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Introduction

An outstanding problem in non-abelian gauge theory has been to make reliable pre

dictions about the (non-perturbative) strong coupling region. (Another interesting

problem has ben to find solvable models in more than two dimensions). In a recent

paper [1] Seiberg and Witten (SW) have shown that the simplest non-trivial N = 2

supersymmetric theory provides at least a partial answer to these problems. First,

they have shown that the local part of the effective Action is governed by a single

analytic function F of a complex variable. Second they have made an Ansatz for

the F that satisfies all the physical criteria and embodies electromagnetic duality,

thus directly connecting the weak to the strong coupling regions. The correctness of

their Ansatz is supported by some direct instanton computations [2]. The purpose of

this note is to give a resume of the SW theory in the simplest possible mathematical

terms.

1. N = 2 Supersymmetry

We begin by recalling the essentials [3] of the N = 2 supersymmetry algebra and its

Action. The algebra is

{Q, Q} = ójkJP {Q, Q} = (1.1)

plus the hermitian conjugate of the second relation, where i, k = 1, 2 and Z is a central

charge. This algebra is realized on the simplest possible non-trivial supermultiplet,

namely

W D {c,5,A,1;F,D} (1.2)

where is a complex scalar field, / is a Dirac spinor A,1 is a gauge-field and F and

D are complex and realdummy-fields respectively. This N = 2 superfield actually

consists of two N = 1 superfields, namely

I D {,q,F} and V D {A,1,f,D} or Wa D {F,1v,f,D} (1.3)

where k and V/Wa are chiral and vector multiplets respectively, the q
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and f fields being Weyl spinors of opposite chirality. Since A belongs to the adjoint

representation of the gauge group G and all the fields belong to the same multiplet

they must all belong to the adjoint representation of G. The simplest SW model is

for G = SU(2) and we shall concentrate on this case.

2. N = 2 Super-Action.

The superaction for the N = 2 superfield just described is

A = Im Trfd4xd26d2() (2.1)

On expanding this in terms of the N = 1 superfields it becomes

A=Imfd4xd26ad2(Ae_2Y0VA) +Tofd4Xd28a(WW) (2.2)

where

=
—- + (2.3)
2T g0

the parameter g0 being the usual gauge-coupling constant and 80 being the QCD

vacuum-angle (not to be confused with the usual supersymmetric Grassman vari

ables). The exponential in the first term is just the supersymmetric generalization of

the covariant derivative. Expanding (2.2) further in terms of conventional fields we

obtain

A = trf d4x{tD2) + +g[,])
+ g2{tj2}

1 9
(3.4)

+trfd4x{F’F, + F’F}

This Action will be immediately recognized as the standard action for a Quark-Gluon

Higgs system in which all the fields are in the adjoint representation and the coupling

constants are reduced to g and 9 by the supersymmetry. Thus it is not very exotic.

Indeed it could be the QCD Action except for the fact that the quarks are in the

adjoint and presence of the scalar field.

4. Text-Book Properties

The Action (3.4) is actually so normal that it embodies all the properties of Quantum

gauge Theory that have surfaced over the past thirty years and could even be used

as a model to teach quantum gauge theory. It might be worthwhile to list these

properties:

1. It contains a gauge-field coupled to matter

2. It is asymptotically free

3. It is scale-invariant, but with a scale-anomaly



4. It has spontaneous symmetry breaking

5. It has central charges (Z and Z)

6. It admits both instantons and monoples

Because of the supersymmetry it has some further special properties, whose signifi

cance will become clear later, namely,

7. It not only has a Montonon-Olive mass formula [4] for gauge-fields and monopoles

but generalizes that formula

from M=jv(Ne+nm) to MZ where Z=(ane±adnm) (4.1)

where ne and m denote the gauge-field and monople charges respectively, and

the coefficients a and ad will be explained later.

8. It is symmetric with respect to a Z4 symmetry which is the relic of the R-symmetry

(&cr — e8) that survives the axial anomaly breakdown.

9. It has a holomorphic structure

10. It has a duality that connects the weak and strong coupling regimes

12. The duality generalizes to an SL(2, Z) symmetry. In section 6 we explain these

last three concepts in a little more detail.

5. Spontaneous Symmetry-Breaking

For SU(2) this concept is very simple. From the form of the Higgs potential in (3.4)

we see at once that there is a Higgs vacuum for = va where v is any complex

number and o is any fixed generator of SU(2). Furthermore, for v 0 this breaks the

gauge-symmetry from SU(2) to U(1). For other gauge-groups G the corresponding

statement is that v must lie in the Cartan subalgebra of G. On the other hand there

is no spontaneous breakdown of supersymmetry Thus the full breakdown is

SU(2) —+ U(1) N = 2 supersyinmetry unbroken (5.1)

Indeed it is the fact that the supersymmetry is unbroken that gives the model its

nice properties, since otherwise the classical properties would not be preserved after

quantization.

After the spontaneous breakdown the restriction of the N = 1 form of the classical

Action (2.2) to the massless U(1) fields takes the form

A = Imf d4Xd29ad2(AA) + ToImfd4xd28a (wawa) (5.2)

Since the adjoint representation of U(1) is trivial this Action is a free-field one. How

ever, in the quantum theory this does not mean that the effective Lagrangian is also

free because, through the quantum fluctuations, the massive fields induce interaction

term for the massless ones. The first great virtue of the SW model is that these



interactions have a very specific form. In fact they show that, due to the N — 2

supersymmetry the local part of the effective Lagrangian can only be of the form

A fd4xd2ed2(A4d —AdA) +Imfd4xd2&(r(A))(WW) (53)

where

Ad F’(A) and -(A) = F”(A) (54)

for some function F(A). Thus the effective Lagrangian is completely governed by the

single function F(A). Note that (5.3) is very similar to the classical Action which is

the special case for which F(A) =r0A2. As we shall see, the SW solution is actually

a special Ansatz for the functional form of F(A).

6. Holomorphy and Duality

It is now easy to quantify what is meant by holomorphy and duality. Holomorphy

is simply the statement that F(A) depends only on A and not on A. Duality means

that the physics described by the effective Action (5.3) is invariant with respect to

the duality transformation.

() (i ) (A))
DW DW r(A) (T(A)1 (6.1)

Note that the duality transformation is closely linked to the Legendre transform of

F(A) with respect A. By noting that in the free classical theory with = 0 the

transformation (6.1) reduces to

EB and (6.2)

we see that it is just the generalization of well-known Maxwell-Dirac (MD) duality.

Thus the Action (5.3) not only generalizes MD duality but puts it into a genuine

dynamical model. Furthermore, the duality generalizes to

(A (p q (A
and T(A)

pr(A)+q
(6.3)

AdJ r sj AdJ rr(A)+s

where the matrix with entries (p. q, r, s) is in SL(2, Z). The integer-valuedness of the

transformation follows from the requirement that, in the perturbation theory at least,

it should change the & angle only by multiples of 2w and should leave the mass-formula

(4.1) form-invariant.

7. Perturbative and Non-Perturbative F(A)

Before going on to describe the S-W Ansatz for F(A) we consider the perturbative

contribution F(A) of F(A). This turns out to be

F(A) = h42ln(A2/A2) (7.1)



where A is the renormalization scale. This is evidently a classical plus a one-loop

expression but it is correct to all orders in perturbation because [3] the energy trio

mentum tensor is in the same multiplet as the axial current

= —(8Kj + Dj)
(7.2)

= = —

i757vaj +

and in N = 2 supersymmetry this situation is protected to all orders in perturbation.

It follows that the quantum correction to the energy momentum tensor are similar to

the axial anomaly. for which it is well-known that the one-loop result is exact to all

orders.

For the non-perturbative part of F(A) the only solid a priori pieces of information

are:

Im(F”(A)) 0 F(A) 0 F(iA) = F(A) (7.3)

and the fact that it vanishes for large A. The first relation from the convexity of the

effective potential, specifically from the fact that Im(F”(A)) is the coefficient of the

kinetic term for the gauge-field, the second relation from 1-instanton computations

and the third relation from the residue of R-invariance that is left alter spontaneous

symmetry-breaking. F(A) has to be guessed from this apparently meagre information.

The SW-Ansatz

8. Preliminaries

SW begin by reducing the problem to one in complex analysis by considering only

the vacuum value A = v of the chiral scalar superfield and determining the functional

form of F(v). Afterwards, (A) can be recovered by the simple substitution F(v) —*

F(v + A) F(A). This is analogous to the substitution

V(m,f,g) V(m + f + g, f + g,g) = Veff() (8.1)

which is made to obtain the effective potential from the partition function P(m,f,g)

of a standard renormalizable theory with a single scar field with masses m, and

coupling constants f and g.

Next, they note that asymptotic freedom allows them to identify the perturbative

region as the large scale one v —+ cc and thus

r(v) — -ln(v) for v — cc (8.2)

Since v is expected to be singular in the small scale (strong coupling) region one also

postulates the existence of a universal (complex) parameter u E C normalized so that

a(u) —+ u for u —* cc. Assembling all this information they reduce the problem to

the search for a function r(u) such that

Im(r(u)) 0 and r(u) ln(u) (8.3)



The procedure for choosing a r(u) to satisfy (8.3) is actually rather similar that used

by Veneziano in choosing his formula for the S-matrix S(s,t,u). where s,t and u are the

invariant squares of the momenta. That is to say. instead of computing the function

directly from the underlying theory one uses its properties (symmetries, boundary

conditions etc.), to try to guess what it should be. Indeed duality (actually triality)

plays here a role which is analogous to that played by crossing symmetry (symmetry

in s,t and u) in the Veneziano case. But first one has to decide the general class

of functions out of which the function r(u) should be chosen. The standard class

of functions which map the upper part C of the complex plane into itself modulo

subgroups of SL(2, Z) is the class of Fuchsian functions {öj and the choice will be

made out of these. So, to put the results in perspective, we digress for a moment to

consider Fuchsiam functions or maps.

9. Fuchsian Maps

The Fuchsian maps T(u) are maps from C to D = C+/G where G is a subgroup of

SL(2, R) (restricted in our case to SL(2, Z). Thus they map C into fundamental

domains D E C whose G-equivalent copies fill out C. The domains D are circular

polygons (ones whose sides may be straight lines or circles) and in our case will stretch

out to infinity. In general the polygons may not be of genus zero because the sides

may be have to be identified in a non-trivial manner. The corners of the polygon

correspond to points on the real axis in the u-variable and if the genus of the polygon

is zero u can be extended to cover the whole complex plane, which compactifies

to the Riemann sphere. Otherwise the compactification of the u-space leads to a

Riemann surface of higher genus. The essential point is that these maps guarantee

that Im(r(u)) 0.

9. The Schwarzian Derivatives

The Fuchsian functions r(u) are apt to be complicated but a great simplification is

achieved by considering not the functions themselves but their Schwarzian derivatives

r” 3 -“ 2

S(r)
= -- (—) (9.1)

In general the main property of Schwarzian derivatives is that they are invariant

with respect to the modular transformations (6.1). However, in the case of Fuchsian

functions they have the added advantage that they are simple meromorphic functions

of the form

z=n

S(r(u))
=

)2
+ ( )} S(r(u)) u (9.2)

and this is why it is convenient to use S(r) rather than r itself. One S(r) is known

there is a simple and elegant way to recover r from it, namely to write

T = where y” + S(r(u))y = 0 (9.3)



Such functions T are tailor-made for the S-W model where r(u) = a/a”. All but

the 3-parameters in (9.2) have a simple geometrical meaning. The number ri is

the number of corners on the polygon D (excluding the point at infinity) and the

parameters a and a are the locations of the corners and the internal angles of the

polygon respectively. Because of the freedom of choosing the axes in u-space the

number of independent parameters in Q(u) is 3n — 2. The boundary condition puts

two further restrictions on the on the 3’s and this reduces the number to 3n 4.

This already shows that ri 2. It is clear that the real choice in choosing a Fuchsian

function is to choose ri and then choose the 3n — 4 parameters in the meromorphic

function Q(u).

10. S-W Choice

The question is: which Fuchsian function to choose? The S-W choice is made by

adding two further inputs to the basic conditions, namely

1. Minimality: n = 2

i’i 9”\ /i 0
2. Duality: M

= (%\0 E) ÷
= (\\2 1

Duality in this sense means that the monodromy matrix M1 at one of the singularities

is the dual of the monodromy matrix M at infinity. Physically, it means that the

asymptotic freedom of g for large scales is the dual of the infra-red slavery of g

(asymptotic freedom of g’) for low scales. It turns out that M and M1 generate a

monodromy group P2 which includes the monodromy group of the second singularity,

and consists of all matrices of the form

I+2( ) e,f,g,heZ (10.1)

According to our previous analysis this determines a unique Fuchsian map (modulo

the positions of the two singularities which are normalized to be a = ± 1) and it turns

out to be the map with c = 0 and ,3 = +1/4. Thus with SW Ansatz equation (9.3)

becomes

where “+[
3+u20

(10.2)

Y2 4 (u —1)-

There is actually a simplification in this case on changing to the variable a, where

a’ y because then (10.2) becomes

where a”+(911)a=O (10.3)

and the differential equation in (10.3) is just a hypergeometric equation. So finally

r(u) is simply the ratio of the derivatives of two simple hypergeometric functions.

In fact the function r’(u) is a well-known automorphic function called the elliptic

modular function. Thus when all the smoke has cleared away it turns out that the

SW Ansatz is to propose that F(A) is such that F”(A) is the inverse of the elliptic

modular function!



11. Uniqueness

•The S-W Ansatz is certainly not the only Ansatz compatible with the basic conditions

Im(r(u)) 0 r(u) ln(u) (11.1)

Indeed, even for two singularities, the Schwarzian could be

(1—a2) (1_,2) l(9_a2—72)

S(r(u))
= 2(u - 1)2 + (u + 1)2 - 9 (1- u2)

(11.2)

where a,’y = 0, , -, with monodromy groups called F2, G2 and G9. The solution

with G8 is ruled out because it is not R-invariant but G2 remains as a refiexion

invariant alternative. For more than two singularities there are many more possibil

ities. For example a three-singularity reffexion-invariant solution with monodromy

group SL(2, Z)/Z2 is provided by T(u) = J(u2), where J is the standard modular

function.

What distinguishes the S-B solution is that it carries the dual symmetry that was

used by S-W as input. The point is that F2 is an invariant subgroup of SL(2,Z) and

SL(2,Z)/F2 = F3 (11.3)

where P3 is the permutation group of order 3. Mathematically the permutation

group P3 interchanges the point at infinity and the two singularities and physically it

interchanges gauge-fields, monopoles and dyons. The original duality input emerges

as the symmetry between the the gauge-field at infinity and the monople at one of

the singularities.

12. Correctness

Since the S-W Ansatz is not unique one has to check whether it is, in fact the correct

choice. In principle this can be done by making direct computations of the non

pertubative part of the Action using instanton computations. In practice this has

been done [2] only for arbitrary gauge-groups in the 1-instanton configurations and

for SU(2) in the 2-instanton configurations and in these cases the SW Ansatz agrees

with direct computations.

The general idea of these computations is as follows: For any Fuchsian function sat

isfying the boundary conditions and R-invariance we have the asymptotic expansion

v A 4m

F(v) = v2 + hv2ln()2+ v2 Cm () (12.1)

In the direct instanton computations F(v) is supposed to be the partition function and

the contributions of the various powers in rn are supposed to come from the instanton

sectors of topological charge m. The idea, therefore, is to compute the partition

function in an m-instanton background under the assumption that the scalar field

has a non-zero value v on the sphere at infinity. What one does in practice is to first

choose a background for the gauge and fermion fields by the conditions

F=F 7D=0 (12.2)



where F* denotes the dual of F. These fields are parametrized by the Sm ADHM

parameters p, ii for self-dual gauge-fields, where p. in particular, denotes the size of

the instanton, and the 8m parameters 17, for their zero-mode fermion fields. One

then postulates that the scalar field is given by

D2=[,z4J b(oc)=v (12.3)

and is thus a functional of these 16n parameters. Finally one postulates that long-

range part of the partition function comes only from the surface term tr(f pDrb)

in the Action (3.4) and that the short range part drops out because the bosonic

and fermionic contributions cancel on account of supersymmetry. In that case the

partition function evidently takes the form

P(v) = f dpd(v)pdpdvdd17ef
d.(&ñ) (12.4)

For dimensional reasons these integrals are of the form

8mir2 2 A 4m Sm,t-2

P(v) =J4me fp43dpd(v)e f(v) = a2(_) eem (12.5)

where the em ‘s are dimensionless constants. It is these constants that are to be com

pared with the SW constants Cm and, as mentioned earlier, the coefficients computed

up to now are in agreement. So the instanton computations provide reasonably strong

support for the correctness of the SW Ansatz. As a check on the sensitivity of the

result we have computed c1 for the alternative n = 2 Ansatz and it is different from

the SW one.

It must be admitted that the validity of the instanton computations as described

above is not quite clear, because the equations (12.2) and (12.3) are regarded only

as approximations and the background configurations described by them are neither

solutions of the classical field equations nor supersymmetric-invariant. However, we

hope to present a more convincing argument for the validity of the instanton compu

tations in a later paper.

I. Sachs would like to thank the Swiss National Science Foundation for partial support.
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