf3 Gb(S + y)Gb(S + - ﬂ)
Gy(s+y+ a)Gb(s + Q)

For the case of main interest, Re(or) = Re() = @/2, Re(y) = @ and Re(x) = 0 one needs to
deform the contour such that it passes the pole at s = 0 in the right half plane, the pole at s = —y in
the left half plane respectively. It then defines a function that is analytic in the right y half plane and
develops a pole on the imaginary axis at x = 0 (Lemma E).

LEMMA 17. — Uy(a, B;v;y) has the following asymptotic behavior for |Im(y)| — oo:

Gy(y — B)Gu(B)
Gp(7)

(y—B) (y— B (0—ry Go(@+a—7) ;
+ 67”(’7 B)(v—8 Q)e27”(Q 7Y 1+ O e27rzby
Go(2Q =)o) " T O

Uy(a, Bi7;y) = (1+0(e’ ™))

(147)
iy —mia(ao) G (B — @)Gy(y — B) —omi
. __—2miag mia(a—Q) b 2miby
\I]b(au 67773/) =€ Ue Gb(”)/ _ O[) (1 + 0(6 U))
—origy —minis—o) Go(a— B)Gy(B) o
2731 TiB(B—Q) Fb 27iby
+e Ye — G0 (14+0(e ).

Proof. — In order to study the limit Im(y) — oo it is convenient to split the integral into two
integrals I, and I_ over the intervals (—y/2, 00) and (—o0, —y/2) respectively. In the case of I
one may use the asymptotics of the O, functions containing y for imaginary part of their argument

going to 400, eqn. (), to get

; _ : l QﬂisﬁGb(S_Fﬂ)/_ﬂ) _ Gb(ﬂ)Gb(FY_ﬂ)
(148) lim I, = lim /ds e G5+ Q) = )

Im(y)—o0 Im(y)—o00

Yy
2
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where ([[36) was used in the second step.
To study the behavior of I_ for Im(y) — oo it is convenient to change the integration variable in
the second integral to ¢ = s + y. One gets

y
2

1 ori(t—y)s Go(H)Go(t —y +v — B)
(149) I,—i / dt e Goll + )Gl —y + Q)

—100

In this expression one may now use the asymptotics of the O functions containing y for imaginary
part of their argument going to —oo, eqn. (), which yields as previously

: —ormiy(Q— () (v—B-Q) 2mi(@—y)y_Gb(@ +a —7)
150 lim e 2™w(@@-7] = m(v=B)(=6-Q)27i(Q—-7)y )
( ) Im(y)— o0 Gb(2Q — 'y)Gb(a)
The behavior for Im(y) — —oo is studied similarly. O

LEMMA 18. — Uy(a, B8;7; y) is a solution of the finite difference equation L, ¥y, = 0, where
(151) Ly =e 2™ (1 = TP)(1 — 2™~ ) — (1 — 2™0Th) (1 — 20T,

Proof. — Abbreviate the integrand in ([4€) by I. A direct calculation shows that it satisfies the
equation

Gp(s+x)Gp(s+v—B)
Gy(s+z+a+b)Gy(s+b71)
The Lemma follows from Cauchy’s theorem. O

(152) L] = _(1 _ eQwiba)(l _ st)e%'risﬁ

The finite difference equation allows us to define the meromorphic continuation of Wy, into the right
y half plane. The precise relation between Wy, and Fy is

(153) Uy, B3739) = %Wﬂ(a,ﬁ;% v), Y =y—-s(v—a-5+Q).

This follows as in the proof of Proposition (B) from the facts that (i) the finite difference equa-
tions satisfied by left and right hand sides of (153) are equivalent, and (ii) analytic and asymptotic
properties of the functions of y appearing on both sides of () coincinde.
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8. APPENDIX C

This appendix collects some results on the analytic and asymptotic properties of Clebsch-Gordan
coefficients, the kernels fIJb, b = s,t and the Racah-Wigner coefficients.

8.1. Clebsch-Gordan coefficients

LEMMA 1. — The analytic and asymptotic properties of the Clebsch-Gordan coefficients

[ @3 22 21 ] may be summarized as follows:

r3 T2 T1
ON 293_0‘3 o2 @1 ] decays exponentially as e~ 2mailzil if any one of |z;| — 00,7 = 1,2, 3.

(2) the Clebsch-Gordan coefficients are meromorphic w.r.t. each variable z;, ¢ = 1,2, 3 with
poles w.r.t. z; at

Upper half plane: T =22 — &(a1 + a2 — 2a3) +i(e +nb+mb 1)
1 =123 — L(as+o1 — Q) +ile+nb+mb ")

Lower half plane: Ty =20 — £(Q — a1 — az) —i(Q +nb+mb ")
T1 = T3 — %(2042 — a3 —ap) —i(Q+nb+mb 1),

where n,m € Z2°, and w.r.t. z at

Upper half plane: Ty =121+ £(Q— a1 —az) +i(Q +nb+mb ")
Ty =x3+ (200 — a3 — az) +i(Q +nb+mbh)
Lower half plane: Ty =21 — £(203 — a1 — ag) —i(e +nb+mb 1)

Ty =125 — £(Q —asg —az) —i(e+nb+mb~ ).

[SIER N

|=

Proof. — Direct consequence of analytic and asymptotic properties of the S,-function given in

Appendix B. O
LEMMA 2. — The dependence of | 33 zz 2‘11 | w.r.t. variables k3, k2, k1 is of the following form:
(154) [av o] = 8(ns —na—m) Z(23 22 %),

where Z( 23*0‘3 z‘j 2‘11) is defined on the hypersurface k3 — k3 — k1 = 0 only and is meromorphic

w.rt. K4, ¢ = 1,2, 3 with poles only at

(155) ki = Fi(og +nb+mb~ 1), i=1,2,3, n,m e Z=°.
Proof. — One needs to calculate
(156) [aaozon] — / e S B B

R
By inserting (B3)) and changing variables (21, x3) — (x4, 2_), 2+ = 2 + 2 one finds that the

integration over x produces d(k3 — k2 — K1). Z( P, :11) is therefore given by the integral
(157) Z(oaozon) = /dx_ emiw=(ka=k) & (qy, aq|kig)z_ ).

R
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It is then useful to employ the Barnes integral representation () for the b-hypergeometric function
that appears in the definition (E[) of the function ®,,. The order of integrals in the resulting double
integral may be exchanged, and the x_ integration carried out by means of . Up to prefactors
that are entire analytic in k;, ¢ = 1,2, 3 one is left with the following integral:
(158) l / ds 27159 Gb(s—I—Al)Gb(S-l-AQ)Gb(S—I—Ag)7

Gy(s + B1)Gy(s + B2)Gy(s + Bs)

7

—100
where the coefficients are given by

A =Q —az+a; —a B =Q + a1 — az — ik3

(159) Ay =Q — a3 — k3 By =2Q — a3z — as + iK1
Ag =1 + Z.Iil Bg :Q
The claim now follows by straightforward application of Lemma E O

8.2. Kernels @th,b =s,t

LEMMA 19. — Analytic and asymptotic properties of @ZS [@8 2] (x4;1) can be summarized as

[eZ e )

follows:

(1) @3, [5? 52| (wa;¥) is meromorphic w.r.1.

z1 in {x1 € C;Im(z1) € (—Q,b)} zg in {xs € C;Im(z1) € (=b,Q)}
xzo in {xe € CiIm(z1) € (=b,Q)} g in {xq € C;Im(z1) € (=b,0)}.
The poles are located at (notation: x;; = x; — x;)
T12 + %(02 + a1 —20,) — 2ie = 0,
T12 4 502 + a1 — 2(Q — ay)) —ie = 0,
z13 + 5(az + a1 — 2(Q — o)) — 2ie = 0,

214 + 2(a1 — ay) — 2ie =0,

234 + 2(aq — ag) +ie =0,

It decays exponentially for |x;| — oo as e~ Rl

(2) @, [ @] (w4;1) is analytic w.r.t.

aslay an
z1 in {x1 € CiIm(z1) € (—Q,b)} zg in {xs € C;Im(z1) € (=b,Q)}
xo in {xe € C;Im(z1) € (—Q,b)} zg in {x4 € C;Im(z1) € (—0,b)}.
The poles are located at
r32 — 2 (s + a2 — 2a4) + 2ie = 0,
w32 — S(az + a2 — 2(Q — o)) +ie = 0,
213 + 5(a3 + a1 — 2(Q — o)) — 2ie = 0,

r14+ 2(a1 —ay) —ie =0,

T34 + (0 — as) + 2ie = 0.

It decays exponentially for |x;| — oo as e~ Rl
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The residues of these poles that are needed in Section 5 can be represented as follows:

(160)

s g 3 O Qs g Q1 .
R13 x UE{IGZSO[ T4 T3 * ] y};lezso[ Ty To * ]133:133—%(Ot3+0t3—2(Q—Ot4))+7:€

s a4 a3 Qg as o o )
Riy x y};ezso[ T4 Ts * ] yEe:So[ zo @y * ]xs:x47%(asfa4)+ie

t ar a3 Qg g oy O .
R13 X y%ezso[ x T3 mz] yI::e:sO[ T Ty * ]mszws—%(as—as)-i-ie

)

Ri4 X /]Rdxt Res [ op @t 2] & o3 02 ]

— xr Tt * T+ T x
ys1=0 T4 Tt t T3 T2

where the undetermined prefactor does not depend on any of the variables and the * appearing in
the arguments indicates the variable of the b-Clebsch-Gordan coefficients that is to be expressed in
terms of the others. The necessary residues are

(161)

Res [ @ 02 1] = 1 Sy (i(zs — x2) — 2 (a2 — a3))
y21=0 T3 T2 * 21Sp(a3 + ag + o1 — Q) Sy (i(w3 — x2) — 2 (02 — a3) + B32)
Sp(i(x2 — 23) + 5(02 + a3 — 2(Q — a3)))
Sp(i(xe — x3) + 3(a2 + a3 — 2(Q — a3)) + fs1)
Res [ @ 02 01 ] = Sp(as + ag —aq) Sb(i(xl —T3) — %(oq + g — 204;,»))
ys1=0 " * T2 1 27 Sb(i(xl —I3) — %(al + ag — 2a3) + 531)
Sy(i(r1 — @2) — (01 + o2 — 2(Q — 3)))
Sb(i(xl —Z3) — %(al +as—2(Q —a3))+ 632)
Res [ 5 @ 1] — Sp(az +ar —az)  Sp(i(zy — x2) — $(a1 + a2 — 203))
Yaa—0 b T3 T2 1 21 Sb(i(gcl —Ig) — %(al + ag — 2a3) + 631)
Sp(i(z1 — 22) — (a1 + a2 — 2(Q — a3)))
Sb(i(xl —I3) — %(al +as—2(Q —a3))+ 621)

Sp(2a3 —
Res Res [ 229 ] = Res Res [ @2 %1 ] = b(203 — Q) '
Ya2=0y2=0"* * * ys1=0y21=0"* * * (27T)2Sb(a1+a2+a3_Q)

LEMMA 20. — Analytic and asymptotic properties of @Zs [@8 2] (k4;1), b = s,t can be summa-

g X7

rized as follows:

(1) @3, [23 @] (ka;x) is meromorphic w.rt.

s lay aq

z1 in {z1 € CiIm(z1) € (—Q,b)}, w3 in {x3 € CiIm(z1) € (=0, Q)},
zo in {22 € CiIm(z1) € (=b,Q)}, ka in {ks € CiIm(z1) € (-2, %

Qs

2) @[22 2] (ka;x) is meromorphic w.rt.

x1 in {x1 € C;Im(x1) € (—Q,b)} z3 in {x3 € C;Im(x1) € (—b,Q)}
xy in {xg € CiIm(z1) € (—Q,b)}  ka in {ks € CiIm(z1) € (-2, 9)}.
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The poles in their dependence on x1,x2, x5 are those poles of ®?, | 2o |.(x4;1), b = s,t, which

are at positions independent of x4. Both behave asymptotically

for |z1| — 0o as e~ 2Rz for |xz3| — 0o as e~ 2TthaTs,
Sor |xa] = oo as e~ 2maz|z2| for |ks| — o0 as e 2T,
8.3. Racah-Wigner coefficients
LEMMA 21. — { g; gz ’ gt }b is meromorphic w.r.t. all six variables and has poles at 5 = —nb —
mb~! where n,m € 7Z2° and 3 may be any of the following:
Qg + a1 — 0 Q—as—ax+ao Q—as—ast+as 20— a3 —as—as
Qs+ a1 — o 2Q — a1 —az —as Q—-as—azt+ay Q—az—as+as
aztarta—0Q Q-—az3—a—oa aptato—0Q wtoa—o
s+ a2 — oy Q—az—a—as a1+ o — oy Q—-art+as— o
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