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Abstract

We study a model of polymers with random charges; the possible shapes of the

polymer are represented by the sample paths of a Brownian motion, and the cumulative

charge distribution along a polymer is modelled by a realisation of a Brownian bridge.

Charges interact through a general positive-definite two-body potential. We study the

infinite volume free energy density for a fixed realisation of the Brownian motion; this

is not self-averaging, but shows on the contrary a sample dependence through the local

time of the Brownian motion. We obtain an explicit series representation for the free

energy density; this has a finite radius of convergence, but the free energy is nevertheless

analytic in the inverse temperature in the physical domain.
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1 Introduction

The problem of describing the thermodynamic properties of polymers in random environ
ments has received much attention in the theoretical physics literature [1,2,3,4,5,6,7]. Ex
perimental evidence suggests that for a wide class of bio-polymers (such as proteins) there
is no sample-to-sample regularity in the distribution of electric charges along the polymer;

it is thus natural to view these charges as random variables. Taking the possible shapes of
the polymer to be the sample paths of some stochastic process, one can then construct a
precise mathematical model by specifying the interaction between the charges.

Various authors have studied specific models in the above class: Kantor and Kardar

[3] consider a one-dimensional model with the following characteristics: the configurations

of a finite polymer are described by the paths of a simple random walk wj,j = 1, . . . , N.

The local charges along the polymer qj,j = 1, . . ., N are taken to be realisations of N

independent random variables obtaining the values +1 with equal probability. Finally the
interaction has zero range, resulting in the Hamiltonian

(1)
1<i<j<N

The programme consists in studying the thermodynamic properties of this model for a fixed

(but arbitrary) realisation of the charges, for instance by calculating the partition function

as the conditional expectation

Z(j3) =

The main questions are:

• does the limiting free energy f(3) = limjy log ZN(/3) depend on the realisation

of the charge q?

• does the model show a phase transition from a collapsed state to an extended state?

However, it appears that this programme is very difficult to carry out, even for the simple

Hamiltonian (1); hence a number of variations on the model have been considered by several

authors: in [4] the charges are regarded as Gaussian random variables; more drastically, in [6]

Derrida and Higgs choose for the polymer configurations those of a directed simple random

walk (meaning that its increments take values 0, 1 instead of +1). This last assumption

restricts severely the self-overlapping structure of the polymer and results in a tractable

problem, at least as far as the ground state of the model is concerned [6]. Finally, in [7]

Martinez and Petritis introduce two modifications to the Derrida-Higgs model: first, the

charge distribution is modelled by a Brownian bridge; more importantly, the programme

outlined above is modified to the extent that the partition function is defined as a conditional

expectation over the charge configuration for a fixed polymer configuration. The resulting

limiting free energy is shown to be independent of the polymer configuration, and no phase

transition occurs.

In this article, we elaborate on [7] in the following way: we describe the polymer con

figurations by the paths of a Brownian motion (instead of a directed random walk) and we

allow the interaction between charges to be a general integrable two-body potential. Sur

prisingly enough, we can obtain a fairly explicit representation of the free energy in terms

of a series involving the local time of Brownian motion; in particular, the free energy is

not sample-independent (“self-averaging”). This series converges only for a finite range of

temperatures; however, we show that the free energy is an analytic function of the inverse

temperature 3 for all 3 0.
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2 The model

The three ingredients of our model are

(i) a standard Brownian motion B, 0 <t 1; the polymer configurations at volume
b are described by bBt; it may be more usual to take the infinite volume limit by
allowing the parameter t to run in [0, a] and letting a —÷ , but for Brownian motion
the two view points are equivalent since in bB = Btb2 (in distribution);

(ii) a standard Brownian bridge c, 0 < t < 1; the cumulative charge along the
polymer is described by s/ct. In other words, is the total charge carried by
the portion of polymer parametrised by 0 < t a. The Brownian bridge boundary
condition c = 0 ensures global neutrality. The idea of using a Brownian bridge to
handle a charge constraint is borrowed from [7];

(iii) a two-body potential h(x) specifying the interaction energy between two unit charges
located x apart of each other. We will leave h fairly general, except for the following
assumptions: h is even, bounded, integrable, finite at zero and positive-definite. It
follows that h can be written as a convolution: for some square integrable function g,

h(x) = (g * g)(x)
= f g(x - y)g(y)dy.

Our Hamiltonian is then

b r1 rl

=

— J J h(b(B
— B))dodct. (2)

2o o

Because of the convolution property of h, this can be rewritten as

b p /i1

Hi, =
— j dx g(x

— bBt)dct) . (3)
2

But note that, because of the elementary properties of the Brownian bridge ot (see [8]), the
inner integrand,

Ji,(x)
= f g(x

— bB)d (4)

is for any fixed sample path B (w) a Gaussian process (indexed by x) with zero mean and
covariance

Ci,(x,y) = E[Ji,(x)Ji,(y)IB.]

= f g(x — bB)g(y
— bB)dt

— (f g(x — bB)dt) (f g(y — bB)dt). (5)

Thus Hi, is a superposition of squares of Gaussian random variables and the partition
function is

Zi,(/3) = [eIB.] = (det(1 + /3bCi,)) (6)

where Ci, is the integral operator on L2 (R) with kernel (5). Note that Ci, is a trace-class
operator so that the above determinant is well defined and can be evaluated as

det(1 + /3bCi,) = exp(Tr log(1 + /3bCi,)).

Consequently, the free energy density is

log Zi,() = —Tr log(1 + bCi,). (7)

This formula is the basis of our study.
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3 A local time representation of the free energy

Our first step consists in proving that when computing the limit of the free energy (7) as
b —+ , one can replace the covariance Gb by the simpler form

Kb(x, y) = fl

g(x — bB)g(y — B)dt. (8)

The main reason for this is the fact that Kb is a perturbation of Cb by a rank-one operator;

indeed, define (as always for a fixed realisation B,(w) of the Brownian motion

jb(X) = fg(x — bB)dt. (9)

Then the kernels (5) and (8) obey

Ib(X, y) — Cb(x, y) = jb(x)jb(y) (10)

so that the corresponding operators are related by

Gb = IibII2 (11)

where P is the orthogonal projection onto the normalised function jb(x)/IIjbII. Use now the

concavity of x —* log(1 + /x) to write for every x < y:

0< log(1+y)—1og(1+x) (12)

and thus

0 < Tr[log(1 + /3bKb) — log(1 + f3bCb)] < /3bTr[(Kb — Cb)(1 + /3bC&)’]. (13)

Using (11), the righthand side of (13) is

/3bIIjbII2Tr(P(1 +!3bCb)’). (14)

Evaluating the trace on an orthonormal basis having j(x)/IIjII as its first element, (14)

becomes

/Th(j, (1 + /ThCb)’jb) <3bIIjbI2. (15)

In the last step, the fact that the covariance operator Cb is positive definite has been used

to infer that (1 + /3bCb)1 < 1. So we have just proved:

Lemma 1 For every realisation of the Brownian motion B±,

0 < Tr[log(1 + bKb) - log(1 + bCb)] IIi&II2 (16)

It remains to prove that jjblI2 tends to zero as b —+ oo. We will in fact prove a much more

precise result using the concept of Brownian local time [8]: L(t, x), is a doubly indexed

family of random variables characterised by the following property: let 1: Il —+ IR be a Borel

function; then for almost all sample paths of Brownian motion,

roo
j l(B)dx =] l(x)L(t, x)dx. (17)

0 —

The intuitive interpretation is that L(t, x)dx represents the total time spent in (x—dx, x+dx)
by Brownian motion up to instant t. In the sequel we will make use only of the local time

up to instant 1, so we simplify the notation by putting L(1, x) = L(x).
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Lemma 2 For almost every sample path of Brownian motion,

00 cc

urn blljb 112
= (f h(x)dx) (f L2(x)dX).

b—fcc —cc —cc

Proof

b11j6112 = b j(x)dx = b f (f g(x - bB)dt) (f g(x bBs)d5) dx

fl fl

=bJ J h(b(B3—Bt))dsdt.
00

We use now a generalisation of (17), see [8] to write the above as

p00 fOO

bJ J h(b(x—y))L(x)L(y)dxdy.
-cc -cc

Use the change of variables b(x
—

y) = z to obtain:

pcc pcc

J j h(z)L(x)L(x—z/b)dxdz. (18)
-cc -cc

A fundamental property of local time is that it is continuous; hence the integrand tends to

h(z)L2(x) as b — oo. Moreover it is known that

L=supL(x) (19)
xEll

is almost surely finite [8]. Hence (18) is bounded by:

pcc pcc 7 pcc \ 7 pcc pcc

L J J h(z)L(x)dxdz = L (j h(z)dz) (j L(x)dx) = L J h(z)dz.
- cc - cc - cc - cc - cc

The result follows by dominated convergence.

Li

A trivial consequence of Lemma 2 is that IIibW tends to 0 as b —* oo. Combining the two

lemmas, we have:

Proposition 1 For almost every realisation of Brownian motion,

lim Tr[log(1 + bKb) — log(1 + bCb)] = 0.
b—fcc b

Hence, if the limiting free energy exists for any one of the two covariances K6,C6 it does

for the other one as well, and the two limits are the same.

So we can now substitute K6 for C6 in (7) and consider

fb() = —Trlog(1 + bK6) = —log(1 + a) (21)
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where o < a < a < a < are the eigenvalues (repeated according to their multi

plicity) of the compact seif-adjoint symmetric operator bKj, on L2 (IR). Note that for each

fixed j the series

00

fJ)(/3) = log(1 + /3a) = - (a/3 (22)

converges in the region 1/31 < (a)_1. Hence for fixed b, all the series (22) have a com

mon region of convergence I/I < (sup3 a)_1 = IIbKbIL’. Moreover the convergence of

f(j3) is uniform in /3 within I/1 < < IIbKblL1 by Weierstrass’ M-test because of

the bound I log(1 + /3a)I C/3a <Cra and of the fact that bKb has a finite trace

(see (24)). Hence we can change the order of summation to rewrite (21) as

100 - 100 i
fb(/9) = -_> /3>(a) = /3ThbThTr(K). (23)

We analyse now the behaviour of (23) as b —* oc.

Lemma 3 For almost every sample path of the Brownian motion

lim b’Tr(K) = h*fl(O)f00 LTh(x)dx
b—+co —00

n=1,2,...,

where h*fl is the n-fold convolution of h with itself (with the convention h*l = h).

Proof

The result is trivial when n = 1:

P00 P00 / rl p1

TrKb
= J Ab(x, x)dx

= J (j g(x — bB)2dt) dx
= J h(O)dt = h(O).

—00 —00 0 0
24

For general n, we use the local time as in lemma 2 to obtain

P00 P00 P00

blTr(K)=b’J J “.]
Ab(xl,x2)R(x2,x3)...Kb(xl,x)Rb(x,xl)dxldx2...dx

-00 -00 -00

P00 P00 P00 p1 Pl Pl

=bnJ j .•*J ] J .J g(xi—bBt1)g(x2—bBt1)g(x2—bBt2)g(x3—bB2)
—00—00 —00 00 0

— bBt3)g(x+i — bB,) . . .g(x1 — bBj01)g(x — bBt 1)g(x — bBt)g(x1
— bB0)

dtidt2...dt]dxidx2...dx

l 1 1

= J J •J h(b(B1 —B2))h(b(B2 — B3)) . . .h(b(B —B1))dt1dt2 dt
00 0

P00 P00 P00

= J ] h(b(xi—x2))h(b(x2—x3)) h(b(x—x1)L(x1)L(x2) . . . L(x)dxidx2 . . . dx.
-00 -00 -00

Define new variables as follows:

z=b(xi—x) j=2,3,...,n.
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The Jacobian of the change of variables (xj, x2,x3,. ., x,) —* (xi, z2,z3,. . ., z) is b’— and

we obtain:

P00 P00 00

b’Tr(K)
= J J / h(z2)h(z3) h(z)h(—z — Z3 z,)

—00 —00 J—00

L(xi)(xi—z2/b)...L(xi—(z2+.”+z)/b)dx1dz2dz3.dz. (25)

By the same dominated convergence argument as in lemma 2, this converges as n
— oc to

/ 100 p00 100 \ / p00

(j J j
h(z2)h(z3)h(z)h(_z2_z3...z)dz2dz3...dz) (j LTh(xj)dx1

-00 -00 -00 -00

= h*fl(0) LTh(x)dx.

Note that the integral of L’ is almost surely finite for all n > 1 since

00 00

/ L(x)dx (L)’ [ L(x)dx = (L)’.
J—00 J—00

Moreover since by assumption 0 < h(x) <C, we see that h*n(0) <C(f h(x)dx)’ <00.

So each term of the series (23) converges as b —+ oc to the corresponding term of

100 fTh 00

LTh(x)dx. (26)
n=1 —00

Moreover, convergence also takes place for the series as a whole in the region

II <R= [L*limsup(h*n(0))l/Th] (27)
Th-+00

where L is defined in (19). This is because of the uniform upper bound

I (_1)Thb1Tr(K) <_L1h*n(0) (28)

which follows easily from (25).

Note that I? defined by (27) is almost surely finite and positive because 0 < L,. < oo

a.s. (see [8]) and , because of the positive-definiteness of Ii

/ 00

R = (L lim sup(h*n(0))hmm)_l = I h(x)dx) (29)
fl—*00

Moreover, R is the radius of convergence of the series (26) because, by continuity of L(x)

/ p00 \1/fl

lim ( I L(x)dx) = L. (30)
fl-+00 J

Hence we have just proved:

Theorem 1 For almost every realisation of Brownian motion, the free energy (7) converges

as b tends to infinity to the series (26) for /3 in the range (27).
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Remarks

1. The free energy is not independent of the spatial configuration of the polymer, in
contrast to [7].

2. Theorem 1 proves the existence of the free energy for a finite range of /3. We will see
in §4 that it exists for all /3 0.

3. Since the series (26) has a finite radius of convergence, it is tempting to conjecture

that the model shows a phase transition. However one must be careful: after all, the

series in the right hand side of (23) has also a finite radius of convergence, even though

fb(/3) defined by (21) is analytic for all /3 0; there the finite radius of convergence is

associated to a singularity at /9 = —Rb. Observing that (26) is an alternating series

that must have a singularity at —P by Pringsheim’s theorem [9], one is led to suspect

that no singularity exists for /3 > 0. This sort of information could conceivably be

extracted from the series representation (26) by showing that the function of /9 that

it defines can be extended from (—R, R) to a function on (0, 2R) (with another series

representation); however we find it more convenient to take a different starting point

(see next section).

4. The inverse temperature R does however have a physical meaning of sorts: suppose

that the interaction h is negative (so that charges of the same sign attract each other);

such a system would be unstable and collapse at low temperature [3]. However it would

exist at high enough temperature namely whenever

co -1

/9< [L*f_h(x)dx] (31)

4 Analyticity of the free energy

The idea behind our proof of the analyticity of the limiting free energy f(/9) for /3> 0 is to

exploit the analyticity of fb(/9), see (21) and the uniform convergence off6(,L3) as b —* oc.

For this purpose we rewrite fb(!3) as follows:

lrQo
fb(/3)=——j log(1+/3x)/.L(dx) (32)

2

where the measure ,u is defined on Borel subsets A of ll+ by:

b(A) = : E A}. (33)

In the above formula 0 < a <a <ab) < ... are, as before, the eigenvalues of bKb.
We will control the behaviour of fb for large b through that of JLb, or rather the Laplace

transform of ,ui,; this will involve only known quantities such as b’Tr(I).

It turns out that it is more convenient to work with the modified measure

b(dX)
=

(34)

This is a probability measure because

Co 1 1

f /1b(dX) = f xj(dx) = = 1. (35)

8



The advantage of /2,, over ,ii is that (32) is replaced by

fb(/3) = _h(0)f
lo(l+/3x)()

(36)

which has a better behaved integrand.

Lemma 4 For every realisation of Brownian motion, the measure fi converges weakly to
a probability measure /2 as b .—* oo.

Proof

It suffices to prove that the Laplace transform of fi

= f eA(dx) (37)

converges as b - oc for all A > 0 to a function (A) such that lim÷0(A) = 1 [10]. But

= fxe/Lb(dx) (38)

= ,l(O)bTr(be) (39)

1
00

= h(0) n!
b’Tr(K’) (40)

For the last step, we invoke the same argument as when going from (21) to (23). Finally,

use lemma 3 and the estimate (28) to show that (40) converges as b —÷ oo to

=

(41)

The above is analytic in A; in particular

lim I(A) = c1(0) = 1.

E

In order to state and prove the main result of this section we move to the complex

plane /3; this is in order to make use of the special properties of sequences of holomorphic

functions.

Theorem 2 The limit as b tends to infinity of f,,CL3) exists and is holomorphic in a neigh

bourhood of the positive real axis 0 < /3 < oc. Moreover, all the derivatives of f,,(/3) converge

to those of the infinite-volume free energy density fC).

Proof

Denote the integrand of (36) by

u(x) = log(1+/3x) (42)

and let B(/30) be the disc of radius /3o/2 centered at /3o.
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Consider any /3 > 0. One can prove that both the real and the imaginary parts of u(x)

have x-derivatives which are bounded uniformly in x and 3 in the region x > 0,8 B(/3o).

It follows from this that the family of functions u is uniformly equicontinuous in

that region, i.e.

Vc>0,S:Iu(x)—u(y)I<E VEB(3o), x—y<S. (43)

Hence (36), which is the expectation of with respect to the probability measure ,t2,

converges uniformly with respect to 3 as b tends to infinity to

1 p00

fC’3) = ——h(0) I u(x)12(dx) (44)
2 Jo

by virtue of the corollary in chapter VIII.I of [10]. Finally, since fb() converges uniformly

in B(/3o) as b tends to infinity we appeal to theorem 7.10.1 of [9] to conclude that f(3) is

holomorphic in B(i30). Since > 0 is arbitrary and the neighbourhood of the origin is

covered by Theorem 1, the result follows.
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