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Abstract

The loop-expansion of the effective potential in the 0(N)-symmetric ‘-

model contains generically two types of large logarithms. Toresum those sys

tematically a new minimal two-scale subtraction scheme 2MS is introduced in

an 0(N)-invariant generalization of MS. As the 2MS beta functions depend on

the renormalization scale-ratio a large logarithms resummation is performed on

them. Two partial 2M5 renormalization group equations are derived to turn

the beta functions into 2MS running parameters. With the use of standard per

turbative boundary conditions, which become applicable in 2MS, the leading

logarithmic 2MS effective potential is computed. The calculation indicates that

there is no stable vacuum in the broken phase of the theory for 1 < N 4.
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1 Introduction

There are many instances where an ordinary loop-wise perturhative expansion is
rendered useless by the occurrence of large logarithms. This is the case eg. in the
discussion of scaling violation in deep inelastic scattering (DIS) or in the determination
of a reliable approximation to the effective potential (EP) in the standard model (SM).
Only after resumming the large logarithms does the violation of Bjorken scaling yield
one of the niost accurate determinations of the strong coupling constant [1] or may the
requirement of vacuum stability be turned into sensible bounds on the Higgs mass [2].

In the case of one type of large logarithms renormalization group (RU) techniques
are well established to perform the necessary resummation systematically. However, in
certain kinematical regimes in DIS there are two types of large logarithms, in the SM
EP for small values of the Higgs field parameter there are five. Although the problem
has been recognized by many authors no generally accepted RG techniques have been
developed vet to deal with those cases.

Sticking to the MS scheme the decoupling theorem [3] was used in Ref. [4] to obtain
some region-wise approximation to leading logarithms (LL) multi-scale summations.
Although this is perfectly reasonable, one has to employ “low-energy” parameters, and
it is not clear how to obtain sensible approximations for these in terms of the basic para
meters of the full theory. Alternatively, one of us [5] argued that one could still apply
the standard MS RU equation to multi-scale problems provided “improved” boundary
conditions were employed. Although such improved boundary conditions were sug
gested in some simple cases, no general prescription was given foi constructing them,
and no improved boundary conditions were apparent for the subleading logarithms
summation.

Clearly, one must go beyond the usual mass-independent renormalization schemes if
multi-scale problems are to be seriously tackled. In the context of the EP we are aware
of two different approaches. In Ref. [6] it was argued that one could employ a mass
dependent scheme in which decoupling of heavy modes is manifest in the perturbative
RU functions. Alternatively, in Ref. [7] the usual MS scheme was extended t.o include
several renormalization scales j. While this seems to be an excellent idea, the specific
scheme in [7] has two drawbacks. Firstly, the number of renormalization points does
not necessarily match the number of generic scales in the problem at hand, as there
is a RU scale icj associated with each coupling. Secondly, when computing multi-scale
RU functions to n loops one encounters contributions proportional to log’(I/k)
(and lower powers). If some of the log(/) are large then even the perturbative RU
functions cannot be trusted and used to sum logarithms. A similar approach to the
one of Ref. [7] was outlined in Ref. [8] though no detailed perturbative calculations
were performed.

Here we outline a more systematic approach fully developed to include next-to-
leading logarithms (NLL) in Ref. [9]. In order to deal with the two-scale problem
arising in the analysis of the EPin theO(1V)-symmetric’-theory we introduce a
0(N)-invariant generalization of MS. At each order in a MS loop-expansion we per
form a finite renormalization to switch over to a new “minimal two-scale subtraction
scheme” 2MS which allows for two renormalization scales ij corresponding to the two
generic scales in the problem. The MS RU functions and MS RUE then split into two
2MS “partial” RU functions and two “partial” RUE’s. The respective integrahility con-



dition inevitably imposes a dependence of the partial RG functions on the renormaliza

tion scale-ratio /2/1. Supplementing the integrability with an appropriate subsidiary

condition we determine this dependence to all orders in the scale-ratio and obtain a

trustworthy set of LL 2MS RG functions. With the use of the two “partial” RGE’s

we then turn those into LL running two-scale parameters exhibiting features similar to

the MS couplings such as a Landau pole now in both scaling channels. tising standard

perturbative boundary conditions, which become applicable in 2MS, we calculate the

effective potential in this scheme to LL and check it by comparison with two-loop and

next-to-large N MS calculations. As a main result we find that for 1 < N 4 there is

no stable vacuum in the broken phase. A full analytic determination of the NLL cor

rections to the results presented here is given in Ref. [9] and shows that the instability

is not just an artefact of a LL calculation.

2 The one-loop effective potential in MS

Let us consider the 0(N)-symmetricp4-theory with Lagrangian

= 1
— — 22

— A (1)

where is a real N-component scalar field. Note the inclusion of the cosmological

constant term which will prove essential in the discussiou of the RG and the effective

potential later [10].

A loop-wise perturbation expansion of the effective potential [11, 12] yields in the

MS-scheme to one loop

(tree)

= 24
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where

= rn2 + M2 =
2

+ (3)

and is the M-renormalization scale. The one-loop contribution to the EP thus

contains logarithms of the ratios M/1z2 to the first power and in general the n-loop

contribution will be a polynomial of the nth order in these logarithms. (The explicit

two-loop result has been obtained in [13].)

In view of these logarithms the loop-wise expansion may be trusted only in a region

in field- and coupling-space where simultaneously

<<1 and log <<1. (4)
(4w)2 (4w)2

Due to the two largely differing scales M occurring in the logarithms these conditions

may hardly be fulfilled eg. around the tree-level minimum of the potential, where

= 0, even with a judicious choice of i. Hence, to obtain a sensible range of

validity one has to resum the logarithms in the EP.
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In the one-scale case this would be achieved to LL by solving the one-loop MS

RG equation for the effective potential and by employing the corresponding tree-level

boundary conditions [14]. Here, we have to deal with two relevant scales. The necessary

generalization of the MS scheme and the usual RG approach allowing for as many

renormalization scales as there are relevant scales in the theory has been given in [9j.

3 The minimal two-scale subtraction scheme MS

To track the two differing logarithms with two corresponding renormalization scales

we use the freedom of performing a finite renormalization. Hence, to one loop we add

a finite, 0(N)-invariant counterterm to the Lagrangian

2 2 2

1 1 2
(i-ioop) =

2

M
log +

1
(T

— 1)
M

log, (5)
(47r) 4 i- (4ir)- 4

where the new renormalization scale i is tracking the Higgs logarithms and K2 iS

tracking the Goldstone logarithms. Note that (lboop) is in fact a polynomial of

fourth order in consistent with renormalizability and the 0(N)-symmetry.

In the minimal two-scale subtraction scheme 2MS thence introduced the one-loop

contribution to the EP becomes

o)
h M12 M1 3N

___

M22 / M2 3

= (4)2 4
log—} + (42(—l) log—). (6)

Hence, in 2MS we may again trust the loop-expansion of the EP at i2 = M1, k2 =

M2 which becomes the boundary condition for the RG evolution in the two-scale case.

Note that ill this scheme the beta functions inevitably depend on log(K2/k1)and will

he trustworthy oniy after resumniation of those logarithms.

____

As discussed in detail in [9] the general features to be respected by 2MS are:

i) The effective action F, when expressed in terms of the 2MS parameters, should

be independent of the MS scale i.

ii) When K1 K2 2M5 should coincide with MS at that scale.

iii) When N = 1 (N —* oo) the scale (i) should drop and 2MS should coincide

with MS at the remaining scale.

iv) When i = M the standard loop-expansion should render a reliable approx

imation to the full EP insofar as(4)2A(Ki, K2) is “small”.

Starting now from the identity

F[1\5, in, A, = F[1\, rn2, A, ; , K2] (7)

we derive the two partial 2MS RGEs correspondillg to variations of the scales ij, where

the other scale ij and the MS parameters are held fixed, in much the same way as the

MS RG is usually derived. Specializing to the effective potential we obtain

V1V = 0, V1 = + f3,\ +i/3m2E iA (8)
thu

‘The two sets of RC4 functions are defined as usual

/
dni2 dA d

= = /3 = 3p = —K-- (9)
aK aK
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for i = 1, 2. In general they may be functions not oniy of A, rn.2 as are the M RG

functions but also of log(i2/i1).

____

Note that property ii) requires the sum of the 2MS RG functions at i = to

coincide with the MS RG function at that scale

= ‘2) +2 = = (10)

where the set of MS beta functions is given to one ioop by

(ioop)

= (4)2
(3 +

1)
A2

= (4)2
(i +

1)
A7n2,

/(1.Ioop) — h (1 N — 1 (1-1oop)
— 0 11

(4)2 2 2 )
‘ —

In the N = 1 limit property iii) fixes the 3. to be the usual N = 1 S RG functions,

given to 0(h) by eqns. (11) with N = 1, and requires to disregard the second set of

RG functions so that V2 = 20/thí2. For, N —+ oo there are no Riggs contributions

and the 2/3. are the N —÷ oo MS RG functions, again given to 0(h) by eqns. (11) in

the large N limit. The first set of RG functions is then trivial, hence V1 =

4 The LL resummed 2MS RG functions

As we want to vary i and independently we must respect the integrability con

dition

[,id/dIi,2d/dk2] = [V1,V2] = 0, (12)

which allows us now to determine the 2MS beta functions. An essential feature of a

mass-independent renormalization scheme such as MS is that the beta functions do

not depend on the renormalization scale 1u. Unfortunately we cannot generalize this to

the multi-scale case and demand that the two sets of beta functions be independent

of log(I2/k1). In fact, the independence of the RG functions from the scales t, ie.

= 0, is incompatible with the integrability condition (12). However, as

we have one subsidiary condition at our disposal it is possible to arrange eg. for the

first set of RG functions to be i-independent

[8/8i,V1] = 0. (13)

Hence, at LL we have the first set of RG functions fixed to be the N = 1 values from

eqns. (11)

/LL)
=(4)23A )

=(4)2Ai7l

L)

= (4)2 9’

/3(LL)
= o. (14)

In general, we could assume a linear combination . = p /3 + (1
— p) 2. of the

two sets of beta functions to be t-independent. As analyzed in detail in [9] the results

‘for the beta functions, the running parameters and the EP are then p-dependent. p
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has to be fixed eg. by comparison with the 2-ioop and the next-to-large N EP and in

our case it turns out that p = 1 is the appropriate choice [9].

As V1 is now fixed eqn. (12) yields RG-type equations for the 2/3, which we solve

next. Setting

(15)
(4ir)

the equation for 2/3A becomes to leading order

h 8 (EL) (LL) 8 (LL) / (LL) 8 (LL)
— 0 16

— (4)2 23,\ + 1P,\ 2/3 — 2/3 i —

The solution does not exlicitly depend on t

213(t)
= (4)23

‘A2 (17)

Note that to fix the boundary conditions above and in what follows we use property

ii) leading to the relevant condition (10).

We turn to the equation for 2/3m2

hA a (LL) / (LL) 8
8(LL)

(LL)
18

— (4)2 213rn2 + 13,\ 2 m2 — 2\ (

This is easily solved by

22
= (4)2

N- 1
(1+2(1- 3t)’) 2 ‘ (19)

Next we determine 2/3A from

i a (LL) (LL) (LL) 3(LL)

(122/3A +1/\ 2!3A 2/3 A

+
2 - 1A =0 (90)

For later convenience we give the result partly in terms of2(t) and23(t)

/3L)(t)

= (4)2

2(N- 1)
(1- 3t)rn + 2(t)

(m2)2

-2(t). (21)

Finally 2/3 remains trivial

= 0. (22)

It is obvious that the beta functions possess Landau poles at 1 — 3t = 0. Hence,

they are trustworthy only for 1 > 3t. On the other hand, the limit t —* —co exists for

the whole set of (LL)(t) This will allow us later to discuss the non-trivial behaviour

of the two-scale EP around the tree-level minimum.
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5 The LL 2MS running two-scale parameters

The running parameters in 2MS are functions of the variables

hA
log = log

—, (23)
(4)2 (4)2

where tj are the reference scales. Note that t(s) as given in eqn. (15) is in fact Sj

dependent, I = log 2f4. The above variables may he expanded in series in It the

LL terms of which we determine now from eqn. (9).

The equations for the leading order running twoscaie coupling are

1\(LL) 1x(LL) ii i

3
\(LL)’

= —

£ ,(LL)2 (94)
ds1 ‘ ds2 3

They are easily integrated

= —

(AT 1)
As2) - (25)

with the boundary condition A(s = 0) = A. Above, the s1-term accounts for the

running of ,\ due to the ‘Higgs’, thes2-terni for the evolution due to the ‘Goldstones’.

Next we determine the running mass from

2)

A rn2(LL) (26)
cis1

This is easily solved

2(LL) 2
(,\(LL)(q.)

in (sj) = in. A(s2). (2)

The constant of integration A(s2) is obtained from the second in2-equation

drn2 = N I
(i + 2 (i

— (N
‘s — )) ‘)

\() m2. (28)

We finally find

m2L) = m2 (i —

— (N 1)
As2)

(i —

2 — :31)
. (29)

The boundary condition is chosen such that in2(s = 0) = rn2.

In order to obtain the running cosmological constant we have to solve

dA() = 1 (2(LL))2
(30)

cls 2

This yields the result

/ 2(LL)
\2

1 m (Si)) 177
A(LL)(S) = —

,\(LL)(5 —

+ B(s2). (31)
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To calculate the constant of integration B(s2) we turn to the second A-equation

____

2(—l) ((LL) / (N+8) / 2(LL)N2

ds2 3 —

As — 3t}) 7Ti )

/ 2()\
2

9(LL)
(4w) 1 3(LL) in (4w) 3(LL) rn

9
2/

A)
}

—

2, 2

and obtain the final result

4 N—i

A(s) = — [(i
—

— ‘ (1_ —

3t)_r
i]

2m’N—1 1 /l_S2_3t\8

+ __N_4(l_3t)r 13t
)

— 1 +A. (33)

Here the boundary condition is A(s = 0) = A. Due to the trivial the field

parameter does not depend on s.

The LL running coupling ,\(LL)(s), and therefore the running mass as well, have

a Landau pole at 1 — 3As1
— —--‘\S2 = 0 and clearly our approximation will break

down before this pole is reached. Of more importance is the behaviour of the running

cosmological constant as will be discussed at the end of the next section.

6 The LL RG improved 2MS effective potential

it is now an easy task to turn the results for the running two-scale parameters into

a RG improved effective potential. VV = 0 yields the identity

7(\
in2 A; 1, 2) = V((s),rn2(s), (s), A(s); ki(Si),k2(52)), (34)

with “(s) defined in (23). Next, we assume the validity of condition iv) from section

3. Hence, if

= M(s) in2(s) + k(s)2(s), k1 = , k2 = (35)

the loop-expansion of the EP should render a trustworthy approximation to the RHS

of eqn. (34).

To proceed we have to determine the values of s fulfilling (35). Insertion of the

‘(s) from (35) into (23) yields a quite implicit set of equations

Il M(s)

= 2(4rr)2
log . (36)

However, since we are meant to be summing consistently leading logarithms the explicit

solution to this order is easily obtained

(LL) h n2 +
,\2

(LL)

_____

in2 + 1 ,\2

= log
, 2 = 2

log
2

(3)
2(4ir)- 2(4ir)



At scales we can now approximate the RHS of eqn. (34) with the tree-level

contribution as displayed in (2), hence

\(LL) (LL)

i)
=

+ m2(s)2 + (:33)

Insertion of the various expressions for the running parameters yields the explicit,

0(N)-invariant final result for the LL two-scale improved potentia.l in 2MS [9]

V(LL) (i — 3\s
— A 1 \SLL))

-1

2 N-i

2 2 N--8 (LL)

+
m

(i — 3A
— 1L)) 3 —

)
4 N—i

V
1 N+8\(LL) 3N8

— [ —

— I
—

lLL))
(i

— it ) —

N — 1 m / y±)LL) —

+ 2 4-T(l_3t) 1\ l—3t }
—1 +A. (39)

There are various important checks on our result. By construction it reduces in

the single-scale limits N = 1 and N —÷ oo to the well-known one-scale MS results [14].
(LL)

A non-trivial check is provided by expanding eqn. (.39) to second order in s . As

required the result of this expansion coincides with the leading logarithmic terms in the

explicit 2-loop effective potential as obtained in Ref. [13]. Furthermore, for N —* 00

we recover in the LL approximation the next-to-large N expression for the EP as given

in Ref. [15]. Finally, for t = 0 the result (39) has already been obtainec[ using the

MS RG and a conjecture, proven up to two ioops, for the boundary condition which

becomes very involved in that approach [5].

We turn now to a discussion of the most important features of the result (39). In
2 (LL)

the broken phase (rn < 0) the tree-level rnmirnum is at A42 = 0 or 59 — —00.

Hence. as we approach it og(A42/M1)will become large. If we are prepared t.o trust

eqrl. (39) even in the extreme case of the tree minimum itself an intriguing property

emerges.

As long as N > 4 the p’-and m2p2-terms vanish and the A-term converges to a

finite value. As the slope dt(LM)
— — . o the EP takes its minimum in the broken

phase at the tree-level value and becomes complex for even smaller2-va1ues.

But for 1 < N < 4 the A-term, and thence /(LL), diverges to minus iiifinity indic

ating that for these values of 1\T there is no stable vacuum in the broken phase. Note

especially that for N = 4, ie. the SM scalar boson content, there is still a divergence.

It is softer than for N = 2, 3, however, as the penultimate term in eqn. (39) becomes

a logarithm
4 / 4\(LL)\

7(LL)
= — )\(1 — :3t)t log 1

— 1_3t)
+ A. (10)
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7 Comment on NLL and Discussion

The method presented in the calculation of the LL two-scale effective potential is

systematic. In fact, in Ref. [9] we have performed a fuJi analytic computation of the

NLL two-scale RG functions, of the corresponding NLL two-scale running parameters

and finally of the NLL effective potential Our main result is that for 1 < N <4

the vacuum instability in the broken phase persists . Hence, it is not a simple artefact

of the LL resummation performed in this paper.

The occurrence of a vacuum instability in the broken phase of the 0(N)-model raises

immediately the possibility of a similar outcome in a multi-scale analysis of the SM

effective potential. As the method outlined generalizes naturally to problems with more

than two scales we are ill a position to investigate systematically the different possible

scenarios. Because the SM analysis poses a many-scale problem and will become quite

cumbersome it proves useful to study first the effects of adding either fermions as

in a Yukawa-type model or gauging the simplest case of N = 2 as in the Abelian

Higgs model. The Yukawa case is either a two- or three-scale problem, depending on

whether one includes Goldstone bosons or not. The Abelian-Higgs model in the Landau

gauge will be a three-scale problem. In the three-scale case one has three integrability

conditions [Vi, V] = 0 and three independent subsidiary conditions for free. They are

analogous to [k6/thj, D1] = 0 which we used above. For the general n-scale problem

one would have n(n — 1) integrability conditions to be supplemented by n(n — 1)

subsidiary conditions. The question of whether fermions or guge fields may stabilize

the effective potential for small N in a full multi-scale analysis is under investigation.
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