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Large deviations for arrivals, departures, and overflow in some queues of

interacting traffic.

N.G. Duffield 1 and Neil O’Connell 2

Introduction. The theory of Large Deviations provides a mechanism with which

to characterize the statistical properties of traffic arriving at a buffer. Indeed, the

thermodynamic entropy of a traffic stream (the Large Deviation rate function) is a

robust physical quantity which can be determined empirically. (This is described

in the talk presented by John Lewis L6}). The entropy can be used to estimate the

probabilities of rare events (such as buffer overflow) which determine the Quality of

Service experienced by traffic. The theoretical relationship between the entropy of a

source and the overflow probabilities in a single server queue is by now well understood

in a great deal of generality, as we shall review shortly. The purpose of this paper is

to apply such a “calculus of entropy” to treat classes of queueing problems involving

traffic of different priorities. The main new ingredient here is that traffic with a

lower service priority experiences a varying service rate: it takes the service unused

by traffic of a higher service. The entropic techniques developed here enable us to

characterize the unused bandwidth available to it. As an application we show how

such low priority traffic can achieve very low loss ratios if buffered separately from

a stream of comparatively high intensity. Such an arrangement could be used to

transmit low volume traffic which is extremely sensitive to loss. We also derive the

entropy of the output of such a stream from the buffer.

Consider a single server queue. Denote by As,t the work arriving in the interval [s,t),

and by S the amount of work which can be processed in the same interval. (Set

= St,t = 0). = c(t — s) for deterministic service at rate c. Define the workload

for the interval W5, = A3, — S3,. Then the queue length at time t is

sup (1)
ti <t
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a relation which can be iterated to give

= max sup Qt’ + W (2)

L t”:t’<t”<t )

for any t’ <t.

A and S are random variables on some underlying probability space, and we shall as

sume that the increments of A and S are stationary in the sense that the distributions

of (A5,t)s<t is identical to that of (AS+t’,t±t’)3<tE for any t’ E R, and similarly for S.

For simplicity we shall take the time variable to be integer-valued in what follows.

The Theory of Large Deviations deals with the probabilities of rare events. As detailed

below, if the excursions of the workload have probabilities which are exponentially

small

P[W_,0 > xt] et) for some function I (3)

then so do the excursions of the queue length

P{Q0> b] e. (4)

One can view I as the thermodynamic entropy function for the workload, and S can

be found in terms of it as follows.

For any such process X defined through the stationary increments (X5,t)3<define the

cumulant generating function (or simply the cumulant) by

:=
limt_hlogE{eOX0t] (5)

for 8 e R such that this limit exists. Clearly, if A and S are independent

= A + A (6)

when both terms on the right hand side exist. Entropies are related to cumulants

through the Legendre-Fenchel transform: the transform of a function is denoted by

,\ and is defined by
(x) = sup (8x — \(8)). (7)

9

The relationship is that when satisfies certain conditions (see Theorem 1 below),

is the entropy (or rate function) I in (3). More precisely, the distribution of

W,0/t degenerates as t —+ to its mean \‘(O) and for x

> xt] = —(x). (8)

An account of these matters (and the Theory of Large Deviations in general) can be

found in the book of Dembo and Zeitouni [4].

Under very general circumstances the large deviation properties of Q
(namely, the exponential decay pate of the queue length distribution) can be expressed

in terms of those of W as follows. (This is the precise statement of the relationship

between (3) and (4)).



Theorem 1 Suppose

(i,) For each
,

A(6) exists as an extended real number.

(ii) (Note that A is automatically convex.) is essentially smooth, lower

semi-continuous and there exists 0 > 0 for which A(8) < 0.

Then the distribution of Qo has the following large deviation property.

— urn b’ log P[Q0> bj = S := inf d’A(d) = sup{O: A(0) 0}. (9)
b—co d>O

Note that since A is convex, 6> 0 if and only if A’, (0) <0 (i.e. the mean workload is

negative), in which case 6 is the unique solution of A (6) = 0. In the case of constant

service rate c this can be rewritten as the bandwidth equation for the bandwidth s(S):

(6) :=
A4(6)

= c. (10)

Remarks: This result was proposed on heuristic grounds by Kesidis et al [8] and

later made rigorous by Glynn and Whitt [7). (See also [12] for further bibliographical

details). It has recently been extended in two directions by Duffield and O’Connell [5].

First, the result can be proved for continuous time under an additional hypothesis on

the local growth of T’V. Second, an analogous result holds with large deviation scalings

more general than t’, b’ in (.5) and (9). For example, Fractional Brownian Motion

(FBM) has been proposed as a model for the workload by Leland et a] [9], based on

observations of Ethernet traffic. Taking W_.0 = — ct where Z is FBM with Hurst

parameter H (0, 1) (see Mandeibrot and Van Ness [10])

urn b-2’-log P(Q0 > b) = — infd2’(d ± c)2/2, (11)
b—co d>O

agreeing with the lower bound of Norros [11].

Define the departures D3, in the interval [, t) by

D3, := + -4s,t — Qt (12)

and the unused service U in [s, t) by

— D3. (13)

By means of (2) this can we rewritten in the form

= —min0, Q3 ± inf (14)
1. t’:s<t’<t

The unused service U is the amount of work arriving in a secondary stream of arrivals

4(2) which could be processed in the interval [s, t), after arrivals A have been served.

If A2 is independent of A and S. then from (6) and (9) we see that the queueing

problem for A2 reduces to finding solutions of A(,)(0) + A_(0) = 0. Thus we are

motivated to examine the cumulant A, or what amounts to the same, the large

deviation properties of —U.
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Large Deviations for Unused Service. We begin with Large Deviation heuristics.

The key here is the principle that rare events occur in the most likely way. This is

based upon the observation that in a union of rare events, each of which has an

exponentially small probability, the probability of the union is dominated by that of

the most likely event. We now apply this idea. When the primary queue is stable

the queue length distribution decays exponentially, whereas W_,0/t degenerates onto

< 0 as t ,‘ cc. Thus for large t we expect —U0,/t inft’:o<t’<t Wo,/t, in the

sense that their large deviations have the same distribution as t —* cc. Moreover,

this inflmum is overwhelmingly likely to occur at t” = t. Too see this, condition on

= x < 0, and observe that if it is not the infimum then the path t’ — W0,1/t

must fall below x at some t’ < t. This would require the increment to be

positive and bounded away from 0, and increasingly rare event as t —+ cc. Thus,

—U0,/t T’V0,/t. More discussion of such path-wise heuristics can be found in 11, 2, 3].

For the moment we substantiate them though a large deviation upper bound for —U.

Define

A (9 ._ I Aw(6) if := (\;)‘(O)
1

-u 1 1 —(0) if > &

That is is equal to A to the left of the point & such that where \,(&) = 0

and takes the value A(&) = A ((,\I)_1(0)) = —A;(0) to the right of &. From this

description one sees that A has Legendre transform

f Ax) if x 0 (16
-U cc ifx>0.

Theorem 2 Under the hypotheses of Theorem 1, —Uo,t satisfies a large deviation

upper bound with rate function A,. In particular for x i\’(0)

limsupr’logP{—Uo, xt] —( (17)

The proof of the theorem is given in the Appendix. One checks that =

Consequently one can use Varadhan’s Theorem (see e.g. [4]) to conclude that

is an upper bound for the cumulant of —U. In the following we take to be

the cumulant: but this means that all the statements made below concerning queue

lengths are, at worst. conservative.

We call
u(6) := 6)/& (13)

the unused bandwidth available to low traffic of lower priority. For consider the

following arrangement. Two streams of traffic with arrival processes A’ and

with respective arrival cumulants \ and A(2), are buffered separately at a switch

with constant service rate c. Arrivals have bandwidths

A
:= . (19)
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Stream 1 has service priority: no arrival from A2 are processed while the queue from

4(1) is non-empty. Thus stream 1 is blind’ to stream 2: provided its mean activity

(1)
(0) is less than c, it has a stable queue length distribution with asymp

totic exponential decay constant 3(1) which from (6) and (19) satisfies the bandwidth

equation
(20)

or, what is the same, )(8(1)) = 0.

Stream 2 takes the unused service U of 4(1), characterized by the cumulant

corresponding through Theorem 2 to the workload process = — (t — s)c.

The workload process for stream 2 is W2 = A2 U. Provided its mean activity

(2)
:((O) <—V(0) =—a’, (21)

stream 2 has a stable queue distribution with asymptotic exponential decay constant
(2)

> 0 which from (6) and (19) satisfies the bandwidth condition

(22)

or equivalently A(2) (3(2)) ± A(32) = 0. This is illustrated in Figure 1.

The foregoing analysis has interesting ramifications for the design of multiplexers to

service traffic with differing Quality of Service requirements. We consider the case

that stream 2 has lower service priority than stream 1, but is more sensitive to loss:

a higher value of the decay rate S is required for stream 2. Simply aggregating the

traffic without priority in a common buffer leads to a common decay rate 6 <

the solution of A(2)(5) = —A(1)(6). (See Figure 1).

For separate buffering the decay constant of stream 2 is (2)
>

(i) When stream 2

has low intensity then 6(2) can be substantially larger than (1) From Figure 2 we see

that -

(2)
> 6 if and only if (&) < —(&) = (0)

=
A (c), (23)

Otherwise, 6(2) = , and there is no advantage to stream 2 (in terms of loss probabilit

ies) in being buffered separately: it has the same asymptotic queue length distribution

as it would have if buffered commonly with stream 1.

Large Deviations for Departure Processes. The large deviation properties of

the departure process have been investigated for constant service rate by de Veciania

et a] [12]. We are able to extend the large deviation upper bound to the case of general

service, but a heuristic justification of the accuracy of this estimate seems intricate.

Theorem 3 Under the hypotheses of Theorem 1. with Qo = 0. then D0, satisfies the

following large deviation upper bound: for x a :=

limsupt’ log P[D0, xt] — sup(Ox — min[,\4,\}(6)). (24)
t—oo 90

where mm denotes the pointwise minimum.



Proof: Since from (12) (13) and (14), D0, +

urn supt1 log P[D01 xt]

lim sup inf t’ log P[A0j1± xtj (25)
t—co vE(O,1J

inf inf limsupt’ — (26)
80 z’E(O,lj t—

inf inf
‘A() + (1 — ii)A.(8) — 6x (27)

80 i.’EO,1]

= — sup (6x
— minr\A, ](6)) (28)

8>0

(Here F1 is the least integer y). C

Note that min[/\A, is not convex, but invoking Varadhan’s Theorem we see that the

convex envelope of its restriction to [0, cJ is an upper bound the departure cumulant

(in [0,coj).

Appendix. Proof of Theorem 2: If x> 0 then P{—U0, xt} = 0 and hence LES

of (17) is +. For x <0,

urn sup r’ log P[—U0, xtj iirnsupr1 log P[Q0 + Wo,ti’ xt] (29)

limsupr’ log inf PFQ0 + T’V xtj (30)
t—co ìE(O,1]

= limsupf’ log inf P{sup T’V_,r1 xt} (31)
(O,1j t’>o

inf limsupt’ log P{sup W_t,1 xt] (32)
L.’E(Q,lj t—eo t’>O

For all v E (0, 1], for all 6 e (0,8) (so that A(O) < 0), then for any e (0, —(6)),

P [sup W111 xtj < P[W_1,11 xt} (33)

t’O t’>o

e_8tE{e8W_d1,fwt1
j (34)

t,>o

e0t+(t’±t1t)(w(8)) (35)

t,>o

for t sufficiently large. The sum is finite since A(8) + < 0, and so

limsupr1 logP{—Uo, xt} inf inf —x6 + i’,\(6) (36)
OE(O,S) L’E(O,2]

= — sup (x6 + ,\(&)) = —(x), (37)
8E(O.6)

provided x [),(0), 0]. In a similar manner it is shown that

limsupt’ ogP[—Uo, xt] —sup(x9 — -()) = —\,(x), (38)
t—co 8<0
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for x < A,(0). The proof is omitted. C
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