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Abstract

The main result of this paper describes how the large deviation properties of a traffic stream are altered

when the traffic passes through a buffer, possibly sharing that buffer with cross traffic. We also consider

the effect of priority service policies. The heuristics behind the approach suggest a general method for

determining the large deviation properties of traffic at any point in an arbitrary network, which we illustrate

with an example.

1 Introduction

Consider a single server queue with arrivals process X and service process C,-L: for each integer time n, Xa

denotes the amount of work arriving at the queue and Ca denotes the amount of work that can be serviced; the

queue length at time n is defined recursively by the Lindley equation

Q =(Q1+X —C). (1)

For each ri Z set

(2)

with the convention that A0 = So = W0 = 0. If X and C are stationary processes and EX1 <EC, then Q is

stationary and

Qo supWa. (3)

The identity (3) can be used to deduce the asymptotic behaviour of the queue-length distribution from the large

deviation properties of A and S. More precisely, if A and S are independent and the sequences As/n and S,/n

satisfy the large deviation principle (LDP) with respective good rate functions ‘A and I, then Wa/n satisfies

the LDP with rate function given by

Iw(w) = inf[14(w + y) ± fs(y)J, (4)

and, under mild hypotheses on .Tw [1, 5, 8, l1J, the tails of the queue-length distribution satisfy the order

relation
log P(Qo > b) —öb (5)
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for large b, where
ö=inflw(c)/c. (6)

As this is such a general result, it may be useful for real applications: in particular, it provides a basis for

predicting overflow probabilities at a single buffered resource [4, 7].

It also suggests the possibility of a kind of network calculus at the level of rare events. For example, given

an arbitrary network with several inputs, it may be possible to estimate the probability of overflow at a given

(buffered) node in terms of the large deviation properties of the inputs. The obvious starting point is to ask how

the large deviation properties of traffic are altered when the traffic passes through a buffer, possibly sharing that

buffer with other traffic. In a recent paper, de Veciana, Courcoubetis and Walrand [5] give a partial answer to

this question. Suppose we have two independent, ergodic arrival processes X1 and X2 sharing a deterministic

buffer according to a work conserving policy with service rate c. Suppose also that the corresponding partial

sums satisfy the LDP with respective rate functions I and 12. Then, under certain conditions [5, Corollary

3.2], if D denotes the total departures upto time ii corresponding to the first traffic stream, the sequence D/n

satisfies the LDP with good rate function ‘D’ given by I on the interval [0, c — EX?j. The main result of this

paper provides a full description of ‘D’ using sample path large deviation theory, when the service policy is

FCFS (first come, first served). We also consider more general service policies and describe how our results can

be extended to more complicated networks.

2 Sample path large deviations in Rd

Denote by Dto,i](Rd) the space of right continuous paths [0, 1] —. Rd having left limits equipped with the

uniform topology, and by AC° the set of paths that are absolutely continuous and start at 0. Let Xk be a

sequence of random variables and set
(rtl

(7)

for t E [0, 1]. Dembo and Zajic [10] establish very general conditions for which

(SF) the sequence of partial sums processes S(.) satisfy the large deviation principle on D0,11(Rd) unth good

convez rate function given by

‘@)- { f’ A)ds E AC° (8)
co otherwise

where A is the Fenc/zel-Legendre transform of

= lim I log EeCASl. (9)

(By convention, all infimums over empty sets are infinite.) In particular, (SF) holds for bounded &-.mixing

stationary processes and hypercontractive Markov chains.

To illustrate how easy it is to use the property (SP) we consider some examples. For the sake of clarity,

assume that I is continuous. To begin with, the one dimensional LDP is a trivial consequence of (SF). Indeed,

for all open sets G,
1.

— log P(S(1) G) inf f A)ds. (10)
(1)EG Jo
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But since \. is convex we have by Jensen’s inequality that for any AC°,

A)ds> (1)), (11)

and so (10) becomes

—logP(S(1)eG)—-’ infA(r). (12)
zEG

Intuitively, the path that minimises the RHS of (10) is the ‘most likely path’ of S, on {S,l(1) G}; in this case

the most likely path is a straight line. We can also use (SP) to better understand the relation (5):

—log P(sup S() > 1) inf f A*()ds (13)
C lltI1>1 a

= inf inf I A)ds (14)
O<r<1 (r)>i Jo

= lflfTA*(1/r). (15)

Note that the partial sum process can be defined on any finite interval and the property (SP) will hold on that

interval if it holds on [0, 1]; we can therefore deduce (5) from (15) by localisation over successively longer time

intervals.

3 Departures from a shared buffer

We begin with a slight variation of the problem considered by de Veciana e at. [51. We have two independent

arrival streams X, and X. sharing a deterministic buffer according to a FCFS policy with stochastic service

rate C,1. (C is assumed to be independent of X’ and X2.) Set

(16)

Denote by D’ the cumulative departure process corresponding to the first arrival stream. If we start with an

empty buffer, then the total departures from the buffer upto time rz is given by

= inf [A ± A — Sk] + S,2. (17)

The key fact is that if we set

T=inf{k<rz: A±A>D,1}, (18)

then is ‘close’ to 4; in the proof of Theorem 3.1 below we restrict our attention to continuous paths and

the above becomes equality. For i = 1, 2 set

= ,1Q
1logEe4, s(6) urn !logEe9 (19)

whenever these limits exist. For convenience we will use a slight variant of the hypothesis (SP) to state our

theorem, namely to restrict attention to non-decreasing sample paths. Denote by V the subspace of non

decreasing paths in D[o,l](R).



Theorem 3.1 If the partzal sums processes A1/n and S[.]/n satisfy the LDP in V with respective rate

functions given by

f01A7()ds eAC°flD (20)
otherwise

for i = 1,2 and

Is(cb){
1A()ds EAC°flV (21)

otherwise,

then so does the sequence of processes Dj1/n, with rate function given by

,‘1

ID’() { j0 A()ds eAC°nV (22)
co otherwise

where
= inf (23)

and C

y, c) = A 1. (24)

Proof. For i,, qs e AC° fl V, 0 <t < 1, define (by analogy with the stopping time T above)

= jnf {r: thi(r) ± 2(r) = jflf [1(t) ± (vt)
-

s(vt)} ± s(t)} (25)

and observe that
+(t) = fi (i(r(t)),2((t)), s(t)), (26)

It’s not hard to check that the mapping T : V3 — V defined by

(27)

is continuous, so for any open B C V the set T’(B) is either open or empty in V3; as it is clearly non—empty

we have

—limin41ogP(Dj.j/n E B) (28)

ri—co fl

inf [I1(q51)±I2(q52)±Is(cbs)j (29)

i

inf I {A) +A() ±A(g)]dt (30)

i2PsEAC°flTt(B) J0

inf 1 [[Ai(r(r))) +2(r(r)))j(r)dr ± I is)dt (31)

t,,sSAC°flT’(B) Ida Jo

1.

± I [A(i)÷2)1dt]
Jr(l)

1.

inf f {[A1(r(t))) +i2(r(t)))}1(r(t)),2(r(t)), s(t)) (32)

i EAC°flT L(B) j0

+4(ths(t))Jdt

-1

= inf I inf (33)

ETh4C° Jo z3(zyc)=
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To justify the last step note that the ‘most likely paths’ ,d2, bs implicitly defined on [0, r(1)] and [0, 1] by

their derivatives are absolutely continuous (and increasing) if, and only if is; this follows from the fact their

derivatives at each time s, as defined, are an integrable function of th(s).

The proof of the corresponding upper bound is identical. C

Corollary 3.2 Under the hypotheses of Theorem 3.1, the sequence D/n satisfies the LDP unt/z rate function

given by 23,,).

Note that if G, c for all rz,

— f [A(z) + A((c — z) A A,(0))] A inf> [A(x) + A (1z)] z [0, c],
—

__

otherwise; ( )

the infimum is taken to be infinite at z = 0. If A is convex, then (z)/r is non-decreasing for x A(0). To

see this, let X be a random variable with

P(X = = = 1 — P(X = A(0)), (35)

where x > z A(0). Then

EX = z ± (1 — z/)A(0) z, (36)

and by Jensen’s inequality,

= EA(X) > A(EX) = A(z + (1 — z/r)A(0) A(z).
(37)

It therefore follows from (34) that if A and A are convex, and A(0) ± < c (in other words the queue is

stable) then A = A on the interval D fl [A(0), c — A(0)], where V is the interior of the effective domain

of A; this is in agreement with the result of de Veciana et al. [5, Corollary 3.2]. Furthermore, ., >

The heuristics behind Corollary 3.2 are as follows. (These heuristics are only valid when the input and

service rate functions are convex.) Suppose , y and c are the minimisers in (23). On the event {D,1/rz x} (by

we mean ‘contained in a neighbourhood of size 1/n’), the most likely paths for the cumulative arrivals are

straight lines upto time 3(z, y, c)n with respective slopes r and y, and straight lines thereafter with respective

slopes A(0), A,(0); the most likely path for the cumulative service process is straight with slope c. An intuition

for these heuristics makes it clear how one would perform a calculus of rate functions on more complicated

networks. We will demonstrate this with an example in §6.

We can deduce the large deviation properties of departures from a queue fed by a single arrivals stream by

setting X, = 0 for all n. This generalises results of de Veciana et al. [5, Theorem 3.1] and Chang et at [2], and

sharpens a result of [9, Theorem 3].

Corollary 3.3 If we have just one arrivals process X,1j in a queue with stochastic service rate C and if the

hypotheses of Theorem 3.1 are satisfied, the riormalised total departures D,2/n satisfy the LDP with rate function

given by

A(z) = [A(z) + A(z V A(0))] A inf zA(:)/r + (z) (38)
Lr>

In fact, the sequence of processes D,.1/n satisfy the LDP in V with rate function given by (28,) where ., is

replaced by defined above. If A is convez, (88) becomes

= [A(z) + A(z V X(O))]. (39)

0



For constant service rate c, we have

0z<c,

A,(z) inf>, cA!(x)/i, z = c, (40)

co otherwise.

Again, zfA s conver, this simplifies to

— f A(z) O<z<c, (41)
c otherw2se.

Throughout this section we have assumed that the buffer is initially empty. If the arrivals were assumed

to be stationary and the queue assumed to be stable, one could prove a stationary version of Theorem 3.1

where the queue is assumed to be initially in equilibrium. Chang and Zajic [3] prove a stationary version of

Corollary 3.3 and make the important observation that the rate function for the departures in the stationary

case is generally different from the above when the service is stochastic (otherwise it is the same); the difference

stems from the fact a large (positive) deviation in the departures can be encouraged by starting with a very

long queue. Recall that the tail decay of the queue length distribution is determined by A and A.. Their result

states that, under additional mixing hypotheses, if there is just one arrivals process, the rate function for the

stationary departure process is given by

= öz — sup[5 — A(x)} ± A.(z V A’.(0)), (42)

for z A(0), where
8 = inf[A(w ± c) ± A(c)J/w. (43)

The additional mixing hypothesis is required because the queue-length at time zero is not independent of

subsequent service and arrivals.

4 Priority traffic

The heuristics which were used above to justify Corollary 3.2 intuitively can also be applied to more complicated

service policies. We illustrate this with an example. Suppose we have two independent cumulative arrival

processes A’ and A2 sharing a deterministic buffer according to policy with total capacity c that prioritises the

first traffic stream with weight 0 <p < 1. In other words, if there is traffic from both streams in the buffer the

first stream is served at rate pc and the second at rate (1 — p)c; spare capacity is open to traffic from either

stream. This kind of service scheme is known as generalised processor sharing. In a recent paper, de Veciana

and Kesidis [6] provide large deviation approximations for the tails of the queue length corresponding to the

first traffic stream. Here we consider the departures.

It is clear from the heuristics that under the hypotheses of Theorem 3.1 the most likely paths of A’ and A2

on {D7/n z} will be straight upto time

= sup{k: = A} (44)

with respective slopes x and y, say, and straight thereafter with slopes Aç(O) and A(0). Note that this implies

the most likely path for D’ will be straight with slope z, and Ta/n z/x with high probability. If .r > pc and

y > (1 — p)c then z = pc; if > pc and y < (1 — p)c then z = (c
—

y) A z; otherwise = . Putting all this

6



together we expect the normalised departures corresponding to the first stream, D/n, to satisfy the LDP with

rate function given by

A1(z)= inf .[A(r)±A(y)J, (45)
r3(ry)=z Z

where

( pc/x z>pc, y>(l—p)c

LA1 >pc, y<(1—p)c (46)

I 1 otherwise.

5 Applications

5.1 The effect of cross traffic on a deterministic flow

Consider a deterministic stream with rate d’ sharing a deterministic buffer with an arbitrary cross stream A2

according to a FCFS policy with service rate 1. Denote by A and A the rate functions corresponding to the

two input streams, and by A,1 the rate function corresponding to the departures of the initially deterministic

stream. Note that

=
(47)

By Theorem 3.1 we have, assuming A2 satisfies the sample path LDP hypothesis and A(0) < 1 — d’,

( zdA(-) 0z<d’,
= 0 z = d’, (48)

cc otherwise.

This example was considered by Kelly and Key [12] in the case where A2 is Poisson and the queue is heavily

loaded, using results of van den Berg and Resing [14] on the approximate distribution of the departure process;

they consider the large deviation properties of the limiting departure process after the reference stream has

passed through a long sequence of queues in tandem, sharing each queue with an independent Poisson cross

stream, assuming each queue is heavily loaded. We will now apply our result to this example, and show that

the heavy traffic and large deviation limits do no commute.

If the cross stream is Poisson with rate A, then (48) becomes

(zdA—(1—z)±(1—z)log(4f) 0<z<d,

A1(z) = 0 z = dt, (49)

cc otherwise.

In the heavy traffic limit (A / 1 — d’) this becomes

A(z)[
z(d_1)_(1_z)±(1_z)log()) 0zd1, (50)

1. cc otherwise.

Compare this with the rate function corresponding to the heavy traffic approximation departure stream, a

renewal process with interarrival time distribution I ± P(d — 1), where P(A) denotes a Poisson distribution with

rate A:

A(z) = [ z(1 — d’) —(1— z) + (1— z)log() 0 z 1,
(51)

1. cc otherwise.

One can check that A is uniformly greater than on (0. d’) and uniformly smaller on {d’, cc): in other

words, conclusions based on regarding overflow probabilities in subsequent buffers are uniformly more

pessimistic than those based on



5.2 Gaussian inputs

Suppose we have two Gaussian inputs with respective rate functions

= (x —)2/9j2 (52)

i = 1, 2, sharing a deterministic buffer with service rate 1. Note that strictly speaking our results do not apply

to this case, because the departure process is not well-defined for arrivals that can take negative values; however,

assuming that the parameters are such that negative arrivals are unlikely, this is not a problem. Under the

hypotheses of Theorem 3.1, the rate function corresponding to departures of the first stream is given by

( A(z) 0 z< 1—pa,

= F(z,(l—z)Ap2)Ainf> F(x,l--.r) 1_pa <z< 1, (53)

otherwise,

where

Ffr, )
( )2

±
P2) (54)

We can simplify (53) by observing that for each z, ‘— zF(x, (1 — z)z/z) is convex; it follows that if r denotes

the point at which this function attains its minimum,

— f F(z,(1—z)A2)A—2F( Vz,4--(zVz)) _...(0,1J,
5_

—

__

otherwise;

the rninimiser x is given by

r ±(1_z)2?/z2

(56)

Figures 1—4 are plots of A and A on the interval (0, 1) for various parameter values. Clearly the key

parameter is the variance of the cross stream: a regular cross stream is more influencial than a bursty cross

stream, and in all cases the large deviation properties of the first stream are improved (from the point of view

of minimising overflow probabilities at subsequent buffers).

6 Towards a calculus on networks

In this section we describe how one could perform a calculus of rate functions on more complicated networks

using the heuristics underlying Corollary 3.2; we will illustrate the method with an example. Consider the

network represented in Figure 6. The input processes A are assumed to be independent, each having stationary

increments and each satisfying the sample path large deviation hypothesis of Theorem 3.1 with convex rate

functions (in other words the point-to-point geodesics are straight lines) which we denote by For simplicity

we assume that all buffers are shared according to a FCFS policy with service rate 1, except for buffer d which

has service rate 1/2 (otherwise there would be no possibility of overflow at this buffer), and that the system is

stable.

Suppose we wish to determine the rate function corresponding to b2 ± ]. We thus consider the event

{Cb±)/nz}.
(57)

On this event, the most likely paths of A’ and D2 are straight upto time with respective slopes i and Y2

say, where

Al, (58)

2:1 Y2

S
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Figure 5: A network example.

following their mean slope thereafter; the most likely path of D3 is straight with slope y, say, upto time /3n,

where

/31A1, (59)

and according to its mean thereafter. These are subject to the constraint

Y2/36+Y3/3Z. (60)

We must now consider the most likely paths of A2 and A3 on the event

{D/ny2,D/ny3}. (61)

Suppose /36 < /3. By the usual Jensen-type arguments we expect A’ and A2 to be linear on the intervals [0, /3aflj

and {!3an, (/3, + /3jnj, where /3a and (/3 + /3)n are the times for which

= (62)

and
i3 — n3

—

Suppose A (i = 2, 3) has consecutive slopes z and r’ on these intervals, and its mean slope thereafter.

Proceeding as before we find that
1

A1)/367 (64)
+ Z3

/3=(41A1)(/3_/36) (65)

and we impose the constraints

2/3a Y2 23/3a + = 3. (66)

A

7/

11



Combining this with (60) we get

2fiafib ÷ Z3fiafic + 43fi = z. (67)

Putting things together we expect the rate function corresponding to the input at d to be given by

= {j3A(1)+fia[A(2)± A(x)] ±,6[A() ± (68)

where E is the set of x1,x2,z3, xc,, x > 0 and Ba,J3,fi&,fi, [0, lj which satisfy fib <i3,

fia(Al)fib (69)

fi =
, Al (fit -fib),

(70)
\z9-rr3 J

fib— Al, (71)

Zi + fiaX2

Z3fi 1
Al, (72)

2fiafi& ± 3fiafic +x3j3j3 = z, (73)

and F is the set of x, x2,z3, x,, z > 0 and /3a,/3,fi&,fic e [0, lJ which satisfy fib fi,

fia ( A 1) fl, (74)

fi
= ( 1A 1) (fib - fi)7 (75)

-r 23

fib
= Z2fia

/fi! A 1, (76)

fi=Al, (77)

3/3a

22/3a fib ±/3fib +Z3/3a/3c= Z. (78)

Recall that infimums over empty sets are infinite by convention.

It is tempting to now apply (5) to estimate the tail of the queue-length distribution at d, but strictly speaking

this can only be done if we know the rate function of the staionar7J version of D2 ± D3. The author is presently

extending the results of this paper to the stationary case in [13}.

Although the above approach may seem complicated, there is no inherent difficulty in writing a program to

carry out the analysis on an arbitrary network and solve the optimisation problems that arise. The method can

also be applied to networks with feedback, although in this case the solutions will be implicit.
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