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Abstract

The critical properties of the real scalar field theory are studied numerically on the fuzzy

sphere. The fuzzy sphere is a matrix (non commutative) discretisation of the algebra of functions

on the usual two dimensional sphere. It is also one of the simplest examples of a non commutative

space to study field theory on. Aside from the usual disordered and uniform phases present in the

commutative scalar field theory, we find and discuss in detail a new phase with spontaneously broken

rotational invariance, called matrix phase because the geometry of the fuzzy sphere, as expressed by

the kinetic term, becomes negligible there. This gives some further insight on the effect of UV—IR

mixing, the unusual behaviour which arises naturally when taking the commutative limit of a non

commutative field theory.

1 Introduction

The fuzzy discretisation scheme [1] consists in approximating the algebra of functions on a manifold with

a finite dimensional algebra (i.e. a matrix algebra) instead of discretising the underlying space as a lattice

approximation does.

Studying field theory on a non commutative space such as the matrix algebras we are considering

is covered by the framework of Connes’ non-commutative geometry [2]. For reasons of simplicity, only

the simpler case of the real scalar field will be considered in this paper. As a result, the only relevant

differential operator is the Laplacian and it is possible to consider a greatly simplified theory.

Indeed, discretising an algebra of functions as an algebra of matrices does not carry in itself any

geometrical content, as is obvious from the fact that all fuzzy approximations must yield the same matrix

algebras. What really defines the geometry is the choice of a differential structure and a scalar product.

For the scalar product, we will normally arrange to use the canonical scalar product on the algebra of

matrices

< >c Tr@*) (1)

As a consequence, complex conjugation will be associated with hermitian conjugation and thus, real fields

will be approximated with hermitian matrices. Then, as far as the scalar field theory is concerned, the

only required differential operator is the Laplacian. The fuzzy approximation of the scalar field theory on

a manifold will therefore be entirely determined by the choice of a Laplacian and multiplicative coefficient

in (1) for each matrix algebra.

However, even with such a simple scheme, only a few manifolds can be “fuzzified” in this way, including

the complex projective planes CP” [3] as well as their Cartesian products. Under certain conditions, it

is also possible to approximate other spaces such as the spheres S3 [4] and S4 [5] by imbedding them in

one of the fuzzy ClPr. The non commutative lattice [6] is another simple matrix space where numerical
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simulations have already been performed, although it is not a fuzzy space in the sense that it does not

approximate a manifold but a lattice.

As a discretisation scheme, this “fuzzification” is well suited to numerical simulations of field theories

[7]. As a test run, the first fuzzy approximation to be investigated should be the simplest one, that of

the two dimensional sphere cCIP1 = 82. Besides, the two—dimensional plane can be viewed as the limit of

a sphere of infinite radius.

In this paper, the fuzzy sphere and its properties will first be introduced in Section 2. Then, the real

scalar field theory on a sphere and on the fuzzy spheres will be presented in Section 3. The following

section 4 shows the results of the simulations. Each of the phase transitions between the three phases

present and their scaling properties are derived. A careful analysis of the new phase is also presented in

this section. Finally, the results are summarised and discussed in the Conclusion 5.

2 The fuzzy sphere

The simplest example of a fuzzy space is the fuzzy sphere [8]. As explained in the Introduction, for the

purpose of studying a scalar field theory, the only ingredient required to fix the geometry is a Laplacian

operator and a scalar product on each matrix algebra. Since derivations on the classical sphere can be

viewed as infinitesimal SU(2) transformations, the Laplacian on a (2s +1) x (2s + 1) matrix algebra, also

denoted Mat28+i, can be guessed as
£2== [L1,[L1,çb]j, (2)

where L are the angular momentum operators in the 2s + 1 dimensional irreducible representation of

SU(2). The scalar product is chosen as proposed in (1), with a multiplicative coefficient such that the

unit matrix has the same norm as the unit function on the sphere

<> 2s+
(3)

The spectrum of the proposed Laplacian operator can be recognised from the adjoint action of angular

momentum as
L2im = 1(1 + 1)m, 0 I 2s, (4)

where the eigenfunctions Ym are the polarisation tensors whose normalisation is defined according to the

chosen scalar product

2s+
=1. (5)

This is precisely the spectrum of the Laplacian on the classical sphere truncated at angular momentum

2s, thus vindicating this choice.

A clean way of recognising the approximation of a sphere in these matrix algebras is to introduce a

mapping which associates a function on the sphere with each matrix of the algebra Mat2s+i and pulls

back most of the structure on the algebra of functions of the sphere onto the matrix algebra. There are

various ways to define such a mapping, such as using coherent states [9]. However, the simplest one is

given by

Mat2+j —
CoG(S2) (6)

M = CimY I,’ f(n) = Cim1m(fl), (7)

1=0 m=—1 1=0 m=—1

where the functions Ym (n) are the usual spherical harmonics on the sphere, i.e. the eigenvectors of the

Laplacian operator on the sphere. By definition, this mapping M8 is linear and maps the Laplacian 2
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on Mat25+i onto the Laplacian on the sphere. In fact, the three derivatives on the sphere V1 = iEjklxjOk

are pulled back to simple derivations on the matrix algebra given by

(8)

By construction, the action of the group SU(2) is preserved on both sides. Furthermore, since the

eigenvectors of the Laplacian on the matrix space and on the sphere form orthonormal bases on their

respective spaces, this mapping is isometric and injective. Its image, on which the mapping is one to one,

Ms(Mat28+i) is given by all the functions with angular momentum only up to 2s and form a sequence

of increasing (for the inclusion) sets which become dense in the whole algebra of C°°(S2) in the limit

of infinite matrices. The only structure which is not preserved by this mapping is the product which

evidently can not be since it is non commutative in the source space and commutative in the target space.

The image of the matrix product gives a new non commutative product on the algebra of functions on

the sphere generally called a *—product

Ms(cb)(n) = (M9() *5M5())(n). (9)

It is possible to verify that in the limit of infinite matrices s —* c, the star product tends to the usual

product. More precisely, for (f5,g5) M(Mat25+j) two functions with angular momentum truncated

at 2s, and t s,

(f5 *g5)(n) =f5(n)g5(n) + O(). (10)

Note in passing that complex conjugation of a function on the sphere pulls back to hermitian conju

gation on the matrix algebra. Consequently, as proposed in the introduction, real functions pull back to

hermitian matrices. Similarly, integration on the sphere which is similar to scalar product with the unit

function pulls back to the trace on the matrix algebra.

Thus, in the limit when s goes to infinity, the mapping M5 becomes an isomorphism of algebras

which preserves rotational invariance, the Laplacian and the scalar product. This proves that the fuzzy

spaces, as defined by the pair (Mat2s+i, £2) go over to the sphere in the limit of infinitely large matrices.

Furthermore, we can deduce immediately the following approximation rule.

Approximation rule: given an algebraic expression on the sphere, it is possible to find a fuzzy approxi

mation for it, which converges to it in the large matrix limit, by truncating all functions at momentum 2s,

replacing products by*5—products everywhere and pulling back the expression into the matrix algebras

with the mapping M3.

Another mapping with similar properties which is generally introduced is the one obtained by looking

at the diagonal coherent states entries of a matrix. Compared to M, this mapping trades the isometry

property for the conservation of the notion of state, in the sense that it maps a state of Mat25+i into a

state of COO(S2). In this case, the corresponding star product can also be expressed in a simple exact

form [9].

This introduction to the fuzzy sphere described spheres of radius one. Getting spheres of different

radius R, is just a matter of scaling the scalar product (1) and Laplacian (2) appropriately:

£2 , ±2 (11)

2s±
“

(12)

With the fuzzy sphere now defined and understood, we can move on to defining a real scalar field

theory on it.
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3 The real scalar field theory

The ‘ scalar field theory on the two—dimensional sphere is given by the action

S()= Id2n(+r2+4), (13)
JS2

with q a real scalar field, Li = —VV the Laplacian on the sphere, r a mass parameter and ) an

interaction constant. This particular model was chosen because it is simple and well studied. In fact, it

is known that the diagrammatic expansion of this theory has only one divergent diagram, the tadpole

diagram, is Borel resumable, and defines the field theory entirely.

Using the Approximation rule above, the action (3) for the real scalar field can be approximated by

[10]

S()
= 2s±

i(2 + r2 +
4), (14)

where q must be an hermitian matrix. Again, it is possible to write a diagrammatic expansion for this

theory [10]. There are more diagrams than in the continuum since the legs of the vertices do not commute

anymore, although they can still be cyclically rotated. On the other hand, since the theory is defined on

a finite dimensional algebra, all diagrams must be finite. Furthermore, since the action was obtained by

the approximation rule, it is easy to check that all the fuzzy diagrams are just approximations of their

commutative counterparts obtained from the action (3). Thus, in the limit of infinite matrices, all finite

diagrams converge to their classical counterparts, while the tadpole diagrams must also diverge.

The approximation rule says nothing of the subdominant contribution to the tadpole diagrams how

ever. In fact, the constant contribution of one of the two diagrams (the “non—planar” one where the

exterior legs are not contiguous) does not converge to its usual continuum limit [10]. Thus, we see that

the field theory described by the action (14) is not an approximation of the continuum field theory (13).

This is the so called UV—IR mixing.

At this point, there are two possible routes. The first one is to add a damping term to the fuzzy

action (14) to ensure that the fuzzy theory does indeed go over to the classical one [10]. Such a fuzzy

theory will then be an alternative to the usual lattice discretisation of a scalar field theory. The other one

is to study the fuzzy action (14) with UV—IR mixing as a simple example of a non commutative theory

such as the one which have cropped up in particle theory recently.

As the first step toward a possible new discretisation method of field theory, the first route holds

the most potential. However, the second route, which will be followed in this paper, proposes a non—

perturbative analysis of a non—commutative field theory with UV—IR mixing, and more prosaically is

simpler to implement. A similar study was done for a pure gauge theory on the non—commutative lattice

in [11]

Even though the scalar field on the classical or fuzzy spheres can not have a phase transition since

both have finite volume, one may be found in the planar limit, i.e. in the limit where the matrices and

the sphere become infinite s, R —* oo. It is therefore convenient in the following to introduce explicitly

the sphere radius R in the problem.

From Eqs. (11,12), it is clear that the real scalar field action with variable radius must take the form

S()
= 2s+

+ rR22 + AR24). (15)

It will also be convenient later on to define the potential part of the action given by

V() =
+ 4). (16)

Of the three parameters r, ,\ and R, only two are independent. In the following, according to the situation,

either the interaction parameter ) or the radius R will be set to one while the other parameter is allowed

to vary.
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4 The simulations

The theory simulated here is the one described by the action (15) with fields q which are hermitian

matrices. At least one critical line is expected to arise when the radius R goes to infinity, corresponding

to the critical behaviour of the scalar field on the plane. Thus, the goal of the simulation will be to draw

a phase diagram for this theory.

The simplest way to test for a phase transition is to look for peaks of the susceptibility given by

< [)2 > -

< [@)I
>2 (17)

where the expectation values are given by

h(), (18)

with S the field action (15), h some algebraic expression in the field, and Z the partition function

z = fde_8. (19)

To get a better idea of the phase the field is in, it is also convenient to monitor a few other significant

quantities. Using the mapping M introduced in (7), it is possible to associate functions on the sphere to

matrices. Therefore, the coefficients cirn in the expansion of a matrix on the basis of polarisation tensors

(4)

qS = ClmYm, (20)

1,m

have an immediate classical interpretation. They will automatically average to zero though since they

are linear, and thus odd, in the field while the action is even in it. For this reason, we chose the following

quadratic even additional observables

2 2

______

2
< > = < C

>< 2s +
(21)

1,m

<c002>
= (23+1)2

<(@))2>. (22)

ICimI2>
= s(s + 1)(2s + 1)2

+ (Lo))2], (23)

fl2 —1

which also happen to be invariant under U(n) transformations for the first two and under SU(2) trans

formations only for the last. These quantities can be related respectively to the average of the total power

of the field, and of its power in the modes 0, and 1.

The simulations themselves are realised in the standard way using a Metropolis Monte-Carlo method

with the jackknife method to evaluate the error on the calculated expected values [12]. To better control

thermalisation, simulations were run starting from both hot (i.e. random) and cold (i.e. the minimum of

the action) initial conditions.

This generates a sequence of random field configurations (t) with probability distribution given by

as found in the expectation values (18). The parameter t will be called “Monte—Carlo time”, and

the expectation values will then be calculated as standard averages

<h() >= h((t)). (24)
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The update of the matrix q(t) through one Monte—Carlo time step is done entry by entry as this is

not slower than a global matrix change but allows for larger changes for a given acceptance rate. The

range of variation of each matrix entry is fixed adaptatively by maintaining the acceptance rate between

15% — 30%.

The key model—dependent ingredient in this method is the calculation of the variation of the action

under a random variation of a matrix entry, SS, (x) = S(q2 —‘ q5j + x) which is used to calculate the

probability min(e_SS, 1) of accepting qij + x as the matrix entry at the next Monte-Carlo timestep, and

the calculation of the observables which is used in the average formula (24) and is always negligible in

term of number of operations compared to SS(x).
The scalar field on the fuzzy sphere is “non—local” in the sense that a matrix entry q5jj is coupled to

all the other entries on its line q and column bk through the interaction term of the potential A’.

As a result, the variation of the action 5S requires a number of operations which grows linearly with the

matrix size 2s +1. Since each entry of the matrix must be updated from one Monte-Carlo timestep to the

next, its computation time for the fuzzy action (15) grows like 0(s3). The quadratic part of the action

only couples it to a fixed number of other entries, namely qi+i j+1, çbij and j—1 j—1, and is therefore

subdominant in this calculation.

By comparison, for a “local” action, such as that of a finite difference scalar field action on the lattice,

a degree of freedom (or lattice site) is only coupled to a constant number of other degrees of freedom,

i.e. independant of the total number of degrees of freedom, and the number of operations to update the

field through one Monte-Carlo timestep only grows like the number of degrees of freedom Q(2).

This calls for two observations. First, the only “non—local term” in the fuzzy action is actually the

self—interaction term A54. It should be noted in passing that the non—locality gets worse as the power

of the self—interacting term increases, such as adding a term in rfr@6) in the sense that the number

of operations to calculate 6S grows polynomially even faster. Second, although this model can not be

compared to a lattice model because of the UV—IR mixing, a corrected action such as those proposed

in [10] which would converge towards the clasical real scalar field theory would seem to be intrinsically

slower than its lattice equivalent. This however does not generalise to other field theories, particularly

fermionic ones, and does not take into account the rate of convergence of the Monte-Carlo scheme itself.

Let us now go over the various phases which arise in the simulation. In the following, as a convention

when either of the two parameters A or R is not mentionned as a variable, it is assumed to be one.

4.1 The uniform—disordered phase transition

This is the phase transition observed for a classical scalar field on the plane. For the model considered

here, it appears for small interaction parameters A. Figure 1 shows a typical example of this phase

transition. The critical point can readily be identified as the maximum of the susceptibility (17).

As seen on Figure lb, the observables above the critical point r > rrd(2) show no strong dependance

on r. The power in the 0 and 1 modes is also much smaller than the total power suggesting that the

random fluctuations are spread out over all the modes. This is characteristic of a disordered phase where

the field is composed entirely of random fluctuations around the constant average field q = 0. This phase

is found when the mass parameter r is positive or negative and “small”, —r A. These results are

completely consistent with what one would expect classically from a scalar field theory.

The uniform phase arises when the mass parameter is negative and “large”. It appears in Figure

1 below the critical point r < r_d(2). In this approximation, the action is completely dominated by

the regions around its minima at . = ±—r/2A 1, where 1 denotes the unit matrix. In this limit, it

is possible to expand the action to dominant (quadratic) order around these two minima to derive the

observables. This gives an effective action which is basically the sum of two delta distribution centered

at each of the action minima q5. In particular, as seen in Figure lb,

2 —2irr
<WcW >< Icooh > (25)
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(a) (b)
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r r

Figure 1: (a) Plot of the susceptibility from Eq. (17), calculated on 216 bins of 40 Monte—Carlo timesteps

for ) = 2 and 21 x 21 matrices. Its maximum is evaluated at rr!(2) = —6.6 ± 0.3. (b) Plot of the three

observables described in Eqs. (21,22,23) for the same parameters.

><< < Icoo2 > . (26)

Checking the next order of expansion shows that the power in all the non—zero modes is suppressed as

1/ (-r).

The corresponding critical line in the phase diagram is shown in Figure 2. The parameters r and

were chosen as variables because the critical line goes through the point (0, 0) around which it is delicate

to scale the parameters using the radius R2. This critical line scales like the square root of the matrix

size. Furthermore, a simple fit suggests that it is well approximated by

(27)
2s+1 3

although the larger matrix sizes tend to deviate from it.

4.2 The disordered—matrix phase transition

The simulations show the appearance of a new phase for larger radii which I will call the “matrix phase”

for reasons explained further on. Figures 3 and 4 shows a typical example of this phase transition. Again

the phase transition can be clearly identified as the maximum of the susceptibility.

The new phase seems characterised by

1 (2) —2r
(28)

2s + 1

9 —2irr 1 2

)(2s + 1)2
<<

2s +
Tr@ )> (29)

Cj72 > > > . (30)

35

30

25

20

15

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4
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1+
Ici

c)

Figure 2: Scaled phase diagram for the uniform—disordered phase

(2s + 1) x (2s + 1) and the best fit given by (27).

transition for five distinct matrix sizes

Figure 3: Plot of the susceptibility calculated on

maximum is evaluated at r_m(72) = —1.4 + 0.4.

0
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216 bins of 40 Monte—Carlo timesteps for R2 = 72. Its
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______

10 0.07
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0.06
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8

0.04

0.03

6 0.02

5 0.01

4 0
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r r

Figure 4: (a) Plots of the total power (21) and its proposed approximation (28) calculated for the same

parameters as in Figure 3. (b) Plots of the power in the 0 mode (22), its proposed approximation (29),

and the power in the 1 mode (23) calculated with the same parameters.

This suggests strongly that in this new phase the field q5 takes the form q ‘-‘.‘ ±.../—r/2\ Ut(i8 —i+1)U

with U SU(2s + 1) and i the n x n unit matrix, which is a minimum of the potential (16).

Further examination of the raw data of a Monte—Carlo run with cold initial conditions shows that

during_thermalisation Tr((t)) (t being the Monte—Carlo time) goes through a series of plateaus at (21 +

1)/—r/2A, l <s before settling down at its equilibrium value corresponding to Eq. (29) and 1 = 0. This

seems to confirm that the minima of the potential part of the action given by —r/2.\ Ut(it—i25+1_1)U

with U SU(2s + 1) are local minima of the action.

Normally in the uniform phase, the minimum corresponding to s E {0, 2s+ 1} is automatically selected

by virtue of also minimizing the kinetic part of the action. The fact that in the matrix phase it is not

suggests that the kinetic term might be negligible. To test this assertion, the field theory described by

the action V() from Eq. (16) has been studied and compared to the results for the fuzzy scalar field.

The pure potential model This model is actually much simpler than the fuzzy scalar field action by

virtue of being invariant under SU(2s + 1) transformations of the field qS — Uq5U, U e SU(2s + 1).

Thus, considering only observables which are also invariant under these transformations, such as

(17,21,22), the corresponding degrees of freedom can be extracted in the form q = UDiag(x1,. .. ,

which has a Jacobian given by the Vandermonde determinant VDM(xl,. . . ,x2S1) = EJ<(x — x)

squared, integrated out to get an effective action given by

4 R2
2s+1

Veff(X1,... , xsi)
= 2+ 1

(rx + Ax) — > ln[(x — x)2J (31)

i=1 1<i<j<2s+1

Furthermore, in the case of the observables (17,21,22), generically called F(r, ), R), which are quadratic

in the field, a simple change of variable yj =R112\’4,shows that these averages effectively depend only

on one parameter

R’5F(r, ,\, R) = F(r/(Ri/), 1, 1). (32)

I I

S

A(2s+1)2
(23)

-

+S

S45 -

5

*5

+5

--SE
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Figure 5: (a) Plot of the susceptibility for 31 x 31 matrices, in units such that they do not depend on

the radius in the case of the pure potential action as shown in Eq. (32). Note that the critical point for

the pure potential model is at r_mR = —17.5 ± 0.5. (b) Plot of < c0 > and its approximation (29) for

the same parameters. In both figures (a) and (b), the observables calculated from the fuzzy scalar field

action seem to converge monotonically with R2 toward the pure potential observables.

This effective action (31) can easily be calculated through a Monte—Carlo simulations since it has a

lot fewer degrees of freedom. Figure 5 supports the assertion that around the phase transition considered

here, the kinetic term of the fuzzy scalar field model becomes negligible in the limit when the radius R2

tends to infinity. This is why the new phase was called “matrix phase”. In this phase, the kinetic term

which carries the geometrical content of the fuzzy sphere vanishes. It is likely that the “striped phase”

which has been found for the “fuzzy torus” scalar field action [6] arises for the same reason and must

therefore converge to the same matrix phase, with the same observables.

The matrix phase Eq. (28) suggests that in the matrix phase the eigenvalues of the field settle in

a minimum of the potential. This suggests that only the neighbourhood of the minima of the potential

contribute to the expectation values (18).

The minima of the potential are 2s + 1 disjoint orbits of the form

O = {U(i e—i3i_)U U e SU(2s + 1)/(SU(n) x SU(2s +1 — n))}, (33)

where n < s + 1/2 and i, are the n x n unit matrices. These orbits are isomorphic to Grassmanians

Grn,25+i. When the kinetic term is negligible, the field distribution will be dominated by the orbit with

the largest phase space volume which corresponds to n E {s, s + 1/2}.

By comparison, the kinetic term which was neglected will select the diagonal orbits, ri {0, 2s + 1},

which have the lowest phase space volume. Thus, the matrix phase can be interpreted as a phase where

the kinetic term is negligible with respect to the volume of the largest orbit O.

This reasoning can be verified more rigorously, by looking carefully at the probability distribution

e8(k)
d()

=

dçb (34)

-22 -20 -18 -16 -14 -12 -10 -8 -6

r*R

-22 -20 -18 -16 -14 -12 -10 -8 -6
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asociated with the field theory. The simulations indicated clearly that only the fields near the minimum

of the potential contribute to the distribution. Therefore, expanding around these minima in the form

= xo UDiag(E + x) U, (35)

with U SU(2s + 1), x0 = /—r/2)i the minimum of the potential, and e {—1, +1}, the probability

distribution becomes

d) —xo UDiag(e+x) U)e_4TR)2xx/1A(25+1)1_K(U,Ej,xj)V2(+x)dUd2s+Ix, (36)

where

K(U,e,x)
= 2s+
1[(UDiag(e +x)U)2(UDiag(E +x)U)] (37)

is the kinetic term for the field expanded acording to Eq. (35) and Z is the partition function whose

value changes as needed to normalise the probability distribution it is part of. It is possible to reduce

this expression even further by ordering the eigenvalues x since such permutations are also SU(2s + 1)

transformation. Thus, dropping all subdominant terms, and scaling x,

d)
(2s ± i

( - XO UDiag(sign(i
- j + 1/2)

+
) u) (38)

(e5_i+h/2)0) dU)
((16r2R2

)i(2s+l_i)e_Y•YV2 (y<)V2(yj>j) d) (39)

where each term of the sum corresponds to an integration of the action in the vicinity of the SU(2s + 1)

orbit of le12s+1j = sign(i —j+ 1/2). In this sum, the “kinetic” term (containing dU) decreases with

i while the “potential” term (containing dx) increases with i. Thus, the matrix phase corresponds to the

case when the potential term dominates, whereas the uniform phase would correspond to one where the

kinetic term dominates.

Note that, by reabsorbing the Vandermonde determinants into matrix integrations, the potential term

can be rewritten as a Gaussian measure

dx
= (f V(x<)(fl dxi) e (40)

dU
2s+1—i 2s+1—-i 2

(LU(2s_j)
V(SU(2s — i)))

j+1

dxi) e 41

cx V(Gri,8i)S(1 — UDiag(x<) U1) ö(k2 — UDiag(x>) (12) (42)

f (43)
SU(i) x SU(2s—i)

where V denotes the volume of a space. This Gaussian integral can be calculated exactly for most

expectation values. Furthermore, it makes explicit the volume of the orbits O Gr,28+i which weighs

these integrals. Not surprisingly now, the power i(ri. — i) which appears in the potential term is precisely

the dimension of this Grassmanian.

Note also that for the purely potential action, the term i = s is always dominant over the others, and

so in this limit (which excludes the disordered phase because of the approximation (35)) only the matrix

phase can arise.

This extra phase does not appear for the scalar field simulated on the lattice despite the fact that the

action has the same superficial properties. The potential has a large subset of minima given by q5ij = +xo
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at each lattice site. The minimum with the largest phase space is the one with half their sites with value

+xo and half with the opposite value —xO which has a degeneracy of
(N’2)

where N2 is the number

of lattice points, whereas the minimum of the action is the one with a uniform value at each site which

has just degeneracy two. However, on the lattice the kinetic term simply can not be neglected because

it represents the only, and thus dominant, coupling between the degrees of freedom at each lattice point.

Thus, it must lift the degeneracy of the minimum of the potential in favour of the usual uniform phase.

By contrast, on the fuzzy sphere, the non—locality of the potential implies that the coupling of the matrix

degrees of freedom is ensured by both the kinetic and potential term.

The equilibrium configuration As described above, in the matrix phase, the field will settle in the

vicinity of the orbit O. However, although this orbit is degenerate with respect to the potential term

(16), it is not with respect to the full action because the kinetic term will lift this degeneracy.

Taking into account the kinetic term, the most probable configuration of the field will be given by the

minimum of the kinetic term (or equivalently of the action) on the orbit O. The theory described by

the scalar action restricted to the orbits O has been studied in detail in [13]. The configurations found

to minimise the action on these orbits (9 were found to be of the form xoW (i —12+1_i) W, with

W SU8(2) the 2s + 1 dimensional representation of SU(2). So, the equilibrium configuration in the

matric phase is found to be of the form +xoWt(1 —18±i)W, with W E SU8(2).

Applying the mapping (7), it is possible to extrapolate from there the form this field will take in the

classical limit. Since this mapping preserves the action of SU(2), the corresponding set of fields will be

given by ±xoWt M5(15 —1) W, where W SO(3) is now a simple global rotation. Figure 6 shows

the function with azimuthal symmetry

f8(O) = M8(—15+ 18+1), (44)

with 0 the zenith angle. Thus the matrix phase on the fuzzy sphere has a classical limit similar to the

one observed on the torus [6]. It also suggests a posteriori that the name of “striped phase” might also

be appropriate for this phase.

The critical line The critical line for this phase transition scales linearly with the matrix size, i.e.

like s. Figure ‘7 shows the critical lines. For large radii, a fit can easily be deduced algebraically from

the convergence of the susceptibility curves and the critical point for the pure potential model shown in

Figure 5a, and the scaling of the susceptibility for the pure potential model shown in (32). Indeed, for

s = 15, and R —p

rm(R2)
,

(45)

and thus, putting back in the linear scaling found for the critical line,

d_m(R2’ 175r

1
—0.56 (R2)1/2 (46)

which fits the critical line quite well as shown in Figure 7.

4.3 The matrix—uniform phase transition

This transition is difficult to observe numerically because of thermalisation problems. To switch from

the matrix phase to the disordered phase requires a large change in the field between two local minima

of the action, which has numerically vanishing low probability of happening. In fact, starting from hot

initial conditions (i.e. random), this transition never appears and the field stays trapped in the matrix

phase. This is quite understandable since we have seen in Eq. (39) that the phase space asociated with

the matrix phase is so much bigger than the one asociated with the uniform phase.
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Figure 6: The function f5(0) defined in Eq. (44) for various values of the matrix size 2s + 1. Note how

the functions tend to a sign function.
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Conversely, with cold initial conditions (i.e. the field is a minimum of the action or equivalently in the

uniform phase), when —r gets large enough, the field stays trapped near this locally stable configuration,

and a matrix—uniform phase transition appears. However, since the hot initial condition simulations

give a different result, the observed transition just pinpoints the parameter r when the inverse of the

probability of tunneling to the matrix phase becomes larger than the thermalisation time of the Monte—

Carlo simulation.

This is why the uniform—disordered phase diagram 2 is truncated for R2 > 4. Beyond this point, the

three phases uniform, matrix, and disordered, start being mixed and the cold initial conditions runs show

the emergence of an uniform phase while the hot do not.

Still, it is possible to guess a few things about the large —r region. As discussed in the previous

subsection, the term i = 5 in the sum of Eq. (39) corresponds to the matrix phase while the term

i = 0 corresponds to the uniform phase. When R and s are fixed and r increases, the potential term

grows polynomially whereas the kinetic one is suppressed exponentially. Thus, the uniform phase must

dominate when —r becomes large enough, and there is a matrix—uniform phase transition.

Furthermore, when the kinetic term start dominating over the potential term in (39), its exponential

dependence should ensure that the term i = 0 in the sum quickly becomes dominant. Thus, it is unlikely

that there be other intermediate phases, asociated with other minimum orbits O i {0, s}, between the

matrix and uniform phases.

Note that the pure potential model is no help here as it can only have two phases: the disordered

and matrix phases. This is not surprising the kinetic term is a key component in this region of the phase

diagram.

5 Conclusions

In conclusion, the scalar field action on the fuzzy sphere shows the emergence of a new phase which is

due to the phenomenon commonly called UV—IR mixing. The critical line for the uniform—disordered

phase transition is identified and scales like the square root of the matrix dimension. The critical line

for the matrix—disordered phase transition is also identified and found to scale linearly with the matrix

size and grows linearly for large sphere radii. Finally, the existence of a matrix—uniform phase transition

is ascertained algebraically, but could not be identified numerically due to thermalisation problems. We

also conjecture that there is no other intermediate phase between the matrix and uniform phases.

The matrix phase was also studied in detail, showing that its emergence over the uniform phase is

linked to the dominance of the phase space volume of the largest orbit minimising the potential, over the

kinetic term. As a result, the matrix phase must be well approximated for large sphere radii by a pure

potential field theory model, i.e. with no kinetic term, which was confirmed numerically.

Since, for a scalar field theory, the geometry of a fuzzy space is determined by the choice of its

Laplacian or equivalently of the kinetic term of the scalar field action, the matrix phase appears to be

largely independant of the geometry. Thus, if it appears in other fuzzy scalar field models, it must

have similar properties to those shown here, independantly of the geometry or dimension of the classical

limiting space. In particular, it should be possible to verify that by comparing the results found for the

fuzzy sphere and the fuzzy torus [6].

Finally, the equilibrium configuration was identified indirectly and shown to have a “striped” structure

similar to what has been observed on the fuzzy torus.

This is of course a verification that the naive scalar field action studied in this paper can not be used as

an approximation of the scalar field theory on a classical sphere. To do that, one needs to look at a more

complicated action such as the one proposed in [10] which adds an extra damping term proportional to
2)2) to the action. This is consistent with the analysis presented here as such a term will reinforce

the influence of the kinetic term and thus suppress the matrix phase.
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