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Abstract

A carefully motivated symmetric variant of the Poisson bracket in ordinary (not Grassmann)

phase space variables is shown to satisfy identities which are in algebraic correspondence with

the anticommutation postulates for quantized Fermion systems. Symplecticity” in terms of

this symmetric Poisson bracket implies generalized Hamilton’s equations that can only be of

Schrddinger type (e.g., the Dirac equation hut not the Klein-Gordon or Maxwell equations).

This restriction also excludes the old “four-Fermion” theory of beta decay.
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Quantized Fermion dynamics. with its Pauli exclusion principle, no more possesses a limit

of large” quantum numbers than does elementary spin one-half quantum dynamics. Thus the

notion of classicizing” Fermion dynamics via a formal h —+ 0 limit [1] is physically unsound. In

fact, the ostensible Fermion ‘c1assicization” developed in Refs. [1, 2] maneuvers shy of this trap

by declining clean abandonment of quantum noncommutativity, which lingers on in the guise of

anticommuting Grassmann phase space variables (the oxymoronic tag “anticommuting c-numbers”

notwithstanding). However, the pointlessness of these physically mismotivated (by the h 0

notion) and theoretically ambiguous (definitely not classical, but neither fully-fledged quantum)

Grassmann phase space variables is illustrated by the familiar Dirac electron theory, whose second-

quantized version describes a quantum Fermion dynamica.l system. Its “classicization” obviously

ought to be the first-quantized Dirac electron theory, whose wave functions are pure c-number——

not Grassmann variable—versions of the previously quantized electron fields, and whose dynamics

requires that h 0 (e.g.. in the familiar first-quantized Dirac equation).

Grassmann phase space variables are avoided here in favor of true c-number phase space vari

ables. which are used to construct a heuristically compelling “symmetric” variant of the Poisson

bracket (its definition specifically requires that 0). This “symmetric” Poisson bracket satisfies

phase-space vector component identities whose algebraic relation to the postulated anticomrnu

ta.tiou rules of quantized Fermion dynamics fully parallels the algebraic relation of the ordinary

Poisson bracket phase-space vector component identities to the postulated corn mutation, rules of

(illantized point particle and Boson dynamics.

Given this soundly based “symmetric” Poisson bracket, the structure of “classical” Fermion

dynamics follows straightforwardly from the requirements of “symplecticit” with respect to it—

the derivations can be carried out in perfect parallel with the well-known ones of ordinary (or

Boson) classical dynamics [3]. For continuous one-parameter sequences of infinitesimal Fermion

“canonical” transformations, one obtains the same natural generalization of Hamilton’s e(luations

as occurs in ordinary classical dynamics [3], but one also finds stringent constraints on the form

of the “generalized Hamiltonian functions” or “canonical transformation generators” which are

permitted to appear in these Fermion “classical” dynamical equations. Indeed, the restrictions

on these generators are such that “classical” Fermion dynamics must he linear and c[escribed by

a Sch.rddinger type of equation (which may possibly be inhomogeneous). The Dirac equation,

which is of Schrodinger type, can describe a “classical” Fermion system, hut the inherently non

Schrödinger (even though linear) Klein-Gordon and Maxwell equations cannot. Also the old “four-

Fermion” theory of beta decay cannot describe a legitimate “classical” Fermion system (it is not

thus forbidden under the Grassmann variable regime).

Ordinary classical dynamics is usually discussed in terms of real-vained phase space vector

variables of the form (‘). However, its relation to the quantum theory and to Fernuon systems is

much more transparent if one changes these real phase space vector variables to the complex-valued

dimensionless phase space vector variables ff (q/q3 +iq5fl/T)/i/ and their complex conjuga.tes

= (7/q8 — iqJ/h)/, where q is a nonzero real-valued scale factor that has the same dimensions

as the components of q (note also the obvious requirement that 0). In terms of a aild d.

In terms of components of both of these types of phase

space vector variable, the usual Poisson bracket of ordinary classical dynamics is
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From the second Poisson bracket representation given in Eq. (1) above we abstract the “sub-bracket”

(2)

k
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which we call the ordered Poisson bracket. We note that while {f o g} is linear in each of its two

argument functions f and g, it is neither antisymmetric nor symmetric (commutative) under their

interchange. However, it does satisfy the identity {f o g} = {g* f*}, which is in algebraic corre

spoudence with the Hermitian conjugation formula for the prothzct of two hubert-space operators,

i.e., f = (tft)t. This together with the fact that {f, g} = _i({fog}— {gof})/h, as follows from

Eqs. (i) and (2), is a strong heuristic motivation for the usual quantum theoretic postulates that

identify certain quantum operator commutators f — f with the corresponding Poisson bracket

expressions ih{f, g}. The factor of ik which is involved can be eliminated by identifying these com

mutators directly with the corresponding antisymrnetric Poisson brackets {f, g}_ {fog}—{gof}.

As natural counterparts to these one has the symmetric Poisson brackets {f g}+ {fog}+{gof},

which are the obvious “classical” candidates to correspond to certain quantum operator ariticom

mutators f + f, such as those which enter into the quantum postulates for Fermion systems.

Bearing in mind that

(af ag 0g af
{f, g}± =

+
(3)

we readily calculate the symmetric and antisymmetric Poisson brackets for the components of d

and d:

{ a, a}+ = 0 = {a, a}+, {a, a}+ = = +{a, a}+. (1)

The quantum commutation and anticommutation relations which would algebraically correspond

to Eqs. (4) are:

dd+aa = 0= dà+àà, d+dd =I= +(aa+aafl. (5)

When + = —, we recognize Eqs. (5) as the commutation relations of the ladder operators for

independent quantum harmonic oscillators, while when + = +, we recognize Eqs. (5) as the anti-

commutation relations of the creation and annihilation operators for independent quantum Fermion

system particle occupation states.

The canonical transformations of ordinary classical dynamics are mappings of the complex

phase space vectors d A(, d) and d’ — (A(a, d))* which preserve the antisymmetric Poisson

bracket relations among the complex phase space vector components that are given by Eqs. (4)

with + = —. In view of the algebraic correspondence with quantum Fermion systems established

above, we may confidently define the the canonical transformations of Fermion system “classical”

dynamics as those complex vector phase space mappings which preserve the symmetric Poisson

bracket relations among the complex phase space vector components that are given by Eqs. (1)

with + = +.

Specializing now to infinitesinial phase space transformations d A = d + d*) in the

manner of Guillemin and Sternberg [3], we readily calculate the antisymmetric and symmetric



Poisson brackets for the components of A and A* to first order in and from Eq. (3):
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If we now impose the requirement that this infinitesimal phase space vector transformation is

canonical (i.e., that it preserves the antisymmetric or symmetric Poisson bracket relations among

the complex phase space vector components given by Eqs. (4)), we obtain the three equations:
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The last of Eqs. (7) is independent of the value of the + symbol (i.e., of whether we deal with the

infinitesimal canonical transformations of ordinary classical dynamics or those of Fermion system

“classical” dynamics), and it is satisfied in particular for one-parameter infinitesimal which are

of the form

6a1 =
—

(8)

where ,\ is a real-valued infinitesimal parameter and G(,) is a real-valued “generating function”

whose dimension is that of action divided by the dimension of A. Because l,\ and G(d d) are

real, Eq. (8) implies that

= (9)

and we thus can readily verify that the last of Eqs. (7) is satisfied.

From Eq. (8) or Eq. (9) we obtain the form of the equation which governs any continuous one-

parameter trajectory of sequential infinitesimal canonical transformations in the complex vector

phase space:
ila G da G

= -ç— or — zh— = —.

(10)
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In the most general circumstance, G may have an explicit dependence on A, i.e., it may be of the

foim G(d,(I,A) Bearing in mind the melation (qp = (qs(+
(I*)

(_
(I*)/q)/ between

the complex and real phase space vectors, Eq. (10) may be rewritten as the pair of real equations:

dq — 8G dp —

11
(IA — pj’ (IA — ãq’

which are the familiar generalized Hamilton’s equations [3] that govern continuous one-parameter

trajectories of sequential infinitesimal canonical transformations in the real (7,j5) vector phase

space.

For the case of ordinary classical dynamics (for which the value of + = + in Eqs. (7)), the first

two of Eqs. (7) are satisfied identically for the one-paranieter infinitesimal of the form given by

Eqs. (8) and (9). However, for the case of Fermion system “classical” dynamics (for which the value

of + = —), the first two of Eqs. (7) impose the following constraint on the real-valued “generating

functions” G(,. A) of the continuous one-parameter canonical transformation trajectories:

_____

2G
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Thus the •generating functions of the continuous one-parameter trajectories of sequential in

finitesimal canonical transformations in Fermion system ‘classical” dynamics are constrained to he

constant or linear in each of ?T and ã**, as well as real-valued. The most general form for such a

classical” Fermion system “generating function” is therefore

G0() + Zk(/\)a +g(/\)a) + Gim(A)aiam, (13)

where G0(A) is real and Gim(i\) is a Hermitian matrix. Epon putting this constrained form for

G into Eq. (10) for the continuous one-parameter trajectory of sequential infinitesimal canonical

transformations which G generates, we arrive at

do1
(14)

which is a (possibly) inhomogeneous linear equation of matrix Schrödinger form. (If the gj(\) = 0,

this is a general homogeneous type of Schrödinger equation, whereas if the gj(\) = — A’), it

is a general propagator type of Schrödinger equation.) Thus the “classical” dynamics of Fermion

systems must be linear and describable by a Schrödinger type of equation.

The generating functions of the continuous one-parameter canonical transformation trajectories

are usually considered to be obsereables of classical theory when they have no explicit dependence

on the parameter. Thus the most general observable” of Fermion system c1assica1” dynamics

must have the form of G in Eq. (13), but with G0, g, and Gim having no \-dependence. However,

when this “classical” Fermion theory is quantized by passing (with + = +) from the “symmetric”

Poisson bracket relations of Eqs. (4) to the anticommutation relations of Eqs. (5), it often hap

pens (particularly in local field theories) that the “inhomogeneous” (gka + gak) term of an

observahle” G is not really, in fact, a bona fide observable. Even at the present ‘classical” level

it is always possible to effectively suppress this ‘inhomogeneous” part of an ‘observable” if the

Hermitian matrix G1171 is not singular. This is done by making the canonical transformation

A1 = a + (G’)gj. (15)

It is easily verified that the transformed A1 of Eq. (15) also satisfy the symmetric” Poisson bracket

relations (with + +) of Eqs. (1). In terms of t.hese A1, Eq. (14). specialized to ‘observables”,

1) cc omes

(16)

which is of homogeneous Schrodinger equation form, while Eq. (13), specialized to “observables”,

1) cc onie 5

G(A,A) = G0 — (G-’) ggm + ZG1TnA7Arn. (17)

irn un

which has no ‘inhomogeneous’ term.

The Dirac equation, which is of Sclirödinger type, can of course describe a classical” Fermion

system, but the Klein-Gordon and Maxwell equations, although they are linear, turn out not to be of

Schröclinger type. For example, in one spatial dimension a discretized version of the Klein-Gordon

equation is

qj — (c/(2r))(q÷2 — 2q + i-2) + (mc, qj = 0. (tb)



This can be replaced by the first-order equation pair

qj = = (c/(2x))2(q2 — 2q + q_) (mc2/)2qj, (19)

which is a version of Hamilton’s equations for the particular Hamiltonian (time evolution generating

function and observable)

= (p + (c/(2x))2(q1
- qk-l)2

+ (1nc2/h)2a). (20)

The constraint given by Eqs. (12) on Fermion system “classical” generating functions G in the

complex vector phase space translates in the real (ji’ vector phase space into the two real-valued

constraint equations:

2r / 2 2r
2
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where the scale factor q is real and nonzero. For the discretized Klein-Gordon Hamiltonian of

Eq. (20) we have that

a2H i2H
q. = —(cq/(2r))2 0 and = 0. (22)

aqaq2

which is not in accord with the constraint on classical” Fermion system generating functions that

is given by the first of Eqs. (21). Thus the Klein-Gordon equation is not of Schrödinger type and

cannot describe a “classical” Fermion system.

It is quite clear as well that the old “four-Fermion” theory of beta decay is inherently nonlin

ear and thus cannot describe a “classical” Fermion system (there is no such objection under the

Grassmann variable regime).
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