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We discuss certain generalization of the Hilbert space of states in noncommutaive

quantum mechanics that, as we show, introduces magnetic monopoles into the theory.

Such generalization arises very naturally in the considered model, but can be easily

reproduced in ordinary quantum mechanics as well. This approach offers a different
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investigate also a dynamical problem (with the Coulomb potential).
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I. INTRODUCTION

Magnetic monopoles are a unique part of physics. Their existence is being considered for more

than a century, yet they have never been observed. They appear (in theory) in various areas of

physics, persistently throughout different models, always playing a slightly different role.

They premiered in the classical theory of electromagnetism. Maxwell equations in vacuum are

symmetric under a transformation known as electric-magnetic duality (E,B) → (B,−E). This

symmetry is violated in the presence of electric sources ρE, but can be recovered by introducing

(monopole) magnetic sources ρM .

New phenomena appear in such a generalized theory, for example, electromagnetic fields gener-

ated by a static system of electric and magnetic monopole have a non-vanishing angular momentum.

It is often comfortable to work with electromagnetic potentials A, ϕ instead of electromagnetic

fields E,B. It might seem that magnetic potentials cannot describe magnetic monopoles, since

div rot A = 0 seems to follow directly (as ∂[i∂j]Ak = 0), resulting in the absence of magnetic

monopoles. This, however, holds only for nonsingular potentials A (for which the order of deriva-

tives can be exchanged) and, therefore, monopoles could be described by singular potentials, see

e.g.1,2. The following potentials

A =
g

4πr

r× n

r − r.n
or A = − g

4πr

r× n

r + r.n
(1)

(where n is a unit constant vector) result into Coulomb(-like) magnetic field

B =
g

4π

r

r3
. (2)

In the quantum theory the description of Yang3 is preferred. In this framework, one describes

monopoles with sections (avoiding the singularity) related by a gauge condition in the overlapping

regions. A consistent quantum theory requires the electric and the magnetic charge to satisfy the

Dirac quantization condition (in convenient units)

eg =
n

2
, n ∈ Z . (3)

This condition has an appealing physical consequence - the electric charge has to be quantized, as

is observed in nature.

The appearance of magnetic monopoles in quantum field theory is (again) slightly different, they

appear as topological solutions, in contrast to ordinary particles appearing as quantum excitations.
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As was shown by Polyakov and ’t Hooft, monopoles are a general consequence of grand unification

theories (GUT), appearing when a higher symmetry brakes down into a product containing U(1),4,5.

Mass of the monopoles is, therefore, expected to be on the GUT breaking scale. Monopoles also

appear in cosmology, existing as topological defects between domains of different vacua. Cosmology

also offers an explanation why we have not observed any magnetic monopoles yet, the process of

inflation diluted them remarkably.

For the purpose of this paper is the quantum mechanical (QM) description the most convenient

one. Let us quote the results of Zwanziger1, in the presence of monopole states is the usual

Heisenberg algebra modified as

[x̂i, x̂j ] = 0, (4)

[π̂i, x̂j ] = −iδij ,

[π̂i, π̂j ] = iµεijk
x̂k
r3
,

where µ = eg and the Dirac quantization condition dictates µ ∈ Z/2.

In the same paper, a dynamical problem with the Coulomb potential was analyzed. The

Coulomb problem in ordinary QM can be solved algebraically, as was first proposed by Pauli,

generalizing the classical notion of the Laplace-Runge-Lenz vector Ai,
a. Components of this vec-

tor, together with the components of the angular momentum operator form a representation of

either the so(1, 3) or the so(4) algebra, depending on the sign of the energy of the system. The

algebra closes only on energy eigenstates Ĥψ = Eψ

[

L̂i, L̂j

]

= iεijkL̂
k, (5)

[

L̂i, Âj

]

= iεijkÂ
k,

[

Âi, Âj

]

= −2iεijkĤL̂
k,

[

L̂i, Ĥ
]

=
[

Âi, Ĥ
]

= 0.

These relations are indifferent to the presence of monopole states, however, the Casimir operators,

which determine the energy spectrum, are not

ÂiL̂i = qµ, (6)

ÂiÂi − 2Ĥ
(

L̂iL̂i + 1
)

= q2 + 2Ĥ
(

−µ2
)

,

a Not to be confused with the electromagnetic potential.
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where q is the electric charge from the Coulomb potential.

Below we shall investigate magnetic monopoles in the framework of noncommutative quantum

mechanic (NC QM), which is a particular application of the ideas of noncommutative geometry to

QM,6,7. NC QM differs from ordinary QM by having a nonvanishing commutator of the coordinate

operators. This results in the impossibility of exact position measurements, which can be motivated

by (thought experiments in) quantum theory of gravity,8. NC theories are closely related to different

candidates for such a theory, the string/M-theory being a prominent example,9.

NC QMmodels that do not possess rotational invariance have been investigated in10,11, however,

our problem requires full 3D rotational symmetry. Such a model was proposed in12, the construction

used here has been developed in13–16. Using the auxiliary bosonic operators approach, the exact

solution of NC Coulomb problem was found, both dynamically and algebraically. In this paper, we

utilize the same approach, but consider a generalized class of physical states to describe magnetic

monopoles.

This paper is organized as follows. First, we construct NC QM using auxiliary bosonic operators.

In subsection A we analyze general kinematical structures, in subsection B a dynamical one (with

the Coulomb potential). In subsection C we briefly present how can the results be reproduced in

the context of ordinary QM. Conclusions are followed by the Appendix containing all lengthy and

technical calculations.

II. NONCOMMUTATIVE QUANTUM MECHANICS

The first thing to do is to decide on the RHS of the noncommutativity relation, from which the

restriction on position measurements follows. We study a rotationally invariant model described

by

[xi, xj] = 2iλεijkxk, (7)

where εijk is the Levi-Civita symbol and λ is a constant describing the NC length scale. It is not

fixed, but as an artifact of quantum gravity it could be expected to be approximately the Planck

length. Resulting NC space corresponds to an infinite sequence of fuzzy spheres.

Let us consider two set of auxiliary bosonic creation and annihilation (c/a) operators satisfying

[aα, a
+
β ] = δαβ , [aα, aβ ] = [a+α , a

+
β ] = 0, (8)
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with α, β = 1, 2, which act in a Fock space F spanned on normalized vectors

|n1, n2〉 =
(a+1 )

n1 (a+2 )
n2

√
n1!n2!

|0〉. (9)

The NC coordinates satisfying (7) are constructed using the c/a operators as

xi = λσiαβa
+
αaβ, (10)

where σi are the Pauli matrices. Using the number operator N = a+α aα we can define the radial

coordinate operator as

r = λ (N + 1) = λ
(

a+αaα + 1
)

. (11)

It can be easily checked that r2 = x2+λ2, which differs from the ordinary result but reproduces

it in the λ→ 0 limit. We refer to such as ’the commutative limit’, since in it (7) becomes [xi, xj ] = 0

as in ordinary QM. In this limit should the results either reproduce the ordinary ones or vanish.

We define the Hilbert space Hκ as a completion of the linear space of operators in the auxiliary

Fock space spanned by analytic functions Ψκ(a
+, a) satisfying relation

Ψκ(e
−iτa+, eiτa) = e−iτκΨκ(a

+, a), τ ∈ R, fixed κ ∈ Z, (12)

that possesses finite norm

||ψκ||2 = 4πλ2Tr[ψ+
κ r̂ ψκ], (13)

where r̂ acts as r̂ψκ = 1
2 (rψκ + ψκr) and has been added to reproduce the ordinary integration

∫

d3x in the commutative limit b Because NC coordinates (10) contain equal number of creation

and annihilation operators, for any state of the form Ψ0(x) is κ = 0. In this paper we consider

a generalized class of states with κ 6= 0. If κ < 0 there is |κ| more annihilation than creation

operators #a−#a+ = −κ = |κ|, if κ > 0 it is vice versa #a+ −#a = κ.

A. Kinematic structures

We shall now define important physical operators on Hκ. To distinguish them from the ones

on the auxiliary space F , we denote them with a hat. We are using a lower index to distinguish

between left and right multiplication

X̂i,LΨκ = xiΨκ, X̂i,RΨκ = Ψκxi, (14)

r̂LΨκ = rΨκ, r̂R = Ψκr.

b This can be checked by computing the volume of a ball with radius R ≫ λ.
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The operators X̂i,L and X̂i,R carry the soL(3) and the soR(3) Lie algebra representation respectively.

Coordinate operators on Hκ are defined as symmetrical combinations

X̂i =
1

2

(

X̂i,L + X̂i,R

)

, r̂ =
1

2
(r̂L + r̂R) , (15)

while the angular momentum operator satisfying [L̂i, L̂j ] = εijkL̂k is an antisymmetrical one

L̂i =
1

2λ

(

X̂i,L − X̂i,R

)

. (16)

Note that the angular momentum operator acts on ψκ as L̂iψκ = 1
2λ [xi, ψκ] and that c

[X̂i, X̂j ] = λ2εijkL̂k. (17)

Even thought for generalized states r̂L 6= r̂R 6= r̂, they are closely related for each Hκ, κ ∈ Z

r̂ = r̂L − λκ

2
= r̂R +

λκ

2
, (18)

λκ = r̂L − r̂R.

As r̂ commutes with the generators X̂i,L and X̂i,R, the soL(3) and the soR(3) Casimir operators

can be expressed in terms of r̂ and κ as

X̂2
L =

(

r̂ +
λκ

2

)2

− λ2, (19)

X̂2
R =

(

r̂ − λκ

2

)2

− λ2.

For states ψ0(x) with κ = 0 it holds that r̂L = r̂R and r̂ = r̂L can be chosen for simplicity, as was

done in the aforementioned references. We can use their definitions and results, sharing the same

line of reasoning, but have to replace r̂L → r̂ and check for possible consequences and modifications.

The functions ψκ with fixed κ are mappings Fn → Fn+κ, they form a representational space

for an irreducible SO(4) representation in which it holds that r̂ = λ (n+ 1) + λκ
2 . The Casimir

operators are d

ĉ1 = L̂2 +
1

λ2
X̂2 =

1

4λ2

(

X̂2
L + X̂2

R

)

=
1

2λ2

(

r̂2 − λ2 +

(

λκ

2

)2
)

, (20)

ĉ2 =
1

2λ
X̂iL̂i =

1

4λ2

(

X̂2
L − X̂2

R

)

=
κ

2λ
r̂,

c This follows from the fact that the right multiplication changes the order in commutator, generating an

extra minus sign and that L̂k ∝ X̂k,L − X̂k,R.

d Note that by eliminating r̂ they can be combined into a single equation 2ĉ1 =
(

2
κ

)2
ĉ22 +

(

κ
2

)2 − 1.
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Two of the most important physical operators, namely the free Hamiltonian and the velocity

operators are defined as

Ĥ0ψκ =
1

2λr̂
[a+α , [aα, ψκ]], (21)

V̂iψκ = i[Ĥ0, X̂i]ψκ =
i

2r̂
σiαβ

(

a+αψκaβ − aβψκa
+
α

)

.

To begin revealing the overall structure let us first combine X̂i and L̂i together as

L̂ij = εijkL̂k, L̂k4 = −L̂4k = λ−1X̂k (22)

to observe an so(4) ∼= suL(2) ⊕ suR(2) Lie algebra structure

[L̂ab, L̂cd] = i
(

δacL̂bd − δbcL̂ad − δadL̂bc + δbdL̂ac

)

, (23)

where indices go over as i, j, k, ... = 1, 2, 3 and a, b, c, ... = 1, ..., 4.

The central point of ordinary QM is the Heisenberg uncertainty relation, the commutator of

[V̂i, X̂j ]. In
15 it has been shown that this relation obtains a λ-correction already for ψ0 states and

as it turns out, this correction is of the same for ψκ states as well

[X̂i, V̂j ] = iδij

(

1− λ2Ĥ0

)

≡ iλδij V̂4, (24)

where V̂4ψκ = 1
λ
− λĤ0 =

1
2r̂ (a

+
αψκaα + aαψκa

+
α ). Note that V̂a transforms as an SO(4) vector.

Another interesting result of15 is that even though the coordinates do not commute, the veloc-

ities do. This, however, fails to be true for κ 6= 0 states, instead it holds

[

V̂i, V̂j

]

= iF̂ij , (25)

with the magnetic field strength given as

F̂ij = εijk
−κ

2 X̂k

r̂(r̂2 − λ2)
. (26)

This can be generalized into an SO(4) structure by noting that

F̂ab = −i[V̂a, V̂b] = −κλ
2

εabcdL̂cd

r̂ (r̂2 − λ2)
. (27)

For its square it holds that

1

2
F̂ 2
ab =

1

2
F̂abF̂ab =

1

2

(κ

2

)2

(

r2 − λ2 +
(

κ
2

)2
)

r2 (r2 − λ2)2
. (28)

In the aforementioned reference it was noted that the eigenvalues of V̂ 2
a lay on a S3 sphere with

a radius of λ−1. This structure is modified for κ 6= 0 states as well

V̂ 2
a =

1

λ2

(

1−
(

κλ
2

)2

r̂2 − λ2

)

. (29)
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In the classical theory such a (κ dependent) term arises due to the effective potential of the angular

momentum of the fields. Note the similar terms appearing on the RHS of (28, 29) and the equations

for Casimir operators (20), they allow us to express the squares as

V̂ 2
a =

1

λ2
− λ2ĉ22
r̂2 (r̂2 − λ2)

, F̂ 2
ab =

λ4

r̂4 (r̂2 − λ2)2
ĉ1ĉ

2
2. (30)

We can combine these equations to obtain a single one, generalizing the important κ = 0 result

V̂ 2
a = λ−2 to

V̂ 2
a + ϕ̂F̂ 2

ab = λ−2, ϕ̂ =
r̂2
(

r̂2 − λ2
)

r̂2 − λ2 +
(

λκ
2

)2 . (31)

B. Dynamical structure

Before drawing any conclusion let us take a look at a certain dynamical structure. It is con-

venient to choose the Coulomb potential U = q
r
, q = e2, there are two reasons for it. First, the

Coulomb problem can be solved algebraically (as was found by Pauli) and second, it has already

been analyzed in the framework of NC QM (for κ = 0 states)13,14,16 .

The time independent Schrödinger equation with the Coulomb potential for generalized κ states

is

Ĥψκ =
(

Ĥ0 −
q

r̂

)

ψκ = Eψκ. (32)

The following vector is called the Laplace-Runge-Lenz (LRL) vectore and is conserved in the

presence of such a potential

Âk =
1

2
εijk

(

L̂iV̂j + V̂jL̂i

)

+ q
X̂k

r̂
. (33)

The same is true for the angular momentum operator. We can express it as

[Ĥ, L̂i] = 0, [Ĥ, Âi] = 0. (34)

Commutators of the angular momentum and the LRL vector are

[L̂i, L̂j ] = iεijkL̂k, (35)

[L̂i, Âj ] = iεijkÂk,

[Âi, Âj ] = −2iĤ
(

1− λ2Ĥ
)

εijkL̂k,

e Even thought it was in fact first discovered by Jakob Hermann and Johann Bernoulli.
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Restricting to energy eigenstates we can take Ĥ = E and obtain either the so(3, 1) or the so(4)

Lie algebra, depending on the sign of E
(

1− λ2E
)

. Following from the group theory we know that

their Casimir operators are allowed to take discrete values only, from which the discreteness of the

spectrum follows. For generalized κ states the Casimir operators are

Ĉ1 = L̂iÂi = −κ
2
q, (36)

Ĉ2 = ÂiÂi + (−2E + λ2E2)(L̂iL̂i + 1)

= q2 +
(κ

2

)2
(−2E + λ2E2).

Again, we observe a κ correction.

C. Ordinary space

It has been noted earlier that the results can be reproduced in ordinary QM. The starting point

is to realize that the isometry group of three-dimensional Euclidean space is locally isomorphic to

that of complex C2 plane. Two complex coordinates z1, z2 of C2 can be mapped into three real R3

coordinates by (a Hopf fibration) xi = z̄σiz. This relation can be understood using Cayley-Klein

parameters

z1 =
√
r cos (θ/2) e

i
2
(ϕ+γ), z̄1 =

√
r cos (θ/2) e−

i
2
(ϕ+γ), (37)

z2 =
√
r sin (θ/2) e

i
2
(−ϕ+γ), z̄2 =

√
r sin (θ/2) e−

i
2
(−ϕ+γ),

which are by xi = z̄σiz transformed into spherical coordinates of R3, the angle γ is lost in trans-

lation.

C2 is naturally equipped with a Poisson structure

{zα, z̄β} = iδαβ . (38)

The (free) Hamiltoanian is

Ĥ0 =
1

2r
{z̄α, {zα, .}}, H0ψ(z, z̄) = − 1

2r
∂z̄α∂zαψ(z, z̄), (39)

where r = z̄αzα. Using this we can define the velocity operator as

V̂i = {X̂i, Ĥ0} = − i

2r
σiαβ(z̄α∂z̄β + zβ∂zα), (40)

the coordinate operator acting only as a left multiplication now.
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Quantization of Cn can be carried out by replacing z̄α, zα →
√
λa+α ,

√
λaα and derivatives with

commutators. Note that our model of NC QM can be reconstructed this way, for example the Hopf

relation xi = z̄σiz becomes (10).

If we restrict the algebra of functions to C2 on only those of the form ψ0(x), the Hamiltonian

(39) and velocity operator (40) are acting as in ordinary QM

Ĥ0ψ0(x) = −1

2
∂i∂iψ0(x), V̂iψ0(x) = −i∂iψ0(x), (41)

as follows from the chain rule for derivatives. This way we can formulate ordinary QM on C2

instead of R3.

We can also consider a generalized class of states

ψκ(x, ξ) = ψ0(x)ξ, ξ =
∑

κ

′

Cκ1κ2
zκ1

1 zκ2

2 , (42)

with the sum
∑

κ

′

going over all κ1, κ2 such that κ1 + κ2 = −κ. f This alters the action of (40) as

V̂ jψκ = (−i∂j +Aj)ψκ, Aj = − i

2rξ
σjγδzδ(∂zγ ξ). (43)

The gauge potential Aj satisfies (compare it with the last term in (29))

1

2
(Aj)

+Aj =
(κ

2

)2 1

2r2
, (44)

The commutative limit of the results derived in NC QM can be obtained by considering states

(42), for example

[V̂i, V̂j ] = −κ
2
iεijk

X̂k

r3
. (45)

We are now ready to draw conclusions about our results and their relation to magnetic

monopoles.

III. SUMMARY AND CONCLUSIONS

Let us recall the kinematic structure of ordinary QM in the presence of monopole states as was

derived in1 (on the left) and compare it with the kinematic structure of NC QM with generalized

κ 6= 0 states (equations (17), (24), (25) on the right)

f Even more general ξ =
∑

κ

′

Cκ1κ2κ
′

1
κ′

2
zκ1

1 zκ2

2 z̄
κ′

1

1 z̄
κ′

2

2 with κ1 + κ2 − κ′1 − κ′2 = −κ could be used, but our

choice simplifies the calculations and proves the same point.

10



[x̂i, x̂j ] = 0 ↔ [X̂i, X̂j ] = λ2εijkL̂k,

[x̂i, π̂j ] = iδij ↔ [X̂i, V̂ j ] = iδij
(

1− λ2Ĥ0

)

,

[π̂i, π̂j] = iµεijk
x̂k

r3
↔

[

V̂i, V̂j

]

= i−κ
2 εijk

X̂k

r̂(r̂2−λ2)
.

(46)

The relations between the angular momentum operators and the LRL vector are the same (in the

λ→ 0 limit), as one can check comparing (5) and (35). Zwanziger1 derived the Casimir operators

for the symmetry algebra of the Coulomb problem in the presence of magnetic monopoles (on the

left). Let us compare his results with those for κ states in equation (36) (on the right)

Ĉ1 = −qµ ↔ Ĉ1 =
κ
2 q,

Ĉ2 = q2 + (µ)2(−2E) ↔ Ĉ2 = q2 +
(

κ
2

)2
(−2E + λ2E2).

(47)

The results are the same (in the commutative limit) if we set µ = −κ
2 . We need to check if such

identification is possible, since µ has to obey the Dirac quantization condition µ ∈ Z/2. Recall

that κ counts the difference in the number of creation and annihilation operators and therefore

κ/2 ∈ Z/2 as well. The identification is perfect and offers a different viewpoint on the Dirac

condition. Therefore ψκ are to be interpreted as monopole states in NC QM.

If we set λ = 0, but keep κ 6= 0 we obtain ordinary QM with magnetic monopoles. By setting

κ = 0, λ 6= 0 we obtain NC QM without monopoles. Finally by setting κ = λ = 0 ordinary QM

(without monopoles) is recovered.

It shall be reminded that for a system of two dyonsg are the parameters q, µ defined (in conve-

nient units) as

q = −e1e2 + g1g2
4π

, µ =
e1g2 − g1e2

4π
. (48)

Therefore, the considered case describes for example an electron orbiting a nucleus with a magnetic

monopole in it or an electrically charged magnetic monopole.

From (42), it can be understood how do the generalized states describe monopoles. In C2 there

are 4 coordinates, but for wavefunctions of the form ψ0(x) one of them, with a topology of S1,

vanishes. However, for ψκ states it persists as a factor e−
i
2
κγ winding around

ψ0 = ψ0(x) = Φ(r, ϕ, θ), (49)

ψ1 = ψ0(x)z̄1 = Φ(r, ϕ, θ)e−
i
2
γ ,

ψ2 = ψ0(x)z̄1z̄2 = Φ(r, ϕ, θ)e−iγ ,

g Dyon is a particle with both the electric e and the magnetic charge g.

11



...

ψκ = Φ(r, ϕ, θ)e−iκ
2
γ .

Note that |ψκ|2 = ψ†
κψκ always contains equal number of creation and annihilation operators

(or z̄ and z).

IV. APPENDIX

Strategy is the same for most of the calculations. If we want to prove an equation we express its

LHS in terms of c/a operators, shuffle them using (8) and recombine them to obtain the RHS. This

procedure is often rather straightforward, but sometimes involves a tricky step or two. Writing

down everything would be overwhelming (not to mention unnecessary), therefore we gather only

the crucial steps here.

As was mentioned, the important novelty for generalized κ 6= 0 states is that the left and the

right multiplication by r are unequal

r̂L = r̂ + ρ, r̂R = r̂ − ρ, ρ =
λκ

2
, (50)

r̂ =
1

2
(r̂L + r̂R) ,

λκ = r̂L − r̂R = 2ρ.

One needs to go through the same calculations as in15,16, identify where the assumption r̂L = r̂R

was used and track down the corrections using (50).

It is very useful to use auxiliary operators

âαψ = aαψ, â
+
αψ = a+αψ, (51)

b̂αψ = ψaα, b̂
+
αψ = ψa+α

and their quadratic combinations

ŵαβ = â+α b̂β − âβ b̂
+
α , ζ̂αβ = â+α b̂β + âβ b̂

+
α , (52)

χ̂αβ = â+α âβ + b̂β b̂
+
α , L̂αβ = â+α âβ − b̂β b̂

+
α .

Most of the physical operators can be expressed using those either after contracting the indices

α, β together (Âαα = Â) or with those of Pauli matrices (Âαβσ
i
αβ = Âi). For example L̂i =

1
2 L̂i,
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X̂i =
λ
2 χ̂i, r̂ =

λ
2 (χ̂+ 2), V̂i =

i
2r ŵi, Ĥ0 =

1
2λr (χ− ζ + 2). h

The velocity commutator

This calculation is almost a carbon copy of the one for κ = 0 states in16, the only modification

appears right before the final step

εijk[V̂i, V̂j ] = (same steps as for κ = 0 states) (53)

=
− i

2σ
k
αδ

r̂2
(
λ

r̂
(✘✘✘✘✘â+α b̂β â

+
β b̂δ + âβ b̂

+
α â

+
β b̂δ −✘✘✘✘✘âβ b̂

+
α âδ b̂

+
β − â+α b̂β âδ b̂

+
β

−✘✘✘✘✘â+β b̂δâ
+
α b̂β − âδ b̂

+
β â

+
α b̂β + â+β b̂δâβ b̂

+
α +✘✘✘✘✘âδ b̂

+
β âβ b̂

+
α )

+(✘✘✘✘✘â+α b̂β â
+
β b̂δ − â+α b̂β âδ b̂

+
β − âβ b̂

+
α â

+
β b̂δ +✘✘✘✘✘âβ b̂

+
α âδ b̂

+
β

−✘✘✘✘✘â+β b̂δâ
+
α b̂β + âδ b̂

+
β â

+
α b̂β −✘✘✘✘✘âδ b̂

+
β âβ b̂

+
α + â+β b̂δâβ b̂

+
α ))

=
− i

2σ
k
αδ

r̂2

(

λ

r̂

(

2r̂L
λ
b̂+α b̂δ −

2r̂R
λ
â+α âδ

)

+ âδâ
+
α [b̂

+
β , b̂β ] + b̂δ b̂

+
α [â

+
β , âβ]

)

=
−i

r̂2 − λ2

(

1

r̂

r̂LX̂R,k − r̂RX̂L,k

λ
+
X̂L,k − X̂R,k

λ

)

=
−i

r̂(r̂2 − λ2)

2ρ

λ
X̂k,

which is equal to

[V̂i, V̂j ] = εijk
−i
(

κ
2

)

X̂k

r̂(r̂2 − λ2)
. (54)

Square of the velocity operator and the (free) Hamiltonian

For this calculation, it is convenient to express the velocity operator using (52) (pairs of terms with

contracted indices are put into parenthesis as a+αaα = (a+a))

V̂iV̂i = − 1

4r̂
σiαβσ

i
γδŵαβ

1

r̂
ŵγδ (55)

= − 1

4r̂
(2δαδδβγ − δαβδγδ)

((

1

r̂ − λ
â+α b̂β − 1

r̂ + λ
âβ b̂

+
α

)

(

â+γ b̂δ − âδ b̂
+
γ

)

)

= − 1

4r̂

1

r̂ − λ

(

2â+α b̂β(â
+
β b̂α − âαb̂

+
β )− â+α b̂α(â

+
δ b̂δ − âδ b̂

+
δ )
)

+
1

4r̂

1

r̂ + λ

(

2âβ b̂
+
α (â

+
β b̂α − âαb̂

+
β )− âαb̂

+
α (â

+
δ b̂δ − âδ b̂

+
δ )
)

= − 1

4r̂

1

r̂ − λ

(

✁2(â
+b̂)2 − 2(â+â)(b̂b̂+)−✟✟✟✟

(â+b̂)2 + (â+b̂)(âb̂+)
)

+
1

4r̂

1

r̂ + λ

(

2(ââ+)(b̂+b̂)− (âb̂+)2 − (âb̂+)(â+b̂) +✟✟✟✟
(âb̂+)2

)

= − 1

4r̂

1

r̂ − λ

(

(â+b̂)2 − 2
r̂L − λ

λ

r̂R − λ

λ
+ (â+b̂)(âb̂+)

)

h This is the reason behind the peculiar names of the auxiliary operators, they are closely related to objects

that have already been defined.
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− 1

4r̂

1

r̂ + λ

(

(âb̂+)2 − 2
r̂L + λ

λ

r̂R + λ

λ
+ (âb̂+)(â+b̂)

)

= − 1

4r̂

(

1

r̂ − λ

(

(â+b̂)2 + (â+b̂)(âb̂+)
)

+
1

r̂ + λ

(

(âb̂+)2 + (âb̂+)(â+b̂)
)

)

+
1

2r̂λ2

(

(r̂ − λ+ ρ)(r̂ − λ− ρ)

r̂ − λ
+

(r̂ + λ+ ρ)(r̂ + λ− ρ)

r̂ + λ

)

= − 1

4r̂

(

1

r̂ − λ

(

(â+b̂)2 + (â+b̂)(âb̂+)
)

+
1

r̂ + λ

(

(âb̂+)2 + (âb̂+)(â+b̂)
)

)

+
1

✚✚2r̂λ2
✚✚2r̂

(

1− ρ2

r̂2 − λ2

)

.

To identify the (ab) terms we first take

Ĥ0 −
1

λ2
= − 1

2λr̂

(

(â+b̂) + (b̂+â)
)

, (56)

and square it to

(

Ĥ0 −
1

λ2

)2

=
1

2λr̂

(

(â+b̂) + (b̂+â)
) 1

2λr̂

(

(â+b̂) + (b̂+â)
)

(57)

=
1

4λ2r̂

(

1

r̂ − λ

(

(â+b̂)2 + (â+b̂)(b̂+â)
)

+
1

r̂ + λ

(

(b̂+â)2 + (b̂+â)(â+b̂)
)

)

.

Comparing these two expressions we obtain

λ2
(

Ĥ0 −
1

λ2

)2

= −V̂ 2 +
1

λ2

(

1− ρ2

r̂2 − λ2

)

, (58)

or equivalently

V̂ 2
a =

1

λ2

(

1− ρ2

r̂2 − λ2

)

, (59)

where a = 1, ..., 4 (recall that V̂4 =
1
λ
− λĤ0).

The Coulomb problem

Derivation of the Coulomb system spectrum in an algebraic way (developed by Pauli) is done

in detail in16. There, it was first shown that the Laplace-Runge-Lenz (LRL) vector defined as

Âk = 1
2εijk(L̂iV̂j + V̂jL̂i) + q X̂k

r̂
can be expressed using (52) as Âk = − 1

2λr̂ (r̂ζ̂k − X̂k ζ̂) + q X̂k

r̂
. The

Schrödinger equation can be, after restricting on energy eigenstates, expressed as Ŵ ′ = 2λq, where

Ŵ ′ = ηr̂ − ζ̂ with η = 2
λ
+ ω and ω = −2λE.

Afterwards, it is shown that the LRL vector together with the angular momentum operator

satisfy

[Âi, Âj ] =
1

4λ2
[Ŵ ′

i , Ŵ
′
j] = i

ω

λ

(

1 +
ωλ

4

)

εijkL̂k = iεijk
(

−2E + λ2E2
)

L̂k, (60)

[L̂i, L̂j] = iεijkL̂k, [L̂i, Âj ] = iεijkÂk, [L̂i, Ĥ ] = [Âi, Ĥ] = 0. (61)
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Perhaps rather surprisingly this is not affected by considering κ 6= 0 states at all. The only

differences appear for the Casimir operators, which are used to derive the energy spectrum. The

first Casimir operator follows easily from

X̂iL̂i =
1

4λ
(X̂L,i + X̂R,i)(X̂L,i − X̂R,i) =

1

4λ
(X̂2

L − X̂2
R) =

1

4λ
(r̂2L − r̂2R) (62)

=
1

4λ
(r̂L + r̂R)(r̂L − r̂R) =

1

2λ
r̂(r̂L − r̂R) =

κ

2
r̂,

L̂j ζ̂j =
1

2λ

(

(r̂L − r̂R)â
+
α b̂α + (r̂L − r̂R)aαb̂

+
α

)

=
κ

2
ζ̂ ,

as

Ĉ ′
1 = L̂jÂj =

1

2λ
L̂j(ηX̂j − ζ̂j) = − 1

2λ

(

−κ
2

)

(ηr̂ − ζ̂) =
κ

2
q. (63)

The κ 6= 0 correction is apparent. Derivation of the second Casimir operator is considerably

more complicated, the RHS of the following equation is a constant and we need to identify its value

Ĉ ′
2 = Ŵ ′

iŴ
′
i + (η2λ2 − 4)(L̂iL̂i + 1) . (64)

Expressing the terms on the RHS we obtain (after a number of auxiliary calculations)

Ŵ ′
iŴ

′
i + (η2λ2 − 4)(L̂iL̂i + 1) (65)

= η2X̂2 − η{X̂i, ζ̂i}+ ζ̂2 +
2

λ2

(

r̂Lr̂R − X̂L,iX̂R,i + λ2
)

+η2
1

4
(X̂2

L + X̂2
R − 2X̂L,iX̂R,i)−

1

λ2
(X̂2

L + X̂2
R − 2X̂L,iX̂R,i) + η2λ2 − 4

=
(

−η{r̂, ζ̂}+ ζ̂2
)

+
η2

4

(

X̂2
L + X̂2

R +✘✘✘✘✘
2X̂L,iX̂L,i

)

+
2

λ2
(r̂Lr̂R −✘✘✘✘✘

X̂L,iX̂R,i + λ2)

+η2
1

4
(X̂2

L + x̂2R −✘✘✘✘✘
2X̂L

i X̂
R
i )−

1

λ2
(X̂2

L + X̂2
R −✘✘✘✘✘

2X̂L,iX̂R,i) + η2λ2 − 4

=
(

−η{r̂, ζ̂}+ ζ̂2
)

+
η2

✁2

(

✁2(r̂
2 −��λ

2) + ✁2λ
2
(κ

2

)2
)

− 1

λ2

(

2(��̂r
2 −��λ

2) + 2λ2
(κ

2

)2
)

+
2

λ2

(

��̂r
2 − λ2

(κ

2

)2
+��λ

2

)

+✟✟✟η2λ2 − ✁4

= (Ŵ ′)2 + η2λ2
(κ

2

)2
− 2

(κ

2

)2
− 2

(κ

2

)2
= 4λ2q2 + (η2λ2 − 4)

(κ

2

)2
.

ACKNOWLEDGMENTS

This work was partially supported by COST action MP1405 (QSPACE) and by VEGA project

1/0985/16.

15



REFERENCES

1D. Zwanziger, Exactly Soluable Nonrelativistic Model of Particles with Both Electric and Magnetic

Charges, Physical review 176, 1480 (1968).

2K. A. Milton, Theoretical and experimental status of magnetic monopoles,

arXiv:hep-ex/0602040v1 (2006).

3C. N. Yang, Magnetic monopoles, fiber bundles, and gauge fields, Annals of the New York

Academy of Sciences (1977).

4A. M. Polyakov, Particle spectrum in quantum field theory, JETP Letters 20, 194 (1974).

5G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nuclear Physics B 79, 276 (1974).

6A. Connes, Publ. IHES 62, 257 (1986); A. Connes, Noncommutative Geometry (Academic Press,

London, 1994).

7M. Dubois-Violete, C. R. Acad. Sci. Paris 307 (1988) 403; M. Dubois-Violete, R. Kerner and J.

Madore, J. Math. Phys. 31, 316 (1990).

8S. Doplicher, K. Fredenhagen, J. F. Roberts, Comm. Math. Phys. 172, 187 (1995).

9M. M. Sheikh-Jabbari, Phys.Lett. B425, 48 (1998); V. Schomerus, JHEP 9906 (1999) 030; N.

Seiberg and E. Witten, JHEP 9909, 97 (1999).

10M. Chaichian, Demichev, A, P. Prešnajde, M.M. Sheikh-Jabbari, A. Tureanu, Nucl.Phys. B 611

, 383 (2001); M. Chaichian, A. Demichev, P. Prešnajder, M.M. Sheikh-Jabbari and A. Tureanu,
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