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by L. O’Raifeartaigh

Dublin Institute f. Advanced Studies, 10, Burlington Road, Dublin 4

Dedication

This article is dedicted to Professor Pratul Bandyopadhyay on the occasion of his

retirement. Along with his co-workers I should like to express my best wishes to him

on this occasion and to wish him an active and happy retirement. As his interests

are broad and have embraced many different aspects of physics I have chosen for my

article a review of WZW-Toda reduction. This is a subject which draws together many

different strands of recent research and may have some historical interest.

1. Preface

As is well-known, two-dimensional conformal field theories have come to play a central

role in present day physics. The reason is that, apart from their intrinsic interest,

they consitute a meeting point for three quite different branches of physics, namely

the theory of phase-transitions, string theory and statistical mechanics. Furthermore

they throw light on ordinary quantum field theory in the sense that many properties

such as operator product expansions can be computed reliably and precisely in the

two-dimensional context. Among the most important systems which are used in

two-dimensional conformal field theory are the Wess-Zumino-Witten system and the

Toda field system. The WZW systems are essentially free (linear) systems while the

Toda systems are interacting (non-linear) systems. In recent years it has been found,

however, that Toda systems may be regarded as constrained WZW systems. What I

should like to sketch is how this circumstance allows one to obtain the properties of

the Toda systems from those of the free WZW in a relatively simple manner and to

show how the WZW-Toda reduction relates to other interesting aspects of physics.

2. Historical Background

Let me begin by summarizing some relevant historical dates, as follows:

1853: Introduction of Liouville Theory.

1966: Discovery of Abelian Toda Systems as integrable systems [2].

1967: Formulation of Kac-Moody (KM) algebras [3].

1978 Construction of Wess-Zumino-Witten systems with KM algebras

as symmetry algebras [4].

1979: General solutions of Abelian Toda field equations found [5].
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All these systems were non-linear and hence rather complicated and difficult to quant
ize. But the situation was simplified when in

1989: Toda systems were discovered to be linearly constrained WZW systems

Since the WZW systems were linear everything then became much more tractable. In
fact one now had the following advantages: the Toda action turned out to be nothing
but a reduced WZW action, the general solutions of the Toda field equations theory
(both abelian and non-abelian) could be obtained quite simply from the (trivial)

WZW solutions, the quantization of Toda theories could be effected by applying

BRST standard methods to the quantized WZW systems and finally, as might be

expected, the W-algebras of Toda theory turned out to be constrained KM-algebras.

Symbolically:

Awzw “

WZW Solutions —÷ Toda Solutions (algebraically)

KM Algebra —* W-Algebra (algebraically)

KM Quantization —÷ BRST Quantization of Toda

where A denotes the Action. Furthermore, it turned that the WZW-Toda Reductions
and the primariness of the W-Algebras were associated in a one-one manner with the

embeddings of the SL(2, R) group in the WZWZ Lie group G [9], the abelian Toda

theories being associated with the principal (maximal) embeddings:

Principal SL(2, R) Embedding ÷— Abelian Toda

General SL(2, R) Embedding —* General Toda

General SL(2, R) Embedding +-÷ Primariness of W-Algebra

Intimate connections were also found between these systems and

Dirac Star Algebras KdV hierarchies R-matrix theory

Finally the relationship between the WZW — Toda reductions and their symmetry
counterparts KM —* W-Algebra was found to be described by a generalized Miura
transformation which had been introduced in the eighties by Drinfeld and Sokolov
[10] for a different but related purpose. In the simplest, SL(N, R), case, the DS

transformation may be described as 8(x) — W(x), where

(81)(882)...(88)...(86n) =8W282....Wr8+...+Wn (2.1)

with = 0. In conclusion it should be mentioned that in recent years the super
symmetric (N = 1 and N = 2) generalizations of all these relationships have been
constructed [11], the N = 2 case being particularly interesting.

It is clear from the above that many different strands of ideas are brought together
in the WZW —* Toda reduction.



3 WZW Systems

The WZW and Toda systems are different generalization of the single massless free-
field system in two dimensions. This system has action

A= fd28,qS(x)8(x) k=constant (3.1)

field equations

V2q(x) 0 x x + xi (3.2)

and solutions

= cb+(a+) + q_(x_) (3.3)

where q are arbitrary differentiable functions.

Let us first consider the WZW generalization. This is obtained by noting that in the

single free field case the field g(x) = is an element of a one-parameter Lie group

and generalizing to the case when g(x) is an element of any abelian or semi-simple

Lie group. For non-abelian groups the generalization is not quite straightforward and

is perhaps best described by starting from the solutions (3.3). In analogy with (3.3)

one requires that the solution in the general case be of the form

g(a) =g+(x+)g_(x_) (3.4)

where g, are arbitrary differentiable group elements. Because of the non-commutative

nature of the group one then finds that the field equations must be

8J=0 and 3J=0 where J_=(8_g)g’ J=g’6g (3.5)

The surprising feature is the appearance of the current J as well as J. Its appearance

means that one cannot use the obvious generalization

A = fd2xtr(JJ)) = g’8g (3.6)

of (3.1) as the action, and it took some time before it was discovered by Witten [4]
that the correct action was

Jv]Ja) (3.7)

In the second integral on the right-hand side of (3.7) the two-dimensional Minkowski

space is regarded as the boundary of a three-dimensional space with extra coordinate

y and the point is that although it is a 3-dimensional integral its variaiom is an
integral over the boundary. Thus the variation of A provides a 2-dimensional system

of field equations, and this system turns out to be just the system (3.5). Had the sign
of the 3-dimensional integral in (3.7) been reversed we would have obtained equations
similar to (3.5), but with J and J interchanged. The 3-dimensional integral in (3.7) is



a special case of a form that was found earlier by Wess and Zumino [12j in a different

context.

Although the WZW action contains a cubic term in the fields, the fact that the field

equations are linear in J shows that it is a free system, and the solutions (3.4) to
the field equations are simple by construction. As in the abelian case the system

is conformally invariant. It is also invariant with respect to the transformations

g(r) —* lg(c) and g(x) —k g(c)r where 1 and r are arbitrary comstard group elements,

and the currents J+(a) may be identified as the Noether currents associated with
these left and right-handed symmetries. As one might expect from the fact that it

is a free system the WZW system is easily quantized. Letting x = and y = y
denote the usual light-cone coordinates and o the group generators, the commutation

relations for the currents are

[Ja(), fb(y)] = 0 Ja = tr(uaJ) (3.8)

and the KM algebras

[Ja(), Ib(y)j = fabL(Y)S(X Y) + kgab8’(X y) gab = tr(craub) (3.9)

for x = x and v = y+, and similarly for J(a) with k —* —k. Writing the group

elements in the form (3.4) one finds that their commutation relations are

[Ja(a),g(y)] = uag(y)S(+ _y+) and [g(),g(y)] = Rg2(a)6(a —Y+)
(3.10)

where in the last equation g denotes the individual elements g and R = Rjk;stis an

R-matrix of the kind used in Yang-Baxter (YB) equations, and similarly for J and

g(x_). Thus the WZW theory provides a dynamical framework for the appearance

of KM and YB algebras.

4. Toda Systems

The other type of generalization of the free-field action is to introduce conformally

invariant interactions. For a single scalar field the only way to do this is to use an

exponential potential, which leads to the Liouville action

A= fd2x{(8)2 +e} (4.1)

The abelian Toda actions are generalizations of the Liouville action to the case of 1

Lorentz scalar fields qYc) and the action is

A
= f d2{a)

+ } (4.2)

where the sum over a runs from 1 to 1 where 1 is the rank of a simple Lie group

and the a’s are the primitive roots of
.

The constants a are chosen as primitive
roots in order to make the system integrable and if only conformal invariance were
required they could be replaced by arbitrary constants. From the properties of the



primitive roots one sees that the interaction is actually an exponential interaction
between nearest neighbours.

The non-abelian Toda theories are generalizations of the abelian Toda theories in

which the single scalar fields are replaced by a set of WZW fields g(a)(a). As we shall

see later the systems are associated with the embeddings of SL(2, R) in a simple Lie
group G. The embeddings can be integral or half-integral and for the integral case

the action takes a form similar to (4.2), namely

A = + fd2g(a)g’1)(x) (4.3)

The abelian Toda theories are the ones associated with the principal sl(2) embeddings.

5. The Magic Constraints

As stated in the Abstract, the general Toda systems (4.3) may be obtained from the

WZW systems by placing constraints on the latter. What are these magic constraints?

It turns out that they are very simple, namely constraints which are linear in the KM

currents and first-class in the sense of Dirac. To specify them more exactly we let G

be the Lie algebra of the semi-simple Lie group and let {M0,M} be the standard

generators of an SL(2, R) algebra embedded in G. We can then grade the Lie algebra

of G with respect to M0 in the usual sense that G can be decomposed as

G = G,,. where [M0,Gj = mG (5.1)

An even simpler decomposition of G is

G = G1 + G0 + G where G1 = G and Gr (5.2)

n<O n>O

The magic constraints are then simply

tr(u,j) = 0 j = J. — M_ and tr(ui,) = 0 = 4 — (5.4)

where the are the generators of G1/r. The constraints (5.4) are evidently linear

in the currents and they are first class because from (3.10) the KM commutation

relations (or Poisson brackets) are of the form

[tr(urj()),tr(ui(y))] = 0 [tr(urj()),tr(urj(y))] C tr(ur,j(y))S( -y), (5.5)

and a corresponding relation for the j’s.

6. Gauge-Fixing: Cartan and Kostant-Kirillov

Since the magic constraints are first-class they generate a gauge-symmetry and to

obtain a reduced system one must gauge-fix. There are two natural ways to gauge-fix
for these constraints and each one leads to an interesting form of the reduced system.
Both gauge-fixings take the linear form

tr(6,j) = 0 tr(8,j1) = 0 (6.1)



where the 6’s are conjugates of the u’s. The only question is: what kind of conjugates?

The first natural choice is let the 6’s be the Caram conjugates of the u’s i.e. to let

tr(u,6) = 8ab and tr(u,6) = 8ab (6.2)

In the Cartan gauge the currrents take the form

J_=M_+k0(j) and i=M++k0(j) (6.3)

where the k0 and k0 lie in G0 and are (non-local) functionals of the constrained KM

currents j and j. As we shall see in the next section this gauge leads to the Toda

systems. The other natural choice is let to the 6’s be the Kosant-Kirillov (KK)

conjugates of the u’s with respect to the 51(2, R) generators M± i.e. to let

w+(u,6)) = 8ab and w_(o,6.)) = 6ab (6.4)

where
w+(e,f) = tr(M+[e,f]) (6.5)

for any two elements e and f of G. In the KK gauge choice the currents takes the

form

= M + k(j) k c kerM and J = M + -G) - c kerM (6.6)

This means that in the KK gauge only the highest weight components of j and the

lowest weight components of j with respect to the SL(2, R) subgroup survive. For

this reason the KK gauge is sometimes known as the highest weight gauge. It turns

out that the k+ and lc_ currents are differential polynomials in the constrained KM

currents and as we shall see in section 8 they form W-algebras. In fact the conformal

weights s of the W-elements are just s = m + 1 where the m are the highest/lowest

weights.

7. Cartan Fixing and Lagrangian Reduction

There is a standard method of implementing first-class constraints in Lagrangian

theory, namely to gauge the theory with respect to the constraint group (without

introducing a kinetic term for the gauge fields but rather regarding them as Lag

rangian multipliers). This technique is tailor-made for the constraints of section 4 as

follows: The group elements of may be decomposed into gigogr in accordance with

the decomposition (5.2) of the lie algebra G and then, using the Polyakov-Wiegmann

formula for the decomposition of WZW actions for products, one finds that the WZW

action WZW action (3.7) may be written as

A = A0 + tr(Jg0J+lg’) (7.1)

where A0 is the WZW action for and jl/r denotes the projections of the cur

rent onto Gl/r. Since from (5.4) the gauge-groups in are those generated by Gi/,.

respectively the gauged form of this action is simply

A = A0 + f tr((J — Ar)go(4 — A1)g’ + AM_ + A1M+) (7.2)



where A1,17. are gauge-fields belonging to G respectively. The action (7.2) is gauge-

invariant with respect to the gauge-transformations X7. —* h’(X7.+8+)h7.for X7. =

and A7. and h7.(x) G7. and similarly for h1() Gi.

To see how (7.2) leads to a Toda system we simply choose a gauge so that J = J = 0
to obtain

A = A0 + ftr(A7.g0Atg’ + A7.M_ + A1M+) (7.3)

and then either integrate out the A-fields (or eliminate them by means of the field

equations in classical theory) In this way we obtain by inspection

A = A0 + ftr(M_goM+g’) (7.4)

which is nothing but the Toda action! In the quantum case the gauge-fixing is ac

companied by some Faddeev-Popov ghosts but these are easily handled [9] using the

BRST mechanism.

8. KK-Fixing and W-Algebras

To see how the KK choice of gauge-fixing leads to W-algebras we note that currents

can be transformed to the form in which only the highest/lowest weight components

survive by means of a gauge-transformation of the form

(M + j + a) M_ + k(j) k(j) C kerM (8.1)

where a.u denotes a sum over all gauge-parameters a and the corresponding gauge-

group generators o, and similarly for j. The interesting point is that the parameters

a in (8.1) can be determined by iteration. Hence (8.1) is a complete gauge-fixing and

the parameters are differential polynomials of the KM current components. It follows

that the final current components k+ are differential polynomials of the KM current

components. But they are also gauge-invariant and since the commutators and PB’s

of both differential polynomials and gauge-invariants close we have

{k(j), k(j)} = VP(k(j)) (8.2)

where VP denotes differential polynomial. Thus we have an algebra of gauge-invariant

DP’s. Furthermore since the gauge-fixing is complete they form a basis for all gauge

invariants. Thus (8.2) actually defines the algebra of all gauge-invariants. So the

algebra of all gauge-invariants is a differential polynomial algebra. To show that it is a

W-algebra it suffices to show that it contains a Virasoro subalgebra and has a primary

basis. This is not difficult. Indeed the Virasoro operator is just tr(M, k(j)) i.e. is

the element of k+ that corresponds to the highest root of the embedded SL(2, R) and

the components corresponding to the other highest weights of SL(2, R) are already

primary. As might be expected, the W-algebra generated in this way is just the

symmetry-algebra of Toda theory found in [8].

A bonus of using the gauge-fixing procedure (8.1) is that solving (8.1) for a is the

equivalent of carrying out for arbitrary simple groups the DS transformation indicated

in (2.1).



9. Gauge-Fixing and the Dirac Star Algebra

As we have just seen, the W-algebra is the algebra of invariants with respect to the

gauge group generated by the first class constraints. On the other hand, for any set

of first-class constraints Fa = 0 for a = 1. .n the addition of a set Ha = 0 for a = 1..

of complete gauge-fixing constraints produces a set of second-class constraints in the

sense of Dirac i.e. a set of constraints G i = 1...2n such that

Lk $ 0 where ik = {C, Ck}c0 (9.1)

Then for any operators A we can then define the reduced operators

A* = A — {A, C}0(z’)0Gk so that {A*, Ck}c0 = 0 (9.2)

From (9.2) it follows (i) that the PB algebra {A*, B*} of the reduced operators closes

and (ii) that the reduced operators A* are gauge-invariant on the constrained gauge-

fixed surface. From these results it follows that the reduced PB algebra and the

algebra of gauge-invariants are isomorphic.

The isomorphism of reduced and gauge-invariant algebras is a completely general

result but applying it to the present case it shows that the W-algebra is just the Dirac

star algebra of the reduced system and a bonus is that the differential polynomiality of

the W-algebra implies the differential-polynomial invertibility of the Dirac constraint

matrix L\. This can be verified directly and is quite a remarkable result because the

polynomial invertibility of Li is very unusual. Indeed I do not know of any other non

trivial example, and in the literature direct use of the Dirac star algebra is usually

avoided precisely because of the difficulty of inverting Li.

10. General Solution

In this section we show how the general solution of the Toda systems may be obtained

algebraically from the (trivial) general solution of the corresponding WZW case. The

idea is to use the Gauss decomposition g = gg0g, of the group elements with respect

to the M0 grading. Then taking the WZW solution one writes each component in

Gauss form to obtain

= gl(x_)go(x_)gr(x_)71(x+)7o(+)7r(+) (10.1)

where the elements belong to and in the manner indicated. The compon

ents g() and 7(x+) on the extreme left and right may be eliminated by a gauge

transformation and the constraints on the currents imply that the off-diagonal com

ponents gl(x-1-) and g,.(x) are determined by the diagonal components gl(r+) and

g(_) respectively through

8g(x) go(x_)gr(a—) and 87l(+) = 7i(+)7o(+) (10.2)

On converting the gauge-modified (10.1) to the overall Gauss form

= ai(i)ho(x)f3r() (10.3)



and removing the matrices on the left and right by a further gauge transformation

one sees that the Toda solution is simply h0(x). Thus all one has to do is determine

the matrix h0(), and, apart from solving the relatively trivial differential equations

(10.2), this is a purely algebraic problem.

For example in the Liouville case, after gauging away the matrices on the extreme

laft and right in (10.1) and using (10.2) we obtain

(e8a() 0 (1 a(x) ( 1 O (e8+) 0
104

0 e_8a)) 0 1 ) b() 1) 0 ( . )

and after Gauss conversion this becomes

(1 a(x_) (e) 0 ( 1 0
105

1 ) 0 e8(z)) b() 1

where

= ln(
Da(_)3b(x+)

(10.6)
\1 + a(x)b(x+)J

This the well-known general solution in the Liouville case.

11. Quantization

For quantization one may proceed in a number of ways. One may quantize the re

duced system canonically [8] [13] [14], one may quantize it using the functional integral

formalism [15] or one may apply the BRST method to the gauged Lagrangian [9][16].

The latter procedure is simply a special case of the usual BRST procedure. I have

not space to describe these three procedures here but it is perhaps worth mentioning

that all three procedures agree and lead to a value of the Virasoro central charge of

the reduced system of the form

= dim(Go)+12(2k+hg)tr[Mo +
4(hg)]

(11.1)

where M0 and m0 are the grading operators for the actual and principal embeddings

respectively and g is the Coxeter number for the Lie group . This formula may also

[14] be written as

c = [hdimC + + 12(2k +hg)tr[Mo +
4(2k+ h)]

(11.2)

where C is the centre C0 and M = m0 — >m where the m are the principal

grading operators for the simple subalgebras G° of C0. The advantage of the form

(11.2) is that it seperates the part of the centre due to the free WZW theory for C0

(first square bracket) from the part due to the interaction.
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