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Abstract

We analyse the queue QL at a muitiplexer with L sources which may display long-range dependence.

This includes, for example, sources modelled by fractional Browmian Motion (fBM). The workload pro..

cesses W due to each source are assumed to have large deviation properties of the form F{W/a(t) > zj

eI< for appropriate scaling functions a and v, and rate-function K. Under very general conditions,

Jim L’ log p[QL
> Lbj = —1(b)

provided the offered load is held constant, where the shape function I is expressed in terms of the

cumulant generating functions of the input traffic. For power-law scalings v(t) = t”, a(t) = ta (such as

occur in fEM) we analyse the asymptotics of the shape function:

Urn b° (1(b) — sbf) =

for some exponent u and constant ‘ depending on the sources. This demonstrates the economies of

scale available though the multiplexing of a large number of such sources, by comparison with a simple

approximation .P[QL > Lbj eb based on the asymptotic decay rate 6 alone. We apply this formula

to Gaussian processes, in particular LBM, both alone, and also perturbed by an Qrnstein-Uhlenbeck

process. This demonstrates a richer potential structure than occurs for sources with linear large deviation

scalings.

Keywords: Large deviations, scaling limits, ATM multiplexers, fractional Brownian Motion, effective

bandwidth approximation
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1 Introduction.

In this paper we analyse the distribution of the queue length in a queue which serves the superposition of a

large number L of independent stream of customers, asymptotically as L becomes large, and in the case that

the arrival patterns of each stream may display long-range dependence. The motivation for this comes from

the field of telecommunications, specifically the design and dimensioning of buffers in ATM (Asynchronous

Transfer Mode) multiplexers. In this application the streams are packets (or cells) of data. It is projected

that large numbers of streams will be multiplexed for transmission over high-speed communication links.

Recent observations by Leland et al [16] have been interpreted as indicating the presence of long-range

dependence within such streams in some cases.

Here we bring together two recent strands of work applying the theory of large deviations to queue length

asymptotics: namely, large buffer asyrnptotics for single streams, and large L asymptotics for superposed

streams. Let us review both of these.

Large buffer asymptotics: Consider a general single server queue. For t T (here T = R+ or Z+) denote

by AD the amount of work which arrives to be processed in the interval [—t, 0) and by S the amount which

can be processed in the same interval. (SD = st for service at constant rate s). If more work arrives than

can be processed, the surplus waits in the queue. The workload process W is defined by W0 = 0 and

W=A—S, (1)

and the queue of unprocessed work at time zero is

Q=supWt. (2)

We recall from Dufileld and O’Connell [8] the relation between the large deviation properties of the workload

W and those of the queue length Q. Suppose there are increasing positive functions a and v on R÷ which

diverge at +00 such that the pair (WD/a(t), v(t)) satisfies a large deviation principle with rate function K:

informally

P{Wt/a(t) > x] e_tK( (3)

for t large. If there exists a scaling function h such that the limit

g(c)
= D

v(a(t/c)) (4)

exists for each c> 0, then (under suitable hypotheses)

— urn logP[Q> b] = 6 := infg(c)K(c). (5)
b— h(b) c>o

This result generalizes one due to Glynn and Whitt [11], who proved such a result for sources obeying (3)

with the linear scaling a(t) = v(t) = h() t. (See also Kesidis et al{15] and Chang [4] for related work).

The above generalization allows the treatment of workload process which have long-range dependence, such

as fractional Brownian Motion: in this case the scaling functions are power laws. (We mention also the large

deviation lower bound for the queue length for fBM by Norros [20]).

In all cases the proof relies on a standard method in large deviation theory. Defining the log curnulant

generating function of W by A(S) = limt_ At(S) where )(6) = logE[ I’ t)/a(D)] then K is the
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Legendre-Fenchel transform )‘ of ): .)(x) = sup9{r — A()}. (At this point we refer the reader to [7]

for a comprehensive treatment of large deviation theory, and to [17J for a general introduction). For linear

large-deviation scalings and suitably well-behaved rate-functions then 8 is the unique positive solution of the

equation
(6)

Large superposition asymptotics. For linear scaling functions, (5) gives rise to the effective bandwidth

approximation
P[Q>b]e_öb. (7)

In fact, this formula is invariant under L-fold superpositions of identical sources, provided we scale the service

rate proportionately. The idea generalizes to heterogeneous superpositions. It has been widely examined as

a basis for admission control in ATM networks. (See [4, 10, 13, 14, 24] for more details).

However, there is already theoretical and numerical work indicating that (7) can be inaccurate when applied

to streams which have a high degree of auto-correlation. Numerical studies by Choudhury et al [5] have

found in examples that P[Q > b] where i is close to unity and v is positive for streams with

positive correlations, negative with negative correlations. Buffet and Duffield [2] have obtained the bound

F[Q> b] eLe_ól with ii positive for positively correlated 2-state rnarkovian arrivals. Motivated by work

of Weiss [23], Botvich and Duffield [3] have recently obtained asymptotics for the queue length qL for L

sources with with linear large deviation scalings:

lim L log ?{Q’ > Lb] = —1(b), (8)
b—co

where I is the shape function defined by

1(b) = inft,\(b/). (9)

(This variational formula has also been found independently by Courcoubetis and Weber [6] for T = Z÷, and

by Simonian and Guibert [12] for on-off fluid sources). The analysis in [3J shows that, subject to technical

conditions, the asymptotics of the shape function are

lim (1(b) — 61,) = v, (10)
b—co

where

v= _1tt(6),
(11)

when this limit exists and is finite. These equations give rise to a modification to the effective bandwidth

formula for suitably large b and L:

p{QL
> b] ee”. (12)

This formula, and v in particular, captures the economies of scale which are available through the statistical

multiplexing of large numbers of sources with linear large deviation scalings. For if z is positive then

(12) indicates that statistical multiplexing become more advantageous (in the sense that loss ratios become

smaller) as large numbers of sources are multiplexed together. ‘ is shown to be positive for sources with

positive autocorrelations, while is it 0 for sources whose arrivals are independent. ii exists in general for

Markovian sources, and can be calculated in terms of the (Laplace transform of) the Markov transition

operator.
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In this paper we examine the economies of scale available to sources with general scaling functions. In section

2 we generalize the basic large deviation result (8) to include sources with asymptotics as in (3). In section

3 we specialize to the case of power-law scaling functions: a(t) = ta, v(t) t” with 0< v < a. Such sources

can be regarded as being more bursty than (for example) any Markov source, since they possess correlations

at all time scales. Thus we should expect economies of scale to exist for these sources. Indeed, the first-order

asymptotics (in b) are
p[QL > bj e_6L(6/L). (13)

This is the analog of the effective bandwidth approximation for linear large-deviation scalings. In distinction

with (7), this approximation is not invariant with respect to scalings of L. Since v/a < 1 one sees that the

approximation is decreasing in L at fixed b. Thus even at the first-order approximation there is statistical

advantage in multiplexing larger numbers of sources.

In section 4 we show that the asymptotics of the shape function I turn out to have a richer possible structure

than for linear scalings:
b_U/a (1(b) — öbv/a) = (14)

where u < v is an exponent such that lim_ tVU( o h)(8) is finite. This yields an improvement on

(13) for large b and L:
p[QL

> b] e_L(L)+()’”1, (15)

the power-law analog of (12). If v, is positive, then there are further economies of scale: since u < a, then

for large L, (13) can severely over-estimate loss probabilities.

The possibility of different values of the exponent v for power-law scalings, and compared with linear scalings

(u = 0) can be understood as follows. The existence of the log-cumulant generating functional in the linear

scaling depends the exponential decay of correlations within the arrival streams: the fastest possible. The

value of v is determined by the transient behaviour of . For power-law large deviations, these transients

can decay at any faster time-scale (e.g exponential, or a faster power law): hence a range of exponents u are

possible. We demonstrate this with some examples in section 5. We analyse I for general gaussian processes

with power law scalings. We apply the analysis to fractional Brownian Motion with Hurst parameter H > 1/2

(see [18] for terminology): this has long-range dependence with variance growing as t2H. We also consider

the sum of this fBM with an Ornstein-Uhlenbeck position process: the latter is the integral of a Markov

process of exponentially decaying autocorrelation. In the first case there are no economies of scale (beyond

those of the first-order approximation) at large buffer sizes in the sense that

1(b) = 8b’2’, (16)

while in the second,
2H—1.

lirn b43 (1(b) — Sbl_2H) —28 ( 2H— 1 ) (17)

where .s is the service rate.

2 A Large Deviation Principle.

We begin by stating our hypotheses concerning the workload processes, then give some examples which

satisfy the hypotheses. For each L E N, (WL)T (where T = or R+) is a stochastic process, and

4



= 0. The queue length at time zero is

QL._supVL (18)
ET

(Note that if the increments of WL are stationary, then the distribution of QL is also stationary). Let v and

a be increasing functions R+ — R÷. For 6 E R define the cumulant generating function

= (Lv(t))’ logE{e9W1(t)(t)]. (19)

Hypothesis 1

(i) For each 6 E R, the limits

= lim 4(8) and .\(6) = urn )(6) (20)
t—co

exist as extended real numbers. Moreover, the first limit exists uniformly for all t sufficiently large.

(ii) ) and ) are essentially smooth. (Both are automatically convex by H6lder’s inequality).

(iii) There exists 8 > 0 for which X(6) < 0 for all t T.

(iv) For all < 0,

urn limsupL1logs et’) = _cc. (21)

L—c

(v) (T = R÷) For all t r 0 define W[-’,. = SUPO<rI<,. — W. Then for all 6 0

urn sup urn sup sup logE[ef(] 0. (22)
r—O L— t>O

Remarks: if Hypotheses 1(i),(ii) are satisfied, then by the Gartner-Ellis theorem, for each t the pair

(W/L, L) satisfies a large deviation principle with good rate function given by the Legendre-Fenchel trans

form of 6 v(t)A(8a(t)/v(t)) In other words, for any Borel set F,

limsupL’ logP(W/L E F) <— inf(v(t)(.a(t)/v(t)))(x), (23)

L—co

and

liminfL’ log F(W/L E F) — inf (v(t)A(.a(t)/v(t)))(x). (24)
L—co rEF

Here the Legendre-Fenchel transform of a function f is

f(x) := sup{Sz — f(O)}. (25)
9

From this it follows that

(v(t)t (.a(t)/v(t)))* (z) = v(t).A’ (x/a(t)) .
(26)

By Hypothesis 1(iii), for z 0,

limsupL1 log.P(W/L> x) < v(t) (x/a(t)), (27)

and

liminfL’ log P(W/L > x) —v(t).)4 (z/a(t)) .
(28)

L—co
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Hypothesis 1(iv) is a technical growth condition. A sufficient condition for it to be satisfied is v(t) = V’ with

v 0. Hypothesis 1(v) is a local regularity condition on the sample paths of the workload.

Examples. The simplest example we have in mind is where W’ is a superposition of L independent identical

sources, served at rate sL. In this case

= )(6)
= (t)

log E[et)(_st)/a(t)J (29)

where A is the arrival process of a single source. However, the result is not restricted to homogeneous

superpositions. (See the remarks preceding Theorem 1 of [3] concerning heterogeneous superpositions the

“linear” large deviation scaling a(t) = v(t) = t).

Theorem 1 . LOWER BOUND. Under Hypothesis 1(’i,ii), for each b> 0

limsupL’logF[supW > Lb] — inf v(t). (b/a(t)) .
(30)

L—c
t>O

UPPER BOUND. With the addition of Hypotheses 1(iii,iv) and also Hypotheses 1(v) for T = R±, then for

each b> 0

limsupL’ logP[supW > Lb} — inf v(t)) (b/a(t)). (31)

L—co
t>O

Proof of Theorem 1 : The proof is a modification of that of Theorem 1 of [3].

LOWER BoUND. By (28),

liminfL’ log P{sup W > Lb} liminfL1sup log P[W > Lb] (32)
L—co t>o

sup lim infL’ log P[W > Lb] (33)
L—co

= sup —v(t).(b/a(t)). (34)

UPPER BouND, T = Z. For any t, 6> 0 and 6’ > 0,0 <t1 <t,

P[sup W/’ > Lb] < t max P[W > LbJ + P[W > Lb] (35)

tl>o o< <e

< t max e_’)(b81’
At1))

+ (36)
—

by Chebychev’s inequality. Since (6) X(6) uniformly in t, A(6) — \(6) and .\(6) <0 on (0, 5), we can

find 6 > 0 and < 0 such that A(9) < for all L, t sufficiently large. Taking logarithms, dividing by L,

taking the urn sup as L — co and finally taking the infimum over the we obtain

lirnsupL’ logP[sup wf’ > LbJ max max (—v(t’)A’1(b/a(t’)) ), limsupL’ log e(t ) (37)

L—oo tl>O O< < L—co )

By Hypothesis 1(iv) we can take the limit t — cc and obtain the stated result.

UPPER BoUND, T = R+. For any e> 0 and ii E N define

PV = sup W and . = (nL)’ logE[e”]. (38)

r e t <(n + 1) e
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By Holder’s inequality then for any p in (0, 1):

n(6) < nepA(6/p) + (1 — p)L’ logE[e6),/((1_P)aQ))j, (39)

with WL as in Hypothesis 1(v). According to this, for any p (0, 1) we can make the second term of the

right hand side of (39) as small as we like by choosing e sufficiently small then L sufficiently large. Thus we

can repeat the steps (35) and (36) with e and p fixed, take the limits t — cx then e — 0 to obtain

limsupL’ log P[sup W > LbJ limsupL’ logP{sup W > Lbj (40)
L—co L—o ri>O

< psup —v(t)X (b/a(t)), (41)

since for any function f, (pf(./p))(x) = pf*(x), and finally let p / ito get the stated result.

3 The shape function for power-law scalings.

With the assumptions of the previous section, define the shape function, I on R by

1(b) = inf v(t)A (b/a(t)). (42)

Then according to Theorem 1 we have, for suitably large b and L,

P{QL > b} e”1 (43)

In this section we investigate the form of I for the case of power-law large deviation scalings, which we

define to occur when Hypotheses 1(i,ii,iii) hold with

v(t) = t”, a(t) = ta, with a> V > 0. (44)

For simplicity we present only with the case 7’ R÷. (As in [3J, the case T = Z can be treated under

additional technical assumptions).

Define h : — R by h = v o a1.

Hypothesis 2 (i) There exists a unique 6 > 0 in the interior of the domain of (A* o h’) such that

= 0. (Such a 6 is automatically unique).

(ii) The limit := — 1im_tt’(A o ht)(o) exists and is finite.

(iii) A and A are closed.

Theorem 2 (7’ = R+). Assume power-law large deviation scalings. Under Hypothesis

b—c.z
(1(b)) — 3bv1a) = .

(45)

Proof of Theorem 2: . It is convenient to define J = Io h’, change the time variable to c = v(t) and set

f() =
Al(C)(h’(x)) x E[07)flh(domA_l(C))

, (46)

±co otherwise
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and define f similarly in terms of A. (Note that 0 domf and domf by Hypothesis 1(iii)). With these

changes

J(b) = infcf(b/c), (47)

and 5 is the unique positive solution of the equation

frn(S) 0. (48)

Now observe that

lirn f, = f pointwise on mt dom f, (49)

and that f and f are essentially smooth. This follows from Lemma 1 in the Appendix and the the duality

Theorem 26.3 of [21], if we can show that lirn.. f = f, pointwise on intdomf, and that f and f are

essentially strictly convex. This latter convergence follows from the fact that lim_ A = A pointwise

on intdomA”, by Hypothesis 1(i) and Lemma 1. The convexity follows from the fact that A’ and ) are

essentially strictly convex (by the duality theorem and Hypothesis 1(u)) and increasing (by Hypothesis 1(iii))

and that h’ is strictly convex on R (by (44)).

Let

(c) = c(f)’(S). (50)

By Hypothesis 1(iii), A is increasing and bounded away from 0 on R, and hence f*(0) is negative. So by

convexity of f*, (f*)l(3) is positive. From Lemma IV.6.3 of [9] lirn_(f)’(5) (f$)(5) and so fl(c) is

asymptotically linear with finite limiting positive gradient (f*)(3) as c cc. Denote by c the left-inverse

of 3:

= sup{c I 3(c) <b}. (51)

Then (b) — +cc as b —+ cc.

We now obtain the following upper bound:

inf cf(b/c) — Sb < I(b)f,(b)(b/c(b)) — Sb = —c(b)f(b)(S). (52)

Since by Hypothesis 2(iii) A is closed, so is )4’ and hence also f; the upper bound follows from

f,(b)(b/1c(b)) f6)(b/1i(b)) (convexity and closedness of f) (53)

= bS/.s(b)
— f(b)(a) (by (50) and (51)). (54)

Thus limsup_ (J(b) — Sb) <z’ since limb.. ‘c(b) = +cc.

To obtain the corresponding lower bound, suppose inf>o cf(b/c) is attained at i(b). (If the infimum is not

achieved, then one can work with i(b) for which the infimum is approximated to within > 0, then take

\ 0 at the end). Then

J(b) — Sb = (b)f(b)(b/k(b)) — Sb —(b)f(b)(S) (55)

and so

liminf(J(b) — Sb) (56)
b—cc

provided limb_cc (b) = +co. But if this is not the case then k(b) is bounded, and so we obtain a contradiction

with the upper bound if we can show that limbcc (cf(b/c) — Sb) ±co for every fixed c > 0. But this is

true since b : cf(b/c) — Sb is essentially strictly convex, and, by (50) achieves its infimum at /3(c) < cc. S
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We finish this section by making contact with a result on the asymptotic decay constant for the queue length

distribution for a single source, as given in Theorems 2.1 and 2.2 of {8]. In the simple example before the

proof of our Theorem 1, then subject to appropriate technical conditions the asymptotics for the distribution

of the queue due to a single source with power-law large deviation scalings are

— Urn _L log P{sup W > bj = := inf h(c’)A(c). (57)
b— h(b) c>O

Theorem 3 For power-law large deviations, under Hypothesis 2(i), 6 =

Proof of Theorem 3: Rewrite 5 = info>o bf(b). First we show 5 < 6. From (48)

0= f(8) = sup (c5 - f(c)) bS - f(b) (58)
c>O

for any b > 0. Thus 5 < b’f(b) for any b > 0, and hence 6 < 5. We complete the proof by showing that

o 5. Suppose the supremum in (58) is attained at b. Then 6 = b’f(b) 5. Otherwise, for all > 0 there

exists b such that 0 = (6+)b —f(b). Thus 6± = b:’f(b) 5. But is arbitrary, so the result follows.

S

The large-buffer asymptotics for the L-fold superposition in our example (with proportionally scaled service

rate) are found be observing that the corresponding log-cumulant generating function is L. Thus

— urn logP[QL > bj = (59)
b—ce h(b)

inf h(c_l)(L))*(c) (60)
c>O

= £ infh(c1)A’(c/L) (61)
c>O

= £1_t1 in! h(c’))(c) since h(t) = tv/a (62)

= £1_v/aS. (63)

This is the basis of the approximation (13).

4 Finer asymptotics for the shape function.

In fact, as we shall see in section 5.3, it is not too difficult to construct simple examples in which Hypothesis

2(u) is not satisfied for finite v. This is is contrast to the case of linear large deviation scalings, where v is

finite in many common cases—Markovian arrivals for example (see section 4 of [3]). This motivates us to

generalize the hypothesis and obtain finer detail on the asymptotics of I.

Hypothesis 3 (i) For some t0 > 0, liminfb_ info<<0v(t)A(1/a(t)) 6.

(ii) zi, := —lim_ t’) o h’)(O) exists is finite for some (0, v).

Theorem 4 Assume Hypotheses 1, 2(i,iii), 3 and power-law large deviation scalings. Then

(1(b) — Sbv/a) = vu [((f h))’ j
-u/v

(64)
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Proof of Theorem 4: Using the change of time variables as in (46), then t’_\(h_’(6)) =

Below we shall prove that Hypothesis 3(i) implies that lim&_, c(b)/(b) = 1. Then by Hypothesis 3(u),

(50) and (51),

bc
b/(b)

= boo
b/(b) (f(S) = ((Ar oh1))’ (ö). (65)

Combining these with the bounds (52) and (55), taking the limit b cc and using Hypothesis 3(u) we get

lim b’ (J(b) — 66) = (66)

from which the statement of the theorem follows since J(b) =

It remains to prove that Hypothesis 3(i) implies that Iimb_, i(b)/i(b) = 1. Write inf0>ocf0(b/c) =

binf>o zfb2(1/z). Note by Hypothesis 1(i), limb_oo zf&(1/z) = zf(1/z) pointwise, so by Theorem 3,

and Hypothesis 3(i),

S = inf zf(1/z) > urn inf zfô(1/z), (67)
z>O b—coz>d

for d sufficiently small. But by Hypothesis 1(iii), f0(0) and f(0) are strictly positive, so

1rn zfb(1/z) = +cc. (68)

Hence infzd zfb(1/z) is achieved at some (b) =

Now z zf(1/z) is convex on since for ,u = 1 — [0, 1], z, z’ > 0

(z + ‘z’)f(1/(tz + ‘z’)) = ((jz ± zf)f*(.))* (1) (69)

= inf {(pzf)*(s) + (‘z’f(1 - s)} (70)

= inf{pzf(s/(1iz))+j’z’f((1 - s)/(’z’))} (71)

izf(1/z) ± p’z’f(1/z’), (72)

and furthermore essentially strictly convex, having an affine portion only if f does: but we have shown

the latter to be essentially strictly convex. Thus choosing ci d0 := 1/(f*)(6), we see from Theorem

3 that infZ>d zf(1/z) is achieved at := 1/(f’)’(S) = limbZ i(b)/b. Thus we need only show that

limb,, (b) = . But this follows, since by Hypothesis 1(i), fô(1/z)/f(1/z) converges uniformly on [d0, cc)

to 1 as 6 cc, while (67) and (68) together preclude (b) having limit points at +cc as 6 — cc. S

Remark: Suppose f(1/z) and all fo(1/z) (for sufficiently large b) are finite as z —p cc. Then a sufficient

condition for Hypothesis 3(i) is that for some d > 0

(0, d) z
—+

is non-increasing, (73)

(or equivalently: (0,t0) t A(1/a(t))/)*(1/a(t)) is non-increasing for some t0), for then

urn inf inf zfb2(1/z) > inf zf(1/z) urn mi inf
f1

(74)
b—co zE(O,d) zE(O,d) b—co zE(O,d) f(1/z)

> Sliminffod(1/d)/f(1/d)=8. (75)
b—co
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5 Examples.

5.1 Gaussian Processes with Stationary Increments.

Let (Zr, -t E R+) be a zero-mean Gaussian process with stationary increments and covariance function

F(s,t) = EZ3Z, (76)

and set
:= — Put. (77)

This is quite a general model for the workload process, and includes fractional Brownian motion; the practical

generality is that we allow ‘different levels of burstiness at different time-scales’. Gaussian processes may

also be thought of as ‘heavy traffic’ approximations for a very large class of traffic models: for background on

this topic see [1, Chapter 3] and references therein. However, we are not excluding the use of non-Gaussian

models in principle: some non-Gaussian processes with long-range dependence are presented in [22].

We set
(78)

and make the following assumptions:

Hypothesis 4 (i) For some H e (1/2, 1) and o E R, lim_ 2H =

(ii) Se nt = o/(o2t2H). Then for some u < v = 2 — 2H, he limi p := limt_ t”°(nt — 1) ezisis in R;

(iii) For some > 0, 2(1—2H)—w
SUPO<r< o is bounded as — 0.

As before, we take W = EL W, the workload due to an L-fold superposition of independent processes Z

served at fixed rate Ls. We now verify the various hypotheses of the previous two sections in order to apply

the results therein.

Hypothesis 1:. With a(t) = t, v(t) = t2_2H then

=
— sO and (9)

= 1.292
— sO, (79)

by Hypothesis 4(i). Then Hypothesis 1(i,ii,iii,iv) follows easily. To see Hypothesis 1(v), note that since W

is stationary and t — v(t)/a() is decreasing and Z is centered, is suffices to show that

limsupE{exp
(1_2H 5UP Wr)i 1. (80)

To show this we use an result due to Marcus and Shepp [19] which states that for a bounded Gaussian

process X(t),

lim log P(sup X(t) > x) = _1/22, (81)

where .2 is the supremum of the variances of the individual X(t). Applying this the the process (1/i E

N, T E (0, )) Vr12H and using Hypothesis 4(iii) we see that for some w > 0,

E[exp(O’_2’1 sup Wy)] > E{exp(8”2” sup Wr)j (82)

11



is bounded as — 0, from which (80) follows.

Hypotheses 2 and 3: Clearly ) and A are closed.

=
±

s) and A(r) =1A(x), (83)

and h’(t) = th/(2_2H). One verifies through Theorem 3 that

6 = :=

2H

(1 — H)2(’-”. (84)

Using the convexity of A oh—1, and Hypothesis 4(u), then

Iirnt””(ntA o h’)(6) (85)

= _lirnt”’n’(A” o h’)(nS) (86)

= _6((A* o h’))’(6) urn t’(n — 1) (87)

= -ö((A o h’))’(ö)p (88)

for some u > 0. By explicit calculation ((A* o h_l)*)(6) = (sv/(1 — v))”, and so finally, if Hypothesis 3(i) is

satisfied, then (64) holds with
2—2H—u

- (s21—H)\
= 2H — 1

(89)

By (73), a sufficient condition for Hypothesis 3(i) is that

t
— nt is non-decreasing on some interval (0,to). (90)

5.2 Fractional Brownian Motion.

A special case of the above is where

2F(s, t) = s2H ± — Is tI2’ (91)

for some 0 < H < 1. In this case the process Z is called fTaciona1 Brownian moiion. The parameter H is

called the Hurst parameter. When H > 1/2 the process exhibits long range dependence. (When H (0, 1/2]

it is Markovian). This process has been proposed as a model for the workload by Leland e at [16], based on

observations of Ethernet traffic data.

In accordance with Hypothesis 4(i) we take H > 1/2. One verifies that Hypothesis 4(iii) is satisfied since

2(1—2H) sUpo<r<. .2 2(1_H)• From the point of view of economies of scale our first example is trivial:

= 2H and since .2
= 1 and ni = 1 for all t we have v = p = 0. In fact,

1(b) inft2(H)A(b/t) (92)

=b2(l_1)inft_2(l_H)A*(t) (93)

= b2(_1öH by Theorem 3. (94)

12



5.3 FBM with Ornstein-Tjhlenbeck Perturbation.

Let Z be a sum of fractional Brownian motion(with Hurst parameter H E (1/2, 1)) with an independent

Ornstein-Uhlenbeck position process for which the corresponding velocity process is stationary with unit

variance. Then (see (72) in [8]),

a =t2H ±2(t+et —1). (95)

The Ornstein-Uhlenbeck process has correlations which decay exponentially fast. It can be viewed as a short-

range perturbation to the fractional Brownian motion. We shall see that the Zt still has the power-law large

deviations of its fBM component, but that the Ornstein-Uhlenbeck perturbation gives rise to modification

which decrease the economies of scale since v, < 0.

We check the condition of Hypothesis 4. (i) is satisfied since limt..... 2I
= 1. Observe riD — 1 ± 2t12H

for t large, thus (ii) is satisfied with tL = 4H — 3 and p = 2. cr t21 ± t2 for t small, so (iii) is satisfied.

Furthermore, t - 1 +t221 for t small, so by (90), Hypothesis 3(i) is satisfied.

To summarize from (64) and (89):

lirn b43 (1(b) — oHb2(1
H))

= 26H

(25(1H))2H_l
(96)

From this one sees, as might be expected, that the corrections to the first order approximation 1(b)

6Hb’” become less pronounced as H increases, i.e. as the relative difference in the time scales of the

fi3M and Ornstein-Uhlenbeck components increases. This is seen strikingly if one tries to apply Theorem 2.

It holds with

I if H = 3/4
=

0 if H e (3/4,1)
(97)

while ii is not finite if H E (1/2, 3/4).

Finally we note from (83)

1(0) inf t”/ne = inf = 0. (98)
>o tH + 2(t + e_t

— 1)

Generally, since r 1, t < \ and thus 1(b) b2(l_H)6-.

6 Appendix

Lemma 1 Le (f)EN and f be convex functions on R. 1ff = lim_ f, poznwise on intdomf, then

f*
= lirri_ f, poinwise on mt dom f.

Proof of Lemma 1: By Theorem 24.1 of [21] the left and right derivatives f.. and 4 of f are defined

throughout mt dom f (and similarly for each f). Furthermore, these derivatives are non-decreasing func

tions, and for all x <x <x2 in mt dom f

%(xi) f..(x) 4(x) f..(x2). (99)

Let t E mt dom f, and define

= sup{x I 4(x) = t} < and x = inf{x I f(x) = t} > —, (100)
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in other words, [x, x] is the sub differential 8f* (t) of f* at t. (Note that mt dorn f since ran 8f =

dom8f and in the 1-dimensional case intdomf = intdom8f). Suppose we can find sequences

and a / x such that f,...(x) t for all n sufficiently large. Then by (99) there exists a

sequence (x) in mt domf with z z, such that t [f_(z), f,÷(z)} (and hence since we work

in R, t dom f) for all n sufficiently large, and r, has limit points in [x—, x+J. Specialize to a subsequence

converging to such a limit point x. Then for sufficiently large n

f(t) - f(t) = f(x) - f(x), (101)

which goes to 0 as n — cc by Theorem 10.8 of [211.

We establish the existence of the sequences (x) with the desired properties. By Theorem 24.1 of [211 and

(100), for any > in intdomf then

V>035: f..(y) >f!(x)— VyE(x,x+S). (102)

Now let — < < u-i- in mt dom f. By hypothesis, y—, v are also in mt dom f for n sufficiently large.

Thus for such n, we have by convexity

f,-(y) (103)

Taking n — cc then y. / y and y \ y we find

f.(y) <liminff _(y) <urn sup f ÷(y) <f(y). (104)

Thus

‘1y e intdomf, \1’ > 0 3n0 : f,ç.(y) > f(y) —? Vn > n0. (105)

Thus letting z \ and for each x setting = f(x) — %(r+) > 0, y = + minfS,z — j/2 and

= f’(y) f’.(x+) > 0 we can construct a sequence 4 such that t < f._(x). Similarly we can

construct a sequence r; / such that t f+(;) The desired properties of then follow from (99).

S

Acknowledgements. The author thanks Wayne Sullivan for discussions.
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