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Abstract: We provide a framework in which a class of conditional limit theo

rems can be proved in an unified way. We introduce three concepts: a concentration

set for a sequence of probability measures, generalizing the Weak Law of Large

Numbers; conditioning with respect to a sequence of sets which satisfies a regular

ity condition; the asymptotic behaviour of the information gain of one sequence of

probability measures with respect to another. These concepts are required for the

statement of our main abstract result, Theorem 5.1, which describes the asymptotic

behaviour of the information gain of a sequence of conditioned measures with respect

to a sequence of tilted measures. Provided certain natural convexity assumptions

are satisfied, it follows that conditional limit theorems are valid in great generality;

this is the content of Theorem 6.1. We give several applications of the formalism,

both for independent and weakly dependent random variables, extending in all cases

previously known results. For the empirical measure, we provide a conditional limit

theorem and give an alternative proof of the Large Deviation Principle. We discuss

also the problem of equivalence of ensembles for lattice models in Statistical Me

chanics.

Mathematics subject classification: 60B10, 60B12, 60F05, 60F10, 60K35, 82B05,

82B20.
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1 Introduction

The purpose of this paper is to develop a framework in which conditional limit

theorems can be proved. We have in mind a class of limit theorems of which the

following, due to van Campenhout and Cover, is an early example:

Theorem 1.1 ([CC]) Let Y1,Y2,... be i.i.d. random variables having uniform

probability mass on the range {1, 2,. . . , m}. Then, for 1 a m and for all

x e {i,2,. . .m}, we have

lim Prob{Yi = x = a} = 3(x), (Li)

n integer

where

(x) = XeAk (1.2)

and the constant .\ is chosen to satisfy the constraint Ek
kf3A(k) = a.

A landmark in the development of such theorems is the paper by Csiszár [C], in

which several important concepts are introduced. When one attempts to generalize

Csiszár’s results, one finds the need to make distinctions which do not arise in the

i.i.d. setting. For example, information gain arises in [C] in two ways: it serves

as the rate—function of the empirical distribution and as the tool used to compare

probability measures through the Kemperman—Pinsker inequality; only the second

of these functions survives in the general setting. We introduce three concepts in

our analysis of the structure of conditional limit theorems:

a concentration set for a sequence of probability measures, generalizing the

Weak Law of Large Numbers;

• conditioning with respect to a sequence of sets which satisfies a regularity con

dition;

• the asymptotic behaviour of the information gain of one sequence of probability

measures with respect to another.

These concepts are related to ones introduced by Csiszár [C]: the first is related to

the generalized I—projection; the second, to the Sanov property; the third, to the

concept of asymptotically quasi—independence. Concentration of measures and reg

ular conditioning sequences of sets are defined and studied in part I. Fundamental to

all this is the notion of the Ruelle—Lanford function ( RL—function ) through which

we express the large deviation aspects of the problem [LP]. In part II, we study

some properties of the information gain of a sequence of conditioned measures with

respect to a sequence of tilted measures. Here substantial use is made of convexity

theory. In part III, on the basis of the results of parts I and II, we prove conditional

limit theorems and study the question of equivalence of ensembles in Statistical

Mechanics. We give also an alternative proof of the Large Deviation Principle for

empirical measures. For the reader’s convenience, we summarize below our main

results. First we set the notation and recall some basic facts. We follow essentially

the setting of [LP]; however, in the course of this work, we have found it useful to
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take a slightly more general point of view and this has led to some modifications of

the framework established in [LP].

Throughout the paper, (X, B) is a measurable space and B is the collection of mea

surable subsets of X. It is essential for our purposes that X have some topological

structure; we assume the minimum required for our purposes:

• X is a Hausdorif topological space;

• each point x of X has a local base of measurable subsets (that is, each open

set containing x contains a measurable neighbourhood of x).

Often we choose B to be the Borel u—algebra of X, but this is not always the case;

there are some interesting examples in which B is not the Borel u—algebra. This

approach obviates the discussion of non—measurable sets, required in [C].

We denote the closure of a subset A of X by ci A and its interior by mt A. We

adopt the following convention: C always denotes a measurable neighbourhood and

B a measurable subset.

We use JR to denote the extended real line: ia := JR U {—cc, -+-cc}; for a,b in

we define

aVb:=max{a,b}, (1.3)

a A b := min{a, b}. (1.4)

If f : X —* ii is an arbitrary function, we put

supf(x) := —cc. (1.5)
xEø

Let {IM},1>1be a sequence of positive measures on B which are locally finite (that

is, for each x in X, there exists C such that G x and JM[G] < cc); let {V}>1
be a scale, that is, an increasing sequence of positive real numbers diverging to +co

as n —÷ cc. We are interested in the asymptotics of {1M} on the scale {V} as n

diverges. Define the set—function

rn[B] := -ln1M[B]; (1.6)

let

limsupm[B], (1.7)

rn[B] := liminfm[B]. (1.8)

The following properties of the set—functions rn, are easily proved. Property

(1.13) below is the key to the development; we refer to it as the Principle of the

Largest Term. It is a consequence of

urn sup (a V b) = (urn sup a) V (lirn sup ba), (1.9)

valid for each pair {a}i, {b}>1 of sequences in JR.
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Lemma 1.1 On B, we have

— <rn[B] [B] + (1.10)

if B1 C B2, then

[B1] rn[B] , (1.11)

and
< n[B] ; (1.12)

furthermore, for all B1 and B2 in B , we have

rn[B1 U B2] = ‘rn.[B1] V rn[B2]. (1.13)

Following Orey [0], we exploit the topology of X to derive from rn and two

auxiliary functions on X, the lower and upper deviation functions:

,u(x) := infrn[G] , i(x) := infrn[G]. (1.14)

Because the set-functions and rn are increasing, the definition (1.14) of (x) and

ji(x) is independent of the choice of the local base {G} of measurable neighbour-

hoods of x.

Definition 1.1 A pair ({1M}, {V}) has a Ruelle-Lanford function (RL—func

tion,) jt if
11(x) = (x) (1.15)

for all x in X; in which case we put

u(x) := 11(x) = p(x). (1.16)

Lemma 1.2 is elementary; nevertheless, it contains the two fundamental inequalities

of Large Deviation Theory.

Lemma 1.2 The RL—function u is upper semicontinuous (u.s.c.) and

rn[B] sup t(x) , any B B; (1.17)
sEint B

rn[B] sup u(x) , B relatively compact. (1.18)
xEclB

Lemma 1.2 can be regarded as an abstract version of Ruelle’s treatment of entropy

in Statistical Mechanics [Rul]. Ruelle gave a precise mathematical interpretation of

Boltzmann’s remarkable formula

S=klnW (1.19)

relating the entropy S of a macroscopic equilibrium state to a measure W of the size

of the set of microscopic states corresponding to the macroscopic state. Lanford [L]

made explicit the connection with Large Deviations.

Often one needs a stronger version of (1.18), valid for all B in B. Together with a

compactness property for , the strengthened bounds constitute a Large Deviation

Principle (LDP) as defined by Varadhan in [Val] (see also [Va2], [A],[DS]):
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A pair ({1M}, {V}) obeys a Large Deviation Principle with rate—function s

if there exists an u.s.c. function s : X — Ii whose level sets {x : s(x) > a}, a E IR,

are compact, and such that

rn[B] sup s(x) , anyBEB; (1.20)
Eint B

[B] < sup s(x) , any B e B;. (1.21)
xEctB

Note: For the remainder of this Introduction, we specialize our results to the case

in which the space X is compact; this yields simpler statements. In the main part

of the paper, the theorems are stated and proved without this restriction.

The thermodynamic entropy is a concave function; this is not necessarily the case

with u in our general context. However, as with the thermodynamic entropy, there

is a “maximum principle” associated with : the set on which u attains its maxi

mum is a concentration set for the sequence {IM}. We say that a sequence {1M}

of probability measures is eventually concentrated on the set A if, for any

measurable neighbourhood G of A, we have

lirnIM{G] = 1. (1.22)

For a sequence {1M} of probability measures, an RL—function is necessarily non-

positive. If an RL—function i exists, the sequence {1M,} is eventually concentrated

on the set

A = {x X: (x) = 0} (1.23)

on which takes its maximum value. If A in (1.23) is a singleton, then (1.22)

means that the sequence {1M} satisfies a Weak Law of Large Numbers. The word

“entropy” in the title of this paper refers to the RL—function.

In the rest of this Introduction, we shall assume that an RL—function ,u exists for

the pair ({1M}, {V}), and that the 1M are probability measures. Let C0 B be a

non-empty set, and let C dC0 be its closure. We say that C0 E B is LD—regular

if

1. for n sufficiently large, 0 < 1M[Coj;

2. the limit lirn, m[Co] exists, is finite and lirnri m[Co] = supc P@)

The notion of an LD—regular set C0 is closely related to the Sanov property of

Csiszár [Cj; it coincides with it when C0 is convex and u concave on C = dC0.

More generally, we say that a sequence of sets {C} is LD—regular if

1. {C} is a decreasing sequence of measurable sets and, for n sufficiently large,

0 < 1M{C];

2. the closed set C := flclC is non—empty;

3. the limit lim7,m[Cj exists, is finite and lirn m[Cj = supc (s).
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The notion of LD—regularity of a sequence is not a notion of convergence since we

do not require that C,1 be eventually contained in any neighbourhood of C. Given

an LD—regular sequence {C} , we study in Section 3 the corresponding sequence

of conditioned measures {1M’},

iM[B] := 1M[BIC] , B B. (1.24)

In general, we cannot determine the RL—function of this sequence of probability

measures; it is possible that it does not exist. However, we prove (see Theorem 3.1)

the following useful result:

Theorem 1.2 Let X be compact and {C} be LD—regular. Then the sequence of

conditioned measures {1M} is eventually concentrated on the non—empty compact

set

Nc := {x E C: (x) = sup i(y)}. (1.25)
yEC

Part II is devoted to the study of the tilted measures and the comparison of these

measures with the conditioned ones. To introduce the tilted measures, we need a

convex structure for the space X. It is natural to work with a dual pair (E*, E) of

locally convex topological vector spaces with pairing (x’, x) x E ‘—p (x’, x) E IR.

We require that the measurable space (X, B) be a closed convex subset of £ with

the induced topology. Furthermore, we require that the maps x H-* (x’, x) be B—

measurable for every x’ E E*. For convenience, we extend to all B by setting

u(x) := —oc for x E\X. A typical example is the following: (, F) is a measurable

space and B is the space M() of all finite signed measures on (,F); E* is the

space C6(c2) of all bounded F—measurable functions on ; the pairing is given by

the bilinear form

(x’, x)
= J x’(w)x[dw] , C6(), x e M(); (1.26)

the topology on M(2) is the o-(E, E*)_topology: a sequence {x} of measures

converges to a measure x if and only if

lirnf f(w)x[dw]
= j f(w)x[dj all f C6; (1.27)

X is the closed convex subset Mt() of all probability measures on (Q, F) equipped

with the induced topology, and B is the a—algebra generated by the maps x -+ (x’, x),

e B’.

We define on a function p, the scaled generating function,

p(x’) := urn in f eV’xn[dx]. (1.28)

We assume throughout this paper that p is well-defined, possibly non—finite; it is

automatically convex. The essential domain of p is the subset of E* defined by

domp := {x’ E £* : p(x’) is finite}. (1.29)
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For X compact, Varadhan’s Theorem implies that domp = E* and that p is the

conjugate of the function —ji:

p(x’) = := sup{(x’, x) + (x)}. (1.30)
xEE

For any x’ domp, we define the tilted measure 1M’ by the formula

fBe’Mfl{dxj
B B 1 31n L 1 eVn(x’i[dx]’

E
. (

An RL—function p’, given by

I I
(x)=i(x)+(x,x)—p(x), (1.32)

exists for the pair ({1M’}, {V}), and the sequence {1M’} is eventually concentrated

on the non—empty compact set

Nx’ := {x X : ?‘(x) = O}. (1.33)

The central concept of part II is the notion of asymptotically I—nullness. In order

to compare the asymptotic properties of two sequences of probability measures, we

make use of the information gain. Recall that the information gain 7(A12)of

two probability measures and \2 defined on the same space (c2, F) is

f] lnh(w).\i[dwj, if Ai[dwj = h(w))s.2[dw],
(1.34)

I. +oc, otherwise.

Let {I[} and {Q} be two sequences of probability measures. We say that the

sequence {1K} is asymptotically I—null to the sequence {Q} on the scale

{V}if

= 0. (1.35)

The notion of asymptotically 1—nuliness is a generalization of the notion of asymp

totically quasi—independence, introduced in [C]; it is not a symmetric relation. To

get some feeling for its significance, consider a sequence {Q} which is eventually

concentrated on a set A at an exponential rate on the scale {V} : instead of

(1.22), the stronger statement

1
lim sup — lnQ[X\G] < 0 (1.36)

nvn

holds for any measurable neighbourhood G of A . If, in addition, (1.35) holds, then

the sequence {IK} is eventually concentrated on the set A, not necessarily at an

exponential rate on the scale V; this is the content of Theorem 2.3

One of the main result of part II is Lemma 5.1 which gives the following bounds: if

{C} is LD—regular and X compact, then

0 < inf {—(x) _p*(x)} (1.37)
xENc ‘

< lim sup sup {p(x’) - (x’, x) -

here p is the conjugate of p . The next theorem, a special case of Theorem 5.1,

follows immediately from these inequalities.
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Theorem 1.3 Let X be compact and {C} LD—reg’ular. If Nc C Nt’, them {jC}

is asymptotically I—null to {IM’}.

The condition Nc C Nx’ has an immediate geometric interpretation: when /1 is

concave and (1.30) holds, each x in N satisfies

(x) ± (x’,x) = p(x’) i(y) + (x’,y) , Vy E; (1.38)

writing y = x + z, we have

(x+z) —(x)+(x’,z) , Vz E; (1.39)

in the language of convex analysis, x’ is a subgradient of — at x. When C is

convex, we verify the condition Nc C N by showing the existence of a subgradient

see Section 6. This result, Theorem 6.1, is a theorem of convex analysis; it is a

consequence of the Hahn—Banach Theorem.

Theorem 1.4 Let X be compact and {C} LD—regular. Let C = flcl C be convex

and let coincide on C with its concave envelope. If mt C is non—empty or 1u is

continuous at some point of C, then there exists x’ E E* such that Nc C Nx’ and

x’ is a subgradient of —,u at x for all x Nc.

In part III, we apply the general formalism to prove conditional limit theorems.

The spaces X, E and E* are as above. Let (S, S) be a standard Borel space; for

each i 7d let (!2, F) be a copy of (S, S) and define (f2, F) as the product space.

There is a natural action on !2 of 7L’1 as group of translations. This action lifts

to the space of random variables on , and to the space of probability measures

.A4 on Q; the action of translation by j e d is denoted in all cases by &. Let

.Fqioc be the space of quasilocal functions on (,F); we equip the space M with

the u(i’vt, Fqioc)_topology: a sequence {v} converges to v if and only if for every

f E Fqloc

lirnf f(w)v[dw]
= j f()u[dwj. (1.40)

We choose an increasing sequence {A} of cubes in 1d, each cube A being centered

at the origin and having cardinality T4 = (2n+l)d. On the space of random variables

and on the space M, we define the averaging operation

&. (1.41)

jEA,,.

Let cp : —* X be a random variable whose distribution is given by the probability

measure /3 E Mt. Define for each n the random variable T : —* X by

T(w) := Acp(w) (1.42)

and put 1M7, := /3 o Ti’. . In Section 8, we consider the case where /3 is a weakly

dependent translation invariant probability measure. (Weak-dependence is defined

in Section 8.1; examples of weakly dependent measures are Gibbs measures defined

by a local specification with an absolutely summable potential.) On the space Mt’8
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of translation invariant probability measures, the specific information gain h()[i3) is

well-defined; on the space .Fqioc, the scaled generating function

(fI) := urn ln j exp{ f(w)}[j (1.43)

is well—defined. In fact, these two functions are conjugate to each other; this state

ment is the content of the variational principle in Statistical Mechanics. Let f belong
+e

to .Fqioc; for any,\ E , we have

f f([] p(f) + h(). (1.44)

We say that .A is an (f,,B)—equilibrium state if

f f(w)A[dwj = p(f) + h(). (1.45)

The set of such states is non-empty and convex; it is not necessarily a singleton.

Suppose that, for x’ E E*, the function f’ : — IR defined by

f’(w) := (x’,(w)) (1.46)

is quasilocal; we define

:= in j exp{ f’(&w)}[d] (1.47)

and set

[dw] := exp{ f(6jw) - Vp(x’)}3[d], (1.48)

jEAn

and
[dw] := 3[dw1T Cn], (1.49)

where C,. B is a sequence of sets with 3[T C] > 0. Recall that for every

p E

h(p) = lirnF(p) (1.50)

exists, and is non—negative.

Theorem 1.5 In the above setting, assume that there exists x’ E* such that the

function f’ is quasilocal and

lirn(j’) =0. (1.51)

Then the set of limit points of the sequence

{43[ . TEC]} (1.52)

is non—empty, and any limit point 1B satisfies the identity

h(j) = - lirn ln[T C]
= f fx’(w)C[j

- p(x’). (1.53)

In particular,3C is an (f’,/3)—equilibrium state.
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We give two applications of this theorem, one when is a quasilocal IRk_valued

function (Theorem 8.4), and another one when go(w) = 6,, where 5 is the Dirac

mass at w, so that T is the empirical measure (Theorem 8.5). Our formalism yields

an alternative proof of the Large Deviation Principle for empirical measures: there is

a natural embedding of the space of probability measures in the unit ball of the dual

of the Banach space of quasilocal functions on equipped with the weak*topology;

since the unit ball is compact in that topology, we have an LDP when the random

variable T is regarded as taking values in the unit ball; by a simple argument, we

show that ,u(x) > — implies that x is a translation invariant probability measure.

In the special case where 3 is a product measure and depends only on the value of

w at 0, o(i) = p(wo), we can use an argument due to Csiszár [C] to prove directly

a theorem extending the van Campenhout— Cover Theorem (Theorem 7.2).

In Section 9, we deal with the question of equivalence of ensembles in Statistical

Mechanics [Gi]. Theorem 8.4 is reformulated in the standard framework of lattice

systems, and the connection with the theory of Gibbs states is made. We give proofs

of the results announced in [LPS1] and [LPS2]. Since Gibbs’ time, many proofs have

been offered of the equivalence of ensembles. We refer to [LPS1] and [LPS2] for some

(incomplete) remarks on the history of the question. The recent works [DSZ], [RZ]

and [G1] all approach the problem of equivalence of ensembles through the Large

Deviation Principle for empirical measures; our large deviation analysis, based on

Theorem 8.4, is less technical and yet more natural; it has the merit of yielding more

precise results. The main advantage of the large deviation analysis, common to both

approaches, is that it permits the treatment of systems with phase transitions.

The essential features of our approach are these: we concentrate attention on a

sequence {T} of generalized energy functions taking values in IRc; we apply our

formalism to the sequence IM of probability distributions on IRIC, where 1M is the

distribution of T. In this case, the Ruelle-Lanford function u is concave and is

precisely the thermodynamic entropy, the scaled generating function is the grand

canonical pressure and x’ is the generalized chemical potential which now lies in

IRk We prove that, provided the sequence {C} of sets we use for conditioning is

LD-regular, the set of limit-points of the sequence

{A3[. T C]} (1.54)

of averaged conditioned measures is non-empty and each limit-point /3 is an equi

librium state characterized by the generalized chemical potential x’. Moreover, x’ is

characterized as a subgradient of — at any point of the non-empty compact set Nc.

In typical situations in statistical mechanics, the thermodynamic entropy is C’ on

the interior of its essential domain, and then x’ is given by x’ = —grad(x), x E Nc.

We obtain very satisfactory results concerning a subclass of translation invariant

microcanonical states; to extend these results to non—translation invariant states is

an open problem. The theory of Large Deviations works well, even in the presence of

phase transitions, because of its thermodynamic character: it exploits the properties

of thermodynamic potentials, the RL—function and the scaled generating function.

On the other hand, it seems that its thermodynamic character restricts it to those

equilibrium states which are translation invariant. It is an interesting and difficult

problem to consider limits of the sequence

{3[. T E C]} (1.55)
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of conditioned measures without averaging; the techniques of large deviations do

not apply when the limits are not translation-invariant because the rate-function of

the distribution of the empirical measure is non-trivial on the translation-invariant

measures alone.
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Part I: Concentration of Probability
and Conditioning

2 Concentration of Probability

Throughout this section, we assume that {1M7}is a sequence of probability measures.

Given a scale {V}, the upper deviation function determines a set on which the

measures are eventually concentrated (Theorem 2.2 and the comment following it);

the usefulness of this information about {1M} depends on how well we have chosen

the scale {V}.

Definition 2.1 Let {IM} be a sequence of probability measures on B; we say that

{ JM,.} is eventually concentrated on a set A if, for each measurable neighbour

hood G of A, we have

1im1M[G]=1. (2.1)

This definition is a hypothesis of the following theorem which provides, via Lemma

5.1, the essential bounds for our main results, Theorem 5.1 and Theorem 6.1.

Theorem 2.1 Let {1M} be a sequence of probability measures on B, let f : X — IR

be a measurable function and let {B} be a sequence of measurable subsets of X such

that
1im1M[B] = 1. (2.2)

Suppose that {IM,1} is eventually concentrated on a subset N of X, and that each

open set containing N contains a measurable neighbourhood of N.

a) If f is lower semicontinuous and uniformly bounded below on B for n suffi

ciently large, then

inff(x) <liminf f f(x) IM{dxJ. (2.3)

b) If f is upper semicontinuous and uniformly bounded above on B for n suffi

ciently large, then

limsup
fB]H[1

<supf(x). (2.4)

Proof: We give a proof of the upper bound; the lower bound can be deduced by

applying the upper bound with —f in place of f. Let C be a measurable neighbour

hood of N; for each sufficiently large n we have

J f(x)[dx] < [supf(x)j[BflGj + [sup f(x)]1[B\G] (2.5)
B zEG xEB

and
limlM,JGJ = 1; (2.6)

since
1imJM[B]=1, (2.7)
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it follows that, given e> 0, we have

Itv1[B fl G] 1 — e , (2.8)

and
1M[B\G] < e , (2.9)

for all n sufficiently large. Thus we have

limsupff(x)IM[dx] <sup f(x) (2.10)

for every measurable neighbourhood G of N. Since every open set containing N

contains a measurable neighbourhood G of N, the upper semicontinuity of f implies

inf sup f(x) = sup f(x), (2.11)
GDN xEG xEN

and hence the lemma follows.

Later, we shall make use of the fact that any compact set N has the property that

any open set containing N contains a measurable neighbourhood of N. Of course,

when B is the Borel u—algebra of X, this property holds for an arbitrary subset N.

We mention also the following particular case of Theorem 2.1:

Recall ({SJ) that a sequence {iM} of Radon measures converges narrowly to a Radon

measure IM if and only if, for every bounded u.s.c. function f on X, we have

limsup JM[f] IM[f] . (2.12)

The Weak Law of Large Numbers: Let B be the Borel u—algebra of the Haus

dorff space X; let {1M}be a sequence of Radon measures on B which is eventually

concentrated on the set N = {x}; then {M} converges narrowly to the Dirac mea

sure

To proceed further, we need to be able to identify a set on which a sequence of

probability measures is eventually concentrated; we shall prove that the null-set of

an RL-function is such a set. However, we are not always able to compute the

RL-function on a given scale, even when we can prove it exists; for that reason, the

following result is important.

Theorem 2.2 Let {1M} be a sequence of probability measures on B and let {V}

be a scale. Suppose there exists a function s which is u.s.c., has compact level—sets

and the upper beund

[B] sup s(x) (2.13)
xEclB

holds. Then

a) the set

N3 := {x E X,s(x) 0} (2.14)

is non-empty and compact;
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b) the sequence {1M} is eventually concentrated on the set N and, for any mea

surable neighbourhood G of N, we have

urn sup ln1[X\G] < 0. (2.15)

Proof: Applying the upper bound to the set B = X, we have

[X] sups(x). (2.16)
xEX

Since {1M,} is a sequence of probability measures, we have 1M{X] = 1; hence

sup s(x) 0. (2.17)
xEX

Since s is u.s.c. and has compact level—sets, the supremum of s is attained on any

closed set, in particular, on X; thus the set

N3 = {x E X,s(x) 0}

is a non—empty compact subset of X and (a) is proved.

Fix a in (—cc, 0); the level-set La := {x X : s(x) a} is compact and non-empty.

Let G be a measurable neighbourhood of N3; there are two cases to be considered:

(a) cl(X\G) fl La is empty; since s(x) < a on cl(X\G), we have

sup s(x) < a < 0 ; (2.18)
xEcl(X\G)

(b) ci (X\G) fl La is non—empty; then ci(X\G) fl La is a non—empty compact set

and, since s is u.s.c., there exists Xa E cl (X\G) fl La such that

sup s(x) = (Xa) <0, (2.19)
xEcl(X\G)

because N3 is disjoint from ci (X\G). In either case, we have

sup s(x) < 0 (2.20)
xc1(X\G)

so that
ff4X\Gj sup s(x) < 0 , (2.21)

xEcl(X\G)

establishing (2.15). It follows that

lirn 1M[X\G] = 0 (2.22)

and hence
urn IM[G] = 1. (2.23)

00

Comment: In order to have the best result, one must find the smallest possible

function s with the properties mentioned in Theorem 2.2. If the upper deviation

function has compact level—sets and if it has the upper bound property (2.13),
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then i is the best possible choice for Theorem 2.2 whenever the space X is regular

(Lemma 5.1 in [LP]). Moreover, if the pair ({1M}, {V}) is exponentially tight,

that is, if there exists a sequence {K}>1 of measurable relatively compact subsets

of X such that

lim sup rn{X\Kj = —cc, (2.24)
fl—* 00

then the upper deviation function i has the upper bound property (2.13) and has

compact level—sets (see Lemmas 5.2 and 5.3 in {LP]; there the proofs are given in

the case of B the Borel u—algebra of X, but they hold with easy modifications in

the general case). Thus the hypotheses of Theorem 2.2 are satisfied with s = I in

the following cases:

• X is compact;

• ({IM}, {V}) is exponentially tight;

• the pair ({IM}, {V}) obeys an LDP with RL—function as rate-function.

Notice that, in Theorem 2.2, we proved a little more than that the sequence {IM}

is eventually concentrated on the set N5 : in proving (2.15), we established a bound

on the rate at which the measure of a set in the complement of N5 goes to zero. The

behaviour described by (2.15) is worth naming.

Definition 2.2 Let {1M} be a sequence of probability measures; if, for every mea

surable neighbourhood G of N, we have

limsup-ln1M[X\Gj < 0, (2.25)

we say that the sequence {IM,1} is eventually concentrated on N at an expo

nential rate on the scale {V}.

Definition 2.3 Let {S} and {Q7.} be two sequences of probability measures on the

same space. The sequence {S} is asymptotically I—null to the sequence {Q}
on the scale {V} if

= 0, (2.26)

where 7-i(SQ,) is the specific information gain of S with respect to Q.
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Theorem 2.3 Let {Q,} be a sequence of probability measures which is eventually

concentrated on N at an exponential rate on the scale {V}. If {S} is a sequence of

probability measures which is asymptotically I—null to {Q,} on the scale {V}, then

{S7} is eventually concentrated on N.

Proof: We note that

?(SjQ) Sfl[G]in[] +Sn[X\GJ1nç1 (2.27)

— in 2 — $fl[X”\Gj in Q[X\G].

Since
1

urn sup in Q[X\G] <0, (2.28)

there exists S > 0 such that, for all n sufficiently large, we have

1
-1nQ[X\Gj < —8. (2.29)

Thus we have

IQ)2+8S[X\Gj
_2;

(2.30)

but

= 0 (2.31)

by hypothesis, so that

iirnS[X\Gj = 0 (2.32)

and

lirnS[G] = 1. (2.33)

3 Conditioning

Throughout this section, we use ]M to denote a positive measure (not necessarily

normalised). We make the standing assumption that an RL—function ,u exists for

the pair ({IM},{V}).

Given a measurable set C for which IM[C] is strictly positive for all sufficiently

large n, we can construct a sequence of probability measures 1M[
. I C ] by condi

tioning on the set C. We are interested in finding a set on which the conditioned

measures are eventually concentrated; if we could compute the RL—function 11ic for

the conditioned measures using the RL—function u, we could use the fact that a

sequence of probability measures is eventually concentrated on the null—set of its

RL—function. In some cases this computation can be carried out, yielding the result

that the sequence of conditioned measures is eventually concentrated on the set

Nc := {x E dC: (x) = sup (y)}. (3.1)
Ec1C

It turns out that we can prove this concentration property in a much wider setting

than that in which we can compute kuc; this motivates the following definition:
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Definition 3.1 Let be the RL—function of the pair ({IM}, {V}). A sequence

{C} of sets is LD—regular if

a) {C} is a decreasing sequence of measurable sets, and 0 < 1M[C] < oo for all

sufficiently large m;

b) the closed set

C flclC

is mom-empty;

c) the limit limr, m[Cj exists, is finite and

urn m[C] = sup (x),
xEC

Lemma 3.1 Let {C} and {D} be LD—regular sequences. Then {C U D} is am

LD—regular sequence.

Proof: Since, for any sets A and B, we have

cl(AUB) = c1AUc1B , (3.2)

it follows that

fl ci (C U D) = fl(cl C7 U ci D) = (fl ci C) U (fl ci D) . (3.3)

We have

lirninf m[C U Dj lirninf m[C] V lirninf m{D] . (3.4)

On the other hand, by the principle of the largest term (see (1.9)), we have

urn sup rn[C U Dj = urn sup m[C] V urn sup rn[D] . (3.5)

Hence we have

urn m{C U D] = sup .(x) . (3.6)
xEcl(CUD)

For any sequence {C} such that 0 < IM[Cj < cc, we define the conditioned

measures 1M’ by

IM’[B]:=iM[BC] , B?3. (3.7)

We set

rnc[B] :=1imsup±1n[B] (3.8)
n—boo

and define the upper deviation function as before by

inf rnc[G]. (3.9)
G3x

The main result on the concentration of probability of the sequence {IM } is con

tained in the next theorem.
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Theorem 3.1 Let the pair ({JM}, {V}) obey an LDP with RL—function u. Let

{G} be an LD—regular sequence with C flc1C. Then

a) the upper deviation function )L has compact level—sets and, for each measurable

set B, we have

nc[BJ < sup (3.10)
xEclB

b) the sequence {IM} of conditioned measures is eventually concentrated on the

non—empty compact subset

Nc:={xEC: i(x)=sup(y)}; (3.11)
yEC

c) if the sets C,.. are relatively compact, then it is sufficient to suppose the existence

of an RL—function for the pair ({1M}, {V}) in order that a) and b) hold.

Remark: Essentially the same theorem holds when the sequence {C} satisfies a)

and b) of Definition 3.1 and c) is replaced by the weaker statement that

— cc <lirninfm[C] = limsupm[Cj <cc. (3.12)

In that case, one must replace the set NC by

{x C ,u(x) iirnm[Cj}. (3.13)

Proof: Let a := lim m{C]; by hypothesis, a is finite. We assume that

nc[B} > —cc, otherwise there is nothing to prove. Since {C} is decreasing, for

any index k, we have

ic[B} = limsupm[BflC]—a (3.14)

sup (x) — a.
xEcl(BflCk)

Since cl(Bfl Ck) C clBflclCk, we have

—co<c[Bj+a<inf sup (x); (3.15)
k xEclBflclCk

hence the compact level—set

K := {x : (x) c{B] - a} (3.16)

is non—empty and has a non—empty intersection with ci B. Let G be any open

neighbourhood of K; by definition of K, and because i, attains its maximum on

every closed set, we have

sup ii(x)<ic[B]+a. (3.17)

xEX\G

The upper bound property for closed sets implies that

c[X\G] i[X\Gj — a < sup u(x) — a <ic[B], (3.18)
xEX\G
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and

fEc[Bj = c[B\G]Vc[BflG] (3.19)

?ic[X\G]Vc[BflG}

ffic[clBflG].

Given e > 0, there exists for each x an open set G x such that

c[G] <C(X) + e; (3.20)

since K fl ci B is compact, we can cover K fl ci B by a finite number of these open

sets, say Gm,.,. . . , G. Let U be an open neighbourhood of K; then

C := [U\clB] U [U fl (G1 U U Gj] (3.21)

is also an open neighbourhood of K and, by the principle of the largest term,

fc[B] ñTc[clBflG1 supc(xt)+E sup r(x)+e. (3.22)
xEclB

For any k, if x ci Ck, then there exists a measurable neighbourhood G 3 x with

c[G] = —cc. (3.23)

On the other hand, for any measurable neighbourhood C x we have

c[G] <fG] — a. (3.24)

Consequently, for any k

< (x) — a if x ClCk,
(3.25)

— L. —cc otherwise;

hence

<s(x) := { (x) — a if
(3.26)

—cc otherwise.

Since s has compact level—sets, the same is true for p. Using Theorem 2.2 with the

function s, we conclude that the conditioned measures are eventually concentrated

on the non—empty compact set

Nc := {x C : (x) = sup (y)}. (3.27)
yec

To prove the last statement c), we notice that we used the upper bound property

only in (3.14) and (3.18). Lemma 1.2 covers (3.14). Since C1 contains all C, we

have

c[X\G] = c[Ci\G]. (3.28)

Therefore, we only need the upper bound for the relatively compact set C1\G, and

mc[X\G] <[C1\G] — a < sup (x) — a <Yc[B], (3.29)
xEclCi\G

since C is a neighbourhood of

{x : j) > rnc[B] + a}. (3.30)

E
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Example: a) We consider several variants of the following example. Let X :=

[—l,+1], V7L :=m, and

1M := e80 + eS1_+e2S_1+ (1 — 2e —e2)S, (3.31)

with a some given positive real number. The RL—function of the pair ({1M}, {V})

is
(0 ifx=—,

—a if = 0 or x = 1, (3.32)

— otherwise.

Let {C} be the sequence of sets defined by

{0} U (1 — , 1). (3.33)

We have C = flclC = {0} U {1} and lim7m[C] = —a; hence the sequence {C}

is LD—regular. Since X is compact, we can apply Theorem 3.1; the sequence {JM}

of conditioned measures is eventually concentrated on C. Moreover, this sequence

converges (in the narrow topology) to 3o + We have similar conclusions if we

replace the sequence {C} by the sequence {C}, with

C := (1- ,1). (3.34)

Here C’ = {1}, and the sequence {IM’} converges to 8. In this case, we have

IM[{1}C,ç] = 0 and flC = 0.

b) We consider the same example in the space X’ [—1, +1). Now the Ri—function

is
10 ifx=—,

:= —a if x = 0, (3.35)

—co otherwise.

The sequence {C} is still LD—regular, but now C = {0}; the conditioned measures

iM are the same as before. We cannot apply Theorem 3.1 because we do not have

an LDP,

— a = 1)) sup ‘(x). (3.36)
2

If we consider the sequence {C,,ç}, we have lixn m[C,’j = —a and

C’ = fl clC = fl[i — , 1) = 0. (3.37)

Hence the sequence {C} is not LD—regular.
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Part II: Tilted Measures and Convexity

We introduce the tilted measures and we compare them with the conditioned mea

sures, using the notion of an asymptotically I—null sequence. To develop the theory

we require that the space X be a closed convex subset of a locally convex topological

real vector space.

4 Tilting

4.1 Convex Structure

We fix the setting for the next three sections. Let (E, r) be a locally convex Haus

dorif topological vector space E over JR. The topological dual of (E, r) is denoted

by E*. We choose a topology T* on E* so that the pair (E, E*) is in duality: the

topological dual of (E*, r*) is E. Elements of E are denoted by x and those of E*

by x’; the pairing between E and E* is denoted by (x’, x) —* (x’, x). We require that

the space X be a closed convex subset of E equipped with the induced topology. As

before, (X, B) is also a measurable space, and each point x in X has a local base

of measurable neighbourhoods; moreover, we require that the maps x —÷ (x’, x) be

B—measurable for every E E*.

Some important examples of the above setting are of the following kind: E and

are real topological spaces and (.,.) is a bilinear map E’ x E —÷ JR so that

a) for each x 0 of E there exists x’ e E’ with (x’, x) 0;

b) for each x’ 0 of E’ there exists x E with (x’, x) 0.

When conditions a) and b) are satisfied, we say that (E, E’) is a dual pair. For

the topology ‘r, we choose the u(E, E’)—topology which is generated by the base of

(closed) neighbourhoods

{x: sup (x,x) <1} (x e E’); (4.1)
1<z<T

the topology o-(E, E’) is locally convex and Hausdorif since condition a) holds. The

topological dual E* of (E, r) is the set of all continuous linear forms on E. By

definition of the topology cr(E, E’), E contains the set E’. Since a) and b) hold,

the topological dual of (E, r) is E* El; if we choose for the topology r on

the u(E*, E)—topology, then the topological dual of (E*, T*) is E. (See, for example,

[RR] or [B].) We require that the maps x —+ (x’, x) be B—measurable for every x’ in
E*, and that X be a closed convex subset of E. This implies that each point x in

X has a local base of open (respectively closed) convex measurable neighbourhoods.

Typical examples are:

(I) E =
JRd, with Jpd equipped with the Euclidean topology; in this case, we have

= JR’, the bilinear form is the Euclidean scalar product, the set X is a

closed convex subset of JRd and B is the Borel u—algebra of X.
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(II) Let (12, F) be a Polish space and E = M(12, F), the space of finite signed

measures on (12,F). Let E’ = Cb(12) be the space of bounded continuous

functions on 12. The bilinear form is

(x’, x)
= j x’(w)x[dw] , C(12), M(12). (4.2)

The u(E, Cb(12))—topology coincides with the topology of narrow convergence,

the set X = M(12, F) is the space of probability measures on the Polish space

(12, F) and 13 is the u—algebra generated by the maps x —* (x’, x), x’

In this case, the set X is a Polish space and B is the Borel u—algebra of X.

(III) Let (12, F) be a measurable space and E = M(12, F), the space of finite signed

measures on (12, F). Let E’ be the space of all bounded F—measurable functions

on 12. The bilinear form is

(x’, x)
= J x’(w)x{dwj , C(12) , x é M(12). (4.3)

We choose the u(E, E’)—topology: a sequence {x} of measures converges to a

measure x in this topology if and only if

lirnf [dwJ
= J x[dwj for all B 13(12). (4.4)

The set X = M(Q, F) is the space of probability measures on (12, F) and B

is the u—algebra generated by the maps x ‘—* (x’, x), x’ E’.

Finally, we recall two definitions of convex analysis. Let g be any function g

; the conjugate function g of g is defined on E* by

g*(xI) := sup{(x’, x) — g(x’)}. (4.5)
xEE

Similarly, the conjugate function f* : E — ii of f: E* Ii is defined by

f*() sup {(x’,x)-f(x’)}. (4.6)

The functions g* and f* are always lower semicontinuous and convex. Let f be

convex on E*; the subdifferential 8f of f at x’ is the subset of E given by

ôf(x’) := {x E: f(x’ + y’) p(x’) + (y’,x),Vy’ E E*}. (4.7)

4.2 Tilted Probability Measures

Let {IM} be a sequence of measures on (X, 13) and {V} a scale. We suppose always

that

p(x’) := lirn ln f e”iM[dx] (4.8)

exists (but is not necessarily finite). The function p : —* , called the scaled

generating function, is necessarily convex; the essential domain of p, domp, is

defined by
domp {x’ : p(x’) E IR}. (4.9)
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For all x’ dom p, we have

0
< f e”1[dxj < (4.10)

for n sufficiently large; for those x’, we define the tilted (probability) measure

HvI by
r V(s’,x)rrur LI

JB e JJNIflILLX
4 11

Ix eVn(x’x)1M{dx]

Theorem 4.1 Let E, E* and X be as above. Let x’ be an interior point of domp,

and suppose that the pair ({iM}, {V}) obeys an LDP with RL—function u which is

not identically —oo and bounded above on X. Then

a) An RL—function ‘, given by

= (x) + (x’, x) — p(x’) 0; (4.12)

exists for the pair ({HVI’}, {V}), and the sequence {1M’} is eventually concen

trated on the non—empty compact set

:= {x e X: ‘(x) = 0}. (4.13)

b) If domp = E* and ,u(x) = _p*(x), then the concentration set N’ coincides

with the subdifferential ôp of p at x’.

Proof: For t small and positive and a non—negative, we have

lnf e’x1n[dx] <—ta+ inJ e1+t)’xn[dx]; (4.14)
V {(x’,x)>a} X

thus

urn (urn sup inf ex’1n{dxj) = oo. (4.15)
a—*oc n V {(x’,x)>a}

Using Theorem 6.3 of {LP] we conclude that the pair ({JM’}, {V}) obeys an LDP

with RL—function
x’(x) = (x) + (x’,x) —p(x’) 0. (4.16)

Theorem 2.2 implies that {1M’} is eventually concentrated on the non—empty com

pact set
= {x X : p(x’) = (x) + (x’,x)}. (4.17)

This proves a). The second part of the theorem is an elementary exercise in convex

analysis. For any y’ and any x E Nx’, we have

p(y’) (x) + (y’,x) (4.18)

= p(x’) — (x’,x) + (y’,x)

=

hence x 8p(x’). Let —(x) = p*(x) and x E c9p(x’); we have

p(y’) p(x’) + (y’ — x’, x) = p(x’) — (x’, x) + (y’, x); (4.19)

thus

(x’, x) — p(x’) sup((y’, x)
—

p(y’)) (4.20)
yf

=

=

Since ,uX’ is non—positive, this implies that x N1’. E
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5 Asymptotically I—Null Sequences

We compare the sequence of conditioned probability measures {JM} with the se

quence of tilted measures {1M }. Lemma 5.1 gives upper and lower bounds on the

specific information gain

1im-1-(1M’jJM’).
(5.1)

Lemma 5.1 Let E, E* and X be as above, and let be the RL—function of the pair

({IM}, {V}). Let C be a sequence of measurable sets such that a := limm{C] is

finite. Assume that the sequence {IM’} is eventually concentrated on the non-empty

subset N and that any open neighbourhood of N contains a measurable neighbourhood

of N. Forx’ indomp, we have:

a) If the continuous linear functional x —* (x’, x) is uniformly bounded below on

G for n sufficiently large, then

urn sup IMIM’) < sup{p(x’) - (x’, x) - a}. (5.2)

b) Let j2 be the concave envelope of the RL—function . If the continuous linear

functional x &— (x’, x) is uniformly bounded above on C,. for n sufficiently large

and N C {x: u(x) > a}, then

lirninf (‘I) [p(x’) - (-(x’)] (5.3)

+ inf{2(x) — (x)} 0,
zEN

both terms on the right-hand side being nonnegative. If, in addition, domp =

E*, then

lirninf inf{-(x) - p*(x)} 0. (5.4)

Proof: a) Let us introduce the notation

p(x’) := in J eV’!zn{dxj. (5.5)

We have
= _f’,x {d] +pn(X’) —m[C] (5.6)

so that

lim sup IM’) —
lirninf J (x’, x)v1 [dx] (5.7)

+ p(x’)—a.

Using Theorem 2.1, we have

iirninff(x’,x)1M[dx] inf(x’,x); (5.8)
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thus

urn sup — inf (x’, x) ± p(x’) — a
n zEN

sup{p(x’)
—

(x’, x) — a}. (5.9)
zEN

b) We have

= _f x’,x){dx] ±pn(X’) —m[C] (5.10)

so that

lirninf -7(iMIM’) — urn sup L’ x)IM[dx] (5.11)

+ p(x’) — a.

Using Theorem 2.1, we have

limsupf(x’,x)IM{dx] <sup(x’,x). (5.12)

Since
0 x’(x)

= (s’, x) + (x) — p(x’) , Vx e B, (5.13)

we get
*(I)

<p(x’) (5.14)

by taking the supremum over x. Thus we have

lirninf — sup(x’, x) + p(x’) — a (5.15)

= {p(x’)
- (_L)*(x!)]

+ H sup(’,x) + (_)*(x!)
— a].

zEN

But, since t(x) a on N, we have

— sup(x’, x) + ()*(x!)
— a inf{— sup(x’, x) ± (—(x’)} — a (5.16)

zEN z zEN

= inf inf{—(x’, x) +
(_jj)*(I)}

— a
zEN z

= jflf{_(_[)**()}
- a

zEN

inf{(x)—p(x)}.
zEN

From (5.13), we have
*()

< —u(x) (5.17)

by taking the supremum over aY. From (5.15), using the hypothesis that (x) a

on N , we have

lirninf > — sup(x’, ) ± p(x’) — a (5.18)

— sup sup{(z’, x) — p(x’) + a}
zEN z’

inf {—p(x) — (x)} 0.
zEN

Lemma 5.1 gives estimates which enable us to compare a sequence of conditioned

measures with a sequence of tilted measures.
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Theorem 5.1 Let the pair ({1M,}, {V}) obey an LDP with RL—function as rate—

function. Let {C} be an LD—regular sequence with C flcl C7, and domp = E*.

Then

(i) If the map x (x’, x) is bounded below on C for n sufficiently large and

= {x e C: sup (y)= (x)} C N’ {x e X: p(x’) =

yEC

them the sequence {J1} of conditioned measures is asymptotically I—null to the

sequence {iM’} of tilted measures on the scale {V}:

urn =0.
nvn

(ii) If the map x (x’, x) is bounded above on C,,. for n sufficiently large and the

sequence {IM’} of conditioned measures is asymptotically I—mull to the sequence

{IM’} of tilted measures on the scale {V}, then p is conjugate to — at x’:

= sup{(x’, x) + (x)}.
sEE

If the sets C, are relatively compact, then it is not necessary to have an LDP; it is

sufficient to assume the existence of an RL—function .

Proof: By Theorem 3.1, we can apply Lemma 5.1 with N = N. (Since Nc is

compact, every open neighbourhood of N contains a measurable neighbourhood of

Nc.) Thus

0 urn sup ±{‘) sup {p(x’) — (x’,x) — sup
sEN0 yEC

sup
{p()

— (x’, x) —

ZENc

= 0, (5.19)

since N C {x e X : p(x’) = u(x) H- (x’, x)}. If the C,. are relatively compact, then

Theorem 3.1 is still valid if we assume only the existence of the RL—function. The

second statement of the theorem follows from Lemma 5.1 b),

since N C {x : (x) liinnmn{Cvn]}. C



Conditional Limit Theorems 27

6 Convexity

We investigate the consequences of the assumption that C is a convex set and ,u a

concave function. The main result is that, under this assumption, we can fulfil the

hypotheses of Theorem 5.1. References on convex functions are [B], [R] and [ET].

6.1 Convexity and LD—Regularity

Let S be a subset of a real vector space E; we say that a point y E is linearly

accessible in S from x if there exists x E 5, x y, such that

{ax + (1 — a)y: 0 <a < 1} C 5. (6.1)

Lemma 6.1 Let the pair ({1M}, {V}) obey an LDP with RL—function u.

a) Let B be a subset of E with non—empty interior. If u is concave on cl B and

each point y in ci B is linearly accessible in mt B from some x with x) finite,

then B is LD—regular.

b) Let B be a convex subset of E with non—empty interior. If is concave on clB

and finite at some point of mt B, then B is LD—regular.

If the set B is relatively compact, then in order that statements a) and b) hold

it is not necessary to have an LDP; it is sufficient to assume the existence of an

RL-function .

Proof: Since we have an LDP, we have

sup (x) <rn[B] <[clB] < sup (x). (6.2)
xEintB xEclB

We prove that

sup i(x) = sup ji(x). (6.3)
xEintB xEclB

Let y ci B. By assumption, there exists x E mt B such that ]x, y[c mt B and (x)

is finite. Let Xa := ax + (1 — a)y. Since ji is concave on clB, for all a > 0, we have

(xa) ai(x) + (1 — a)(y), (6.4)

which implies

liminf(xa) (y). (6.5)

Since is u.s.c., we have

lim sup (xa) <(y), (6.6)

which implies

lim(xa) = (y). (6.7)

Since, for all a different from zero, the point xa is in mt B, equation (6.3) holds.

It remains to show that SUPXEC1B (x) is finite. This supremum is not —, since

i is finite at some point of B. Since u is u.s.c., concave and finite at some point

of B, a standard result of convexity theory implies that x) < co for all x (see,

for example, [ET]). Since u has compact level—sets, the supremum of i on ci B is

attained and is therefore finite. Statement b) is a consequence of convexity theory:

if B is convex and has a non—empty interior, then all points of cl B are linearly

accessible in mt B from any given point x mt B. Hence the result follows from a).

If B is relatively compact, then (6.2) still holds; therefore a) is still true. C
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6.2 Convexity and Nc C N’

We denote by 2 the concave envelope of the RL—function ; it is convenient to

extend 2 to all of E by putting p(x) = —00 for x e E\X. Let B be a convex subset

of E and set C : clB; let u coincide with its concave envelope on C. Maximizing

on C is equivalent to minimizing (—12) + h on E, where h is the indicator function

of C:
hc(x):={°

x;g (6.8)

Lemma 6.2 Let B be a convex subset, C := ci B, and assume that

Nc={xC: sup(y)=(x)}
(6.9)

yEC

is non—empty and SUPYEC ,u(y) is finite. Assume further that the RL—functiom /t

coincides with its concave envelope 12 on C. If either C has an interior point or

is continuous at some point of C, then

a) there exists x’ in E* which is bounded below on C;

b) x’ e 8(—,u)(x) for all x E Nc;

c) —x’ E 8(hc)(x) for all x E Nc;

d) Nc is a subset of the subdifferential

= {z E E: (x’, z) = —t(z) + (_)*(x/)}. (6.10)

Remark: The subgradients of hc(x) have a simple geometrical interpretation: if

0 x’ 8hc(x), then (see (6.24))

0 (x’,z—x) , Vz E C;
(6.11)

thus x’ is the exterior normal to the closed half—plane {z E E : (x’, z) (x’, x)} con

taining C. Conversely, if x C and the closed half—plane {z E E : (x’, z) (aY, x)}

contains C, then x’ E Ohc(x).

Proof: We set
ç( f—12(x) xEX, 612

J1x) .—

00 x E E\X,

and
f2(x) := hc(x).

(6.13)

The convex function fi is a closed function ( that is, it is lower semicontinuous), it

never takes the value —00 and domfi = {x E E : fi(x) < oo} is non—empty. Since

C is closed, f2 is a closed convex function, as is f := fi + f2. Let x belong to Nc; by

hypothesis, x is a minimum of f on B so that the definition of subgradient implies

that 0 c9f(x). The heart of the proof is to show that

8(f + f2)(x) = 8f(x) + ôf2(x);
(6.14)

if this holds, then there exists x’ E* such that x’ E ôfj(x) and —x’ 8f2(x). We

follow [ET] for the proof of (6.14), a consequence of the Hahn—Banach Theorem.
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Since either C has an interior point or is continuous at some point of C, it follows

that there exists z E dom fj fl dom f2 where fi or f2 is continuous, say f. Let y’ be

any subgradient in 8(fi +f2)(x); this means that f1(x) < cc, f2(x) < cc and, for

all y e E, we have

fi(y) + f2(y) fi(x) + f2(x) + (y’,y x). (6.15)

Let

y >g(y) := fi(y) —f1(x) — (y’,y — x); (6.16)

the function g is a closed convex function on E which is continuous at z. Let us

consider the convex sets C1 and C2 in E x IR:

Ci := {(y,a): g(y) a}, (6.17)

and

C2 := {(y, a): a < f2(x)
— f2(y)}. (6.18)

Relation (6.15) implies that C1 and C2 have only boundary—points in common; since

C1 is the epigraph of g and g is continuous at z, the set C1 has a non—empty interior

mt C1. We can separate C2 and mt C1 by a closed hyperplane. The hyperplane cannot

be vertical; indeed, if the hyperplane were vertical, then we could separate dom fj
and dom f2; this is impossible since there exists z E dom fi fl dom f2 which is a

continuity point of f. Consequently, the separating hyperplane is of the form

I” (y”,y) + a, E*, a (6.19)

and for all y we have

f2(x)
—f2(y) (y”,y) + a

f’(y)
— fi(x) — (y’,y — x). (6.20)

Putting y = x, we get a = —(y”, x), and hence

f2(y) f2(x) + (—y”,y — x) ,Vy, (6.21)

and

fi(y) fi(x) + (y’ + y”,y — x) ,Vy. (6.22)

Therefore we can decompose y’ into y’ = (y’ + y”) + (—y”) with y’ + y” 8f and

—y” 8f2. In our case, we have y’ = 0 and we set x’ := y”. Hence there exists

E E* such that —x’ e 8f2(x); that is,

hc(u) > ( —x’ ,u — x) , Vu E E, (6.23)

which is equivalent to

(x’, u) (x’, x) , Vu C. (6.24)

The functional x’ is therefore bounded below on C and a) is proved.

The rest of the proof is elementary. We show that x’ E 8f1(y) for any y N,

which implies that

f(x’) + f(y) = (x’,y) , Vy Nc. (6.25)
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Indeed, let x andy be distinct elements of Nc; since fi(x) = fi(y) and (x’, y—x) 0

by (6.24), for all z, we have

fi(z) fi(x) + (x’, z — x) (6.26)

= fi(y) + (x’, z
— y) + x’, y — x)

fi(y)+(x’,z—y).

Therefore (6.25) holds, and Nc is a subset of

{z E C: (x’, z) = (-2)(z)
+ (_)*(x!)}. (6.27)

On Nc, we have ,2(z) = pz); we show that ()*(x!) = (p)(x1) For any z

we have 12(z) > ,u(z); using (6.25), we have

< (.)*(I) (6.28)

= (x’,x)+(x)
()*(I)

Hence d) holds. We have

(_)*(xl) + .t(y) = (x’,y) , Vy E Nc, (6.29)

so that x’ e 8(—p)(y) for all y E Nc: hence b) and c) hold.

Finally, we recall the following useful result which relates —p to the conjugate func

tion of p ( see EDS] or [LP]).

Lemma 6.3 Let the pair({1M},{V}) obey an LDP with RL—function . Ifdomp =

E’, then
p(x’) = (—)(x’). (6.30)

If, in addition, is concave, them — and p are conjugate functions:

p(x’) = (—(x’) and — (x) = p*(x). (6.31)

6.3 Convexity and Asymptotically I—null Sequences

We summarize the results obtained so far. For convenience, we recall the setting.

(X, B) is a measurable space. There exists a locally convex Hausdorff topological

vector space (E, r) over IR with topological dual (E, r*), so that the pair (E, E)

is in duality; X is a closed convex subset of E, equipped with the induced topology.

The measurable and topological structures on X are compatible in the following

sense: each point x E X has a local base of measurable neighbourhoods; the maps

x (x’, x) are B—measurable for every x’ E E*, where (x’, x) denotes the pairing

between E and E*.
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Theorem 6.1 The setting is as above. Assume that the pair ({1M}, {V}) obeys

an LDP with RL-function 1u. Let {C} be an LD-regular sequence with C = flcl C.

Assume that C is convex and that the concave envelope of u coincides with u on C;

assume further that either mt C is non—empty or u is continuous at some point of

C. Then

a) The sequence of conditioned measures {1M} is concentrated on the non-empty

compact set

Nc = {x C (x) = sup j(y)}; (6.32)
yEc

there exists x’ E fleN8(—/L)(x) bounded below on C such that

N C c9(—,u)(x’). (6.33)

b) If, in addition, x’ is bounded below on C,L for n sufficiently large and p(x’) =

(—)(x’), then Nc is a subset of

N = {x E : (x) + (x’, x) — p(x’) = O}

and the sequence of conditioned measures {1M’} is asymptotically I—null to the

sequence of normalized tilted measures {1M’} on the scale {V}.

If the sets C are relatively compact, then it is not necessary to have an LDP; it is

sufficient to assume the existence of an RL—function ,

Proof: By Theorem 3.1, the conditioned measures are eventually concentrated on

the non—empty compact subset Nc. The second part of a) follows from Lemma 6.2.

In particular, (6.33) reads

N C {x E E: (x’,x) = —(x) + (_)*(x)}. (6.34)

Therefore p(x’) = (_p)*(xI) implies Nc C Nx’. If x E Nc, then (—t)(x’) is finite;

hence p(x’) is finite. Therefore b) follows from Theorem 5.1. C
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Part III: Conditional Limit Theorems

7 Independent Random Variables

We show how the formalism developed in parts I and II can be applied to prove

conditional limit theorems. In 7.1, we give a general result, a direct consequence of

Theorem 5.1. In 7.2, we give a concrete application for discrete random variables.

In the final subsection, 7.3, we study a counter—example where the hypotheses of

Theorem 6.1 are not verified.

7.1 General Case

Let (S, S) be a standard Borel space and ,B a probability measure on (S, S). For

each i IN, let ) be a copy of the space (S, S) and define (, F) to be the

product space. Let Y, i = 1,..., be independent random variables,

(7.1)

with common law 3. We consider another random variable p : S — X with values

in a measurable space (X, B) which satisfies the hypotheses of part II. For each

n,wetakeV=nanddefineT:—Xby

T(w) (7.2)

The distribution of T on X is 1M. A typical example is

y: S ‘W(S) , p(s) := S, (7.3)

where S is the Dirac mass at s e S. Here T is the empirical distribution; this

case has been extensively studied, see for example [BZ], [GOR], [C] and [A]. The

scaled generating function p(x’) exists for all x’ E E* but is not necessarily finite; it

is given by

p(x’) = 1irnlnf e1[dx} = 1nfe@’3[ds]. (7.4)

The function p is automatically convex, a consequence of Holder’s inequality. If

{ x} is a sequence converging to x’, then Fatou’s Lemma implies that

lirninf ln f e3[ds] ln f e’3[ds]. (7.5)

Hence p is a closed convex function on E*. Let G be a convex neighbourhood of

(x + y) X; there exist convex neighbourhoods G1 x and G2 3 y such that

-G1 + G2 C G. Since the random variables Y are independent, we have

1M[G1] . 1M{G2j < 1M2[G]. (7.6)

From this inequality, the existence and concavity of the RL—function p follow im

mediately using the standard subadditivity argument [U.
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Theorem 7.1 Let Yi, Y2... be a sequence of i.i.d. random variables taking their

values in a standard Borel space (S, S) with common law 8. Let cp : S — X

be a random variable with values in a the measurable space X which satisfies the

hypotheses of part II. Let {C} be an LD—regular sequence in X with C := flc1C.

If there exists x’ E domp such that the sequence of conditioned measures {1M’} is

asymptotically I—null to the sequence of tilted measures {1M’}, then the law of Y1

conditioned with respect to the event {T C} converges in information as n —* cx

to the probability measure

x d
e(x’(3)),8[ds]

[
f e(x’(t))[dt]’

that is,
1im7(I/3) = 0. (7.8)

Proof: The idea of the proof comes from [C]. Let v be the infinite product measure

on Q with all factors equal to 3 and let i4 = fJ3> pj, where the first n factors are

equal to the measure and the remaining ones to the measure 3. We observe that

the conditioned measure 1M’ is the image under T of the measure

C7], (7.9)

and that the tilted measure JM’ is the image under T of the product measure v’.

By a change of variable, we have

7(JMiM’) = 7((v[. T C])z,’). (7.10)

The law of Y1 conditioned with respect to the event {T C} is equal to the

marginal of v[ T7., E Ca]; therefore the theorem follows from Theorem 5.1 and

Lemma 10.2. LI

7.2 Lattice Case

Let Y1,Y2,... be a sequence of i.i.d. integer-valued random variables with common

law 3. We assume that the variables have maximal span one. For ço, we choose the

identity function, so that

T(w) := (7.11)

Here X = E = JR with its Borel structure, and E* = IR; the scaled generating

function p is given by

p(x’) = lnfex’t[dt], (7.12)

and we define as above the tilted measure

r’.

‘[dsj
fRex’t[dt]

(7.13)

Let be the RL—function of the pair ({JM,}, {V}), let 1M = o T,’ and V = n.

By definition of i, for any point x e IR, we have

lirninfm[{x}] lim sup m[{x}] (x). (7.14)
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Proving that the singleton C := {x} is an LD—regular set is equivalent to proving

that
lirninfm[{x}] = lirnm[{x}] = 1u(x). (7.15)

There is a simple case where this can be done, namely, when we can show that

lirninfm[{x}] = 0. (7.16)

Indeed, if this happens, we must have lim m[{x}] = ,u(x) since 1tt is nonpositive.

Another elementary remark is that whenever we have

lirnm[{x}] = j(x), (7.17)

we have also an analogous result for the tilted case for any x’ such that p(x’) is

finite:

1irnm’{{x}] = ,u2’(x). (7.18)

We make use of these two remarks to prove

Lemma 7.1 Let x be a rational number with the properties:

a) there exists k E ]N so that Prob[{Tk = x}] > 0;

b) there exists x’ in the interior of domp such that grad p(x’) = x.

Then we have
1

lirn—ln1Mk[{x}] = 1u(x). (7.19)

Proof: Let Z2, i = 1,2,..., be i.i.d. random variables with common law /3X’; by

choice of x’, we have E[Z] = x. The distribution of Z, is the tilted measure

lM’. Since x’ is in the interior of the essential domain of p, all moments of Z, are

finite and, by the Central Limit Theorem for lattice distributions (see [F)), we have

Prob[Z = knx] = I[{x}] = O(). (7.20)

It follows that

0 = lirnln%[{x}j = ‘(x). (7.21)

But, clearly, we have

(x) = x •x—p(x)+(x) (7.22)

= lirn in 1M[{x}] = x’ x — p(x’) + lirn ln 1Mk[{x}],

which means precisely that {x} is LD—regular for the pair ({1Mk}, {Vk}).
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Theorem 7.2 Let Y1,Y2... be a sequence of i.i.d. integer-valued random variables

with maximal span one and common law 3. Let domp be the essential domain of

the closed convex function p: JR — JR U {cc},

p(x’) = 1nfex’[ds]. (7.23)

Assume that domp contains a neighbourhood of the origin. Let x be a rational

number with the properties:

a) there exists k JN so that Prob[{Tk = x}] > 0;

b) there exists x’ in the interior of domp such that gradp(x’) = x.

Then the law of Y1 conditioned with respect to the event {Tk = x} converges in

information for n —÷ cc to the probability measure Consequently, we have

urn %[{r}j - ‘[{r}] =0. (7.24)

Proof: Since damp contains a neighbourhood of the origin, we have an LDP for the

pair ({JMk}, {Vk}). The function p is differentiable on the interior of its essential

domain, which implies that 1u is strictly concave and continuous on

z :={y IR: y =gradp(x’), x’ int(domp)}. (7.25)

The set C = {x} is LD—regular (Lemma 7.1). We have Nc = {x}; by hypothesis,

x is in and this implies that x’ is the unique subgradient to (—,u) at x and thus

satisfies the hypothesis of part (b) of Theorem 6.1; hence Theorem 7.1 applies. The

final statement says that we have convergence in the total variation metric as a

consequence of the Kemperman—Pinsker inequality (see Proposition 10.3)

7.3 A Counter—Example

The following example, inspired by a model from Statistical Mechanics, the Curie—

Weiss model, shows that if the RL—function is not concave, then the conclusions of

Theorem 6.1 need not obtain; this example shows that there are measures obtained

by conditioning on convex sets, which are not equal to tilted measures. We also

illustrate the fact that, for Nd > 1, it is necessary to study large deviations on a

scale smaller than the scale {V} in order to determine more precisely the concen

tration set of the conditioned measures.

Let S := {—1, +1} and, for each b E [—1, +1], let 8L be the probability measure on

S defined by
1+b 1—b

2 2
(7.26)

For each j JN, let (Q, )) be a copy of (S,,8b); let be the infinite product space

El3>1 and let be the infinite product measure fl,>1 . Let Y,, j IN, be the

random variable defined on Q by

—* {—1, +1}
,

}‘,(w) := w,, (7.27)
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and for each m IN let

T(w) := i(w) = (7.28)

The random variable T is distributed according to the probability measure v,,

eT)O[]
v[dw] := . (7.29)

f11 eT(’).\0[dwI]

In this example V = n, E = = JR and X = [—1, +lj C JR. The distribution of

T on X is 1M7, = ,, o T1. Let s be defined on [0, 1] by

0 ify=0,

s(y):=—ylny—(1—y)ln(1—y) if0<y<1, (7.30)

10 ify=1.

The RL—function ,u of the pair ({IM}, {V}) is

1+x ax2

2
(7.31)

where p is the constant

1+x ax2
= sup {s( ) + _._......}.

(7.32)
xe[Oij 2 2

For each x’ IR, the tilted measure IM’ is the image by the map T of the measure

v [dwj :=
eT’)’T’))0[h]

(7.33)

The scaled generating function pa(X’) can be computed by Varadhan’s Theorem,

1—f-x ax2
pa(X) = sup {s( ) + + x x}. (7.34)

xE[O,1J 2 2

For a> , the RL—function 1u is not concave: the RL—function attains its maximum

value at the points ±m*, where m* = m*(a) is the positive root of the equation

tanh2ax=x. (7.35)

The concave envelope of ,

I i(x) if x [—1, _m*j,

2(x) = 0 if x [_m*,m*], (7.36)

I (x) if x E [m*, 1],

is strictly larger than ,u on the open interval (_m*,m*).

We choose the parameter a > . Let C := [—a, +a], with 0 < a < m. The set C is

LD—regular; since the RL—function is symmetric, the concentration set is given by

Nc = {x E C : i(x) = sup (y)} = {—a,+a}. (7.37)
yEC
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For any x’ E IR, we have

lirn(J1’) = lirn(v[. {T C}Hv’) -(a) >0. (7.38)

A simple analysis shows that the tilted measures are concentrated on the subset

Nx’, where
{b(x’)}, b(x’) e (—1, _m*) if x’ < 0,

Nx’ = {—m, +m*} if x’ = 0, (7.39)

I {b(x’)}, b(x’) E (m*, 1) if x’> 0.

One can prove that the sequence {v,’} converges to a probability measure, denoted

by v. Since v is invariant under any finite permutation of the
,

it follows from

de Finetti’s Theorem (see, for example, [F]) that

— J \b(x) if X 0,
7 40

— 1 ‘A + m if ‘ = 0.

The conditioned measure v,[ . {T E C}] has a limit as n tends to infinity, which

is also invariant under any finite permutation of the ,, so that again we can use de

Finetti’s Theorem. We show that we find different limiting measures by choosing

different LD-regular sequences {C} converging to C. For example, we choose e7 >

0, such that ,j. 0 and ne —* oc faster than lnn, as n —* cx and C :=

the sequence {C} converges to C and is LD—regular, thus the concentration set for

the sequence of conditioned measures {IM} is again Nc = {—a, +a}. However, a

finer analysis based on Lemma 7.2 shows that the measures 1M’ converge to a Dirac

measure 8a concentrated at a, so that lim i[ . E C}] = V’. Notice that

is not of the form

L ;b*(x’)p[dx!] (7.41)

with p a probability measure on IR.

Lemma 7.2 Let J be an open subinterval of[—l, 1] and let D, := [a—8, a] C D :=

[a — 8, a ± e1] C J, where S > 0 and e,., j. 0 as n —* oo. With ‘(x) denoting the

derivative of the RL—function, if infej ‘(x) is strictly positive and ne/lnn —*

then

=0. (7.42)

Proof: We prove the lemma for the case where the function ,u is given by

(x) := g(x) +
(1 + X)

(7.43)

with g : [—1, 1] —* JR a continuously differentiable function. The measure 1M is in

this case (we can omit normalization because the limit involves a ratio)

I[B] := p(k)S_1[B], (7.44)

where

p(k) := () n(_1) (7.45)
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From Stirling’s formula, we have the following estimate: given 0 < a < a’ < 1,

there exist K0 > 0 and n0 IN such that, for ri > n0 and k such that a < < a’,

we have
k

—ns(—) <K0lnn. (7.46)
Ti

From this it follows that there exist K1 > 0 and n1 IN such that, for n > ri1 and

ksuchthat —1EJ,wehave

<K1lnn. (7.47)

Define the measures IM,, n 1, on the subsets of [—1, 1] by

(7.48)

for B C J and n > m1, we have

e_K11in[B] < IM,4B] <eK1n[B]. (7.49)

Now let B be an interval of length BI; by the principle of the largest term, we have

2k 1 2k ln(nB)
max 1u(— —1) < —lnIM[B] max f.L(— —1) + , (7.50)

kE-’-B Ti Ti k-’B Ti Ti

where qB := {k : — 1 E B}. Thus there exist K2 > 0 and n2 IN such that,

for Ti> 712, we have

0

<

<e2S) . e(n kE.tD_1)_IxkE1D_1)}) (7.51)

Since u is continuously differentiable, we have

2k 2k
{ max L(——1)— max p——1)}<—— (7.52)

kEcb’D(, Ti kE’D Ti 2

taking m —* cc, the result follows.

Let 8 be strictly positive, so that

[—a, a + e,] = [—a, —a + 6] U (—a + 6, a — 8) U [a — 6, a ± ]; (7.53)

we write the measure IM as

= [. [-a, -a +
1[[-a, -a + 6]]

(7.54)

+ [. I(-a+6,a-8)]

IM[[a—8 a+]]
+ 1M[ . [a—8,a+e]].

IMn[CrL]

Using IM[[—a, —a + 6]] = IM[[a — 6, a]], it follows immediately that

JM 6 , n, —* cc. (7.55)
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8 Conditional Limit Theorems: Stationary Case

We now consider dependent random variables. The special case of Markov condi

tioning is addressed in [CCCj; our results cover a much wider range of applications.

The main result, proved in 8.2, is a conditional limit theorem for stationary se

quences of random variables {}} indexed by the points of the lattice ‘. Two

concrete applications of this theorem are given in 8.3 and 8.4. In particular, we give

in 8.4 a new proof of the LDP for the empirical measure. In the first subsection,

8.1, we define the notion of equilibrium state. For that purpose, we introduce the

concept of a weakly dependent measure and recall the basic properties of the specific

information gain.

8.1 Equilibrium States

Let (5,8) be a standard Borel space; for each i , let (!, F) be a copy of (S, 8)

and define (, F) as the product space. We set i := maxk if i = (i1,. . . id)

and use A! to denote the cardinality of a subset A c d (cAFA) denotes the

product space (lJEA EJ .) and (2, F) stands for (cd, Fr). We write f E FA

to mean that the function f is FA-measurable. For i e we have the translation

operator & acting on d by j -÷ j + i. This lifts to

-

with (6w) = wjj . (8.1)

For f e FA, we define &tf e F by &f(w) = f(&_w). For the measure i’, we define

so that f f d(v) = f(&f) dv obtains. For any bounded function cp: IRP,

=(fl,...,fk),weset

mac f(w), := sup (w). (8.2)
j1 k wEfl

Definition 8.1 A real valued function f on 2 is called local if f is FA—measurable

for some finite A. The symbol L9 denotes the space of all bounded local functions;

the closure of Jj with respect to the norm is denoted FqlQc and f Fqioc

is called quasilocal. The vector space of all finite signed measures on (Q, F) is

denoted by M; the probability measures, by Mt; translation invariant probability

measures, by

For f Fqioc and v E W, there is the natural pairing

(f, v)
= j f(w)v[dw]. (8.3)

Equipped with the u(Fqioc, M)—topology, M and Fqioc are mutually dual locally

convex Hausdorff topological vector spaces. The set M is a convex subset of M and

M’9 is a convex subset of Mj. Though Fqioc and F10 induce different topologies on

M, the topology on Jvf induced by F10 coincides with the topology u(M,Fqioc).

A sequence {v} of probability measures on Q converges to the probability measure

v in this topology if and only if

lim f fdVn = ff dv (8.4)
00
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for each f e ..Fj. Sometimes this convergence is called r—convergence. Unless

otherwise specified, the discussion of limits of probability measures below employs

this topology.

We fix once and for all a sequence of finite subsets A c n E IN,

[_n,n]d c 7Ld (8.5)

such that eventually any finite subset of 7Ld is contained in A; the corresponding
d . d• . d

scale is {V := (2n + 1) }. The complement of A in is written A := \A.

The restriction of a probability measure A to a a—algebra B is denoted A. We set

c(A) := supfi in ( f 0 in }. (8.6)

\Ii2;ç (fl)

(If the numerator and denominator are both zero, then the quotient in the definition

of c(v) is defined to be 1.)

Definition 8.2 A translation invariant probability measure A on (, F) is weakly

dependent if

lim ±c(A) = 0. (8.7)
TZ— 00

Remark: In the case of a local specification defined by an absolutely summable

potential, Gibbs measures are weakly dependent (see Section 9). In [Su], a similar

definition is introduced ((3.8) of [Su]); however, the present formulation using (8.6)

is more convenient.

In this setting, we define two important functions: the specific information gain

h( L8) on M8 and the scaled generating function p( . ,8) for the empirical

measure, defined on Fqioc. In the following, f3 is a fixed translation invariant weakly

dependent probability measure. Let A be an element of M; we set

(8.8)

Definition 8.3 A probability measure A has specific information gain h(A,B)

relative to the probability measure 3, if

h(AB) := lim (A) (8.9)

exists.
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Theorem 8.1 Let 3 E M’8 be a weakly dependent probability measure.

a) For any ) M8, the specific information gain

h()/3) lim -7FA(A3) (8.10)

exists as a nonnegative number or +oo and h( /3) is a lower semicontinuous

affine function on A4’8.

b) The level—sets of h( . /3) in A48 are compact.

The proof is given in Section 10.2.

Definition 8.4 Let f be an element of Fqioc arid let /3 E M6 be weakly dependent.

We define

/3) := urn sup inf exp{ f(6w)}/3[]. (8.11)
n

jEA,

The empirical measure is the probability measure given by

S. (8.12)
TL jEAn

Since

f(8w) = V(f, S), (8.13)
iEA ‘

the function p( . L8) is the scaled generating function for the empirical measure
defined on the probability space (2, F, /3).

Theorem 8.2 Let /3 M’8 be a weakly dependent probability measure.

a) For any f E Fqioc, p(f 1,8) given by (8.11) exists as a limit, not just as a limit

superior, and p( /3) is a lower semicontinuous convex function on Fqloc.

b) p(
. /3) and h(

.
1,8) are conjugate functions:

/3) = sup{(f,)-h(/3): M}, (8.14)

h(l/3) = sup{(f,)—p(f /3): fEFqioc}.

c) For any a E M’8 and f E Fqloc, we have

(f, a) (f lii) + h(al,8). (8.15)

The proofs of a) and b) are consequences of the results of Section 8.4. One can

give a direct and straightforward demonstration of a) along the lines of the proof of
Lemma 8.2, while c) follows from b).

Definition 8.5 Let f Fqioc and /3 M’8 be weakly dependent. A translation

invariant probability measure a is an (f,/3)—equilibrium state if

(f, a) = (f /3) + h(al/3). (8.16)
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In this section we shall make use of the following two operations. Let ; be any

probability measure on 2. For any k E IN, we define a periodic probability measure

Pk.A by

II8(2k+1)j()F). (8.17)

We call Pk the blocking operation. We define also the averaging operation Ak

by

Ak := 6, (8.18)
k jEAk

acting on the space of measures or on the space of quasilocal functions; by definition

of the action of d we have

(Af,) = (f,A). (8.19)

It is immediate that v is a limit point of the sequence {.Ak} if, and only if, ii is a limit

point of {PkAk}. An elementary estimate shows that V is a limit point of {Ak.\k}

if, and only if, I’ is a limit point of {Ak(Pk.)k)}. Notice that AkPk)’ is an ergodic

probability measure. To see this, it suffices to note that, for any g E we have

f g(w) 8g(w)(AkPk)[dw]
= (J g(w)(AkPk)[dw]), (8.20)

provided i is large enough.

+8
Lemma 8.1 Let /3 M1 be weakly dependent.

a) For any probability measure .\, we have

(Am(/3)
Cm(/3) mn’m)/Vm h(Pm/3) (FAm(/3)+ cm(/3))/Vm.

(8.21)

b) For any sequence {.\,} of probability measures, we have

lim sup A2/3) = limsup (8.22)

and the corresponding equality with lim inf obtains.

The proof of a) is given in Section 10.2, while b) is a direct consequence of a).

8.2 Conditional Limit Theorem: General Case

Let 3 be a translation invariant weakly dependent probability measure. We consider

a random variable p: Q — X, defined on the probability space (c2, F, /3) with values

in a measurable space (X, B), which satisfies the hypothesis of part II (see Section

4.1). For each n, we define the random variable T: Q —+ X by

T(w) := Ap(w). (8.23)

If for x’ E* the function f’ : —* IR defined by

f’(w) (x’,(w)) (8.24)
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is quasilocal, then

lirnp(x’) urn in j exp{ f’(w)}{] = p(x’) (8.25)

jEAn

exists. We set

‘{dw] := exp{ f’(&ji) - Vp(x’)}3{dwj, (8.26)

jEAn

and
[dw] := /3[dwT E Ca], (8.27)

where C,. B is a sequence of sets with /3[T E C] > 0. Recall that for every

p E

h(p) = lirn(p) (8.28)

exists, and is non—negative.

Theorem 8.3 In the above setting, assume that there exists x’ E* such that the

function f’ is quasilocal, and

1irn(i3,L8’) =0. (8.29)

Then the set of limit points of the sequence

{4[ . T,,, e C]} (8.30)

is non—empty, and any limit point 13 satisfies the identity

h() = -lirn1n{T E Cj = J f(w)[dwj -p(x’). (8.31)

In particular /3 is an (f’, /3)—equilibrium state.

Proof: We have

= (/3/3) - f f’(w)/3[dw] +pn(X’) (8.32)

and

<(/3I/3) = -ln/3{T é Ca]. (8.33)

Since f’ is quasilocal, sup, f’(w) = 1Lf’U < and 1imp(x’) = p(x’) exists and

is finite. Using Lemma 8.1, (8.33) and (8.32) we get

0 < lirninf (/3/3) = lirninf h(P/3{/3) (8.34)

< lirninf — ln/3{T Cj lim sup — ln/3{T E G]

= urn sup ((/3/3’) + f f’(w)/3[dw]
-

Pn(’))

< urn sup J f’(w)A/3[]
-

p(x’) < f’ -

p(x’) < cc.



Conditional Limit Theorems 44

Since the level—sets of the specific information gain are compact, the set of limit

points of the sequence {AP3} is non—empty. This set coincides with the set of

limit points of the sequence {A3}. Let /3 be such a limit point. Since f is

quasilocal,

lirnJf’dA/3 = ff’d/3c; (8.35)

the lower semicontinuity of the specific information gain on M’8 implies that

h() < lirninf — ln{T E C] <limsup — ln[T E C (8.36)

< f f’(w)[dwj - p(x’).

Since 13’ is translation invariant, Theorem 8.2 implies the reversed inequality

h(j) f fx’C[]
- p(x’). (8.37)

The above result may be applied to sequences which approximate {Ago(w)}. We

have the following

Corollary 8.1 Assume the hypotheses of Theorem 8.3 are satisfied with {T} which

does not equal {Ao(w)}, but such that

lim (x’,T(w))
- (x’,Ao(w))U = 0. (8.38)

Then the conclusions of the Theorem still obtain.

Remark: A crucial step of the proof is the use of the lower semicontinuity of the

specific information gain on M. The following example shows that this property

fails to hold on M, even if the limiting measure is translation invariant. We

construct a sequence of probability measures {} such that {} converges (the

topology is that induced by .Fqioc) to a translation invariant probability measure and

lirnh()48) < h(1irn.)iI/3). (8.39)

Consider Z’ with = {0, 1}. We have A = {—n,. . . , n} and T4 = 2n + 1. Let 3

be the product probability measure with ,8[{1}j = a, for all i , where 0 < a < 1,

and let v be the product probability measure with v[{w: = 1}] = a’ for all i E

where 0 < a’ < 1 and a’ a. Define

= 1}] =
a’ if i2 < k; (8.40)

l.a otherwise.

Then {v} converges to v. Set ) := P,v; {)} converges to v. Note that

‘H.pA(v5) is of order so that Lemma 8.1 implies the equality

lim h() = lim A(vfl) =0. (8.41)

But h(zB) is non—zero.
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8.3 Conditional Limit Theorem: Euclidean Case

We give an application of Theorem 8.3 when the measurable space (X, B) is a

compact subset of IRk with its Borel structure. We fix a translation invariant weakly

dependent probability measure /3 on (, F). Let o : IRk be a quasilocal

function. Recall the norms defined in (8.2). Let E = = IRk with the pairing

given by the Euclidean scalar product (x’, x). Let X C E be a closed ball at the

origin with max norm radius larger than . The distribution on X of T = A7,o

is 1M7, = /3 o T1.

Lemma 8.2 The RL—function u of the pair ({IM}, {V}) exists; it is a concave

function on IRk The scaled generating function

p(x’) := urn in J ex’1Mn[dx], (8.42)

exists; it is a closed convex function with domp = IR”.

Proof: Let B(a) be an open ball of radius e and center a e IRk. Let a0,a1, a2 be

elements of Rc which satisfy a0 ± a1 = 2a2 and let 0 < e” < e’ < e; we shall prove

rn{B(a2)]
[Bii(ao)] + rn[Beu(ai)]

(8.43)

If we put a0 = a1 = a2 in (8.43), we have

rn[B(ao)] > i[Bii(ao)] , (8.44)

which implies > 1. To see that the resulting function, denoted by ,i, is concave,

we note that (8.43) implies the inequality

(a2)
(ao) + (a)

(8.45)

Since is upper semicontinuous, this implies the concavity of . The existence of

p is a consequence of Varadhan’s Theorem; since X is compact, we have an LDP.

Therefore

p(x’) = urn in J e’IM[dx] (8.46)

= sup{(x’,x)+(x)}.
sEX

We return to the proof of (8.43). If so were a function of a single coordinate and /3
a product measure, then this would follow from (7.6); we have to show that, under

the existing assumptions, the inequality got from (7.6) by taking logarithms and

dividing by 14, continues to hold up to a small correction (which vanishes as n goes

to infinity) provided we work on a sufficiently coarse scale. Given the box A, we

define for n > m the sublattice Anjm, whose points are the centers of all translates

of Am by multiples of 2m + 1 which stay inside A:

Anm := {(2m + 1)j : j E A(nm)div(2m+l)}, (8.47)

q(nm) := AnimI = (2{(n — m)div(2m + 1)} + (8.48)
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where div denotes the integer part of the quotient. Then

U &2AmCAn
jEAn1m

and U jAm
§EAnprn

q(nm)Vm, (8.49)

since the translates &jAm are disjoint

Enumerate the points of An1m by i3, j = 1,... , q(nlm), so that 1 corresponds to the

origin in Anim. Because q(nm) is odd, we omit the origin from sums involving Anim.

Making use of the convex relationship a2 = (ao + ai)/2, we have for ri > m

q(nlm)

(&i,Tm(W)
— ajmod2)VmW

j=2

(v - (q(mm)
- 1)Vm)(Ha2H + ).

For any m IN, we can find Gm E LFAm so that

1
1im—supGm(w)—
m

jEAm

Therefore there exists M so that m M implies

1
— sup Gm(W) p(Ojw) min{’ — E”, —

Vm w
jEAm

For m M, it follows from the two estimates above that

(8.51)

(8.52)

Vmurn sup {T(w) — a2} -v
q(njm)

1
{ij,Gm(Lui) — ajmoa2}H < — 6’,

n
(8.53)

and

T’[Be”(ajmod2)j C {w: Gm() B’(ajmod2)}.

Then there exists Nm such that n Nm implies

{w 1Gm() E Be’(ajmoa2), j = 2,... ,q(nm)} CT1{B(a2)].
Vm

(8.54)

d = 1: boxes A2 and A; large . are the points of A1112; q(112) = 3.

— a2)V7, —
< (8.50)

(8.55)
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Using the fact that ,8 is weakly dependent, we can write

1nJM{B(a2)j > lnTMm[Be”(ao)] + ln1Mm[B”(ai)] Vm (q(mm) — 1)
8 56

vn - 2Vm
(.)

q(mlm)
— T7

Cm

VTL

To deduce (8.43) from (8.56), select a sequence {mk} so that lnlMmk[BciI(ao)]/Vmk

converges to rn[Bu(ao)]. Using this sequence and the fact that (q(r1mk)
— 1)Vmk/Vn

goes to 1 as ri —* c, (8.43) follows.
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Theorem 8.4 Let ,B E M’8 be weakly dependent. Let so be a quasilocal

random variable on the probability space (, .F, ). The distribution of T = A,cp
, jk is 1Mg, and is the RL—function of the pair ({]M}, {V}). Let {C} be an
LD—regular sequence in IRk with respect to u. Assume there exists x’ e IRk such that

Nc C Nx’. Then the following hold:

a) The set of limit points of the sequence

{A3[ T,., e C]} (8.57)

is non—empty.

b) Any limit point of the sequence (8.57) is an (f,’,/3)—equilibrium state, with

f’ =

c) x’ is a subgradient of — for any point of the non—empty compact set Nc =

{x E IRk: (x) = supC(y)}.

In particular, if B is a convex set containing an interior point where is finite, then
the sequence {G B} is LD—regular and there exists x’ so that N C NC’ with

o := clB.

Proof: The pair ({iM}, {V}) has an RL—function ,u and a scaled generating func
tion p, with domp = IRc and

p(x’) = (_)*(xI). (8.58)

Since X is compact, we have an LDP; we apply Theorem 6.1. The sequence of

measures {IM’} is eventually concentrated on the non—empty compact set Nc; there
exists x’ E flXENC8(—p)(x)

k such that

lirn-(IMHIM’) = 0. (8.59)

The theorem is now a consequence of Theorem 8.2; Lemma 6.1 covers the particular
case. C

8.4 Conditional Limit Theorem: Empirical Measure

We consider here a case where the random variable so : — X takes its values in
the space of probability measures M. Putting

o(w) := 8, , S, Dirac mass at w, (8.60)

the random variable T,

T(w) := Ao(w), (8.61)

is called the empirical measure. The main result of this section is a simple proof
of the LDP for empirical measures.

There is a natural embedding of M in the unit ball of the dual of the Banach
space of quasilocal functions Fqioc equipped with the norm jf = sup, f(w)I. We
take advantage of the fact that the norm unit ball of

{x E Fi0: (f,x) f for all f E Fqioc}, (8.62)
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is compact in the u(F, Fqioc)—topology. We always choose this topology for

In general, this space contains M as a proper subspace and the subspace topology

on M is the topology introduced in Section 8.1, so that we have an embedding of

M into On Fqloc , we consider the u(Fqioc, Fqioc)topology which differs in

general from the u(Fqioc,M)—topology. With this topology, the spaces Fqioc and

are in duality. With the notations of Section 4, we have E* = Fqioc, E = ioc

and we choose X as the norm unit ball (8.62). The u—algebra B on X is generated

by all maps

(f,) , f Fqioc, (8.63)

where (f, x) is the pairing between Fqioc and Fioc:. We fix a translation invariant

weakly dependent probability measure on (, F) and consider the empirical mea

sure T on the probability space (c2, F, 3) with values in the compact space X. The

distribution of T on X is 1M,. = o Ti’.

The proof of existence and concavity of the RL—function for ({1M}, {V}) is essen

tially the same as the proof of Lemma 8.2 since a base of neighbourhoods of x X

is of the form

B(x*,f,E) := {x E X: (f,x) — (f,x*) <j,j = 1,...,k}, (8.64)

where f = (fi,. . . , f) with each f3 e F10, = (e1,. . . , Ek) with each e, > 0 and

an arbitrary positive integer. (It is sufficient to consider only f E F10 because

X is a norm bounded subset of F0.) The RL—function ,u for ({1M}, {V}) can

at each x X be approximated arbitrarily closely by an RL—function p for some

finite vector f = (fi,. . . , fk) with each f,

Lemma 8.3 The RL—function associated to the empirical measure, regarded as a

random variable with values in X, exists and is concave.

Since X is compact we have an LDP; we compute the scaled generating function by

Varadhan’s Theorem:

p(x’) = urn in f exp{V(x’, T(w))}[dw] (8.65)

= lirn in 1[dxj

= sup{(x’, x) + (x)},
xEX

for any x’ Fqioc. This identity shows that p(.L) is the conjugate function of —ii;

since — is closed convex and proper, the converse is also true: —,u is the conjugate

of p(

Remark: It is possible to treat on the same footing the following variants of the

empirical measure. Define
T(w) =A1Pcp(w); (8.66)

T, is called the periodic empirical measure. More generally, define

T,(w) := A,Q(w), (8.67)
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where Q(w) is any probability measure on which is a measurable function of

and whose marginal distribution on FA coincides with SW. The empirical measure

(8.61) and the periodic empirical measure (8.66) are special cases of (8.67). In all

cases, the RL—functions and scaled generating functions are the same, so that we

have the same large deviations results on the scale {V}. Indeed, for any f e 9c
and any i Zd, we have

(f&) = (jf,Q(w)), (8.68)

if n is large enough; hence

lirn (f, T,( )) — (f, T( )) = 0. (8.69)

Lemma 8.4 Let x E X satisfy (x) > —cc. Then x is translation invariant and

(f, x) > 0 for all nonnegative f E j; moreover, we have (x, 1) = 1.

Proof: We show translation invariance; the other parts are similar. Assume x is

not translation invariant. Then there exist i e Z, e > 0 and f so that with

g := f —

8sf, we have (x,g) > . Notice that

limsup = 0. (8.70)

Therefore, for all w and all n sufficiently large, we have

= Ag(w) <; (8.71)

this implies that the neighbourhood {u E X (u,g) > e} of x has Th = —cc, hence

(x)=—co.

Lemma 8.5 For fl,f2 e Fqioc, we have p(fij3) —p(f28) fi — f2U. Also, for

any i we have p(fi + f —
&f2) = p(fi).

Proof: The inequality follows from

p(f/3) = sup(f3,x) + u(x) (8.72)
xEX

and I(x,fi—f2)I < fi—f2Uforx E X. Thesecond part follows because (x) = —cc

unless x is translation invariant.

Lemma 8.6 If ‘I X is a translation invariant probability measure, then the con

jugate function of p( .

3) at ii’, p(v), satisfies

-

(v) = p(z) <h(v/3). (8.73)

Proof: By definition, we have

p(v)= sup (8.74)
fEFqioc iEA



Conditional Limit Theorems 51

We have shown already that p( L8) and — are conjugate functions. From Lemma

8.5 and the continuity of (v, f), it follows that the supremum over .F1 yields the

same value. Take any f E F. Then, by Proposition 10.2, we have

(f,u) - lnfexp(8f())[] = (8.75)

( &f,v) _1nJexp( 6f(w))[})

\

because >iEAr 6f E Now

liminf A(vj) = h(vj), (8.76)

so f .;ri0 implies

(f,v) _ilnfexp( &f(w))[] <h(v). (8.77)

Then (8.73) follows. fl

For any x e X with ,u(x*) > —, each measurable neighbourhood C of x and

each positive integer n with i3[Tr, C] > 0, we consider the probability measure

T C], c := Pnn,C. (8.78)

Lemma 8.7 Let x E X with (x*) > —oo, where 3 is a translation invar2ant

weakly dependent probability measure. Let C be a measurable neighbourhood of x

in X. Then, for n sufficiently large, we have

<
- 1n{T e C]/V. (8.79)

If, in addition, C is closed and convex, then any limit point y of the sequence

satisfies y E C.

Proof: From Lemma 8.1, we have

V < TC]) (8.80)

< 7-{• T C][3)

= —1n3{w:TeC].

Assume, in addition, that C is closed and convex. Let y be an element of X \ C;

then there exists f E so that

(f,x) 0 for all x C, (f,y) = 1. (8.81)

Given f Fqloc satisfying the above, one can find f* satisfying the same

condition, so we may assume without loss of generality that we have f E

satisfying (8.81), say f F4,. An elementary calculation shows that

-

<2f
V

(8.82)
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We have defined the action of A, so that

(f,T(w)) = (Af,6), (f) = (Af,P3,c). (8.83)

Because (An_m*f,Prj3n,C) = (An_m*f,j3n,), we have

(f,c) - (irn*f,n,c) 2f
V Vnm*

(8.84)

Now/3n,C is supported by those w 2 which satisfy (Af, S) 0; hence we have

(Af,i3n,c) 0. (8.85)

From the four above displayed formulas we deduce that

(f) 4HfH
V Vnm*

(8.86)

Since (V — Vn_m* )/V —* 0 as n —* cc, if x is a limit point of {3}, then (f, x) 0;

that is, y X \ C implies y is not a limit point of {j3}.

For the probability measure v X from (8.73), we always have —i(v) h(v,B). A

periodic probability measure v which is not translation invariant has (v) = —cc,

but one may have h(v3) < cc. In the case of translation invariance, h coincides

with —‘u.

Lemma 8.8 Jf,u(x*) > —cc, then x is a translation invariant probability measure.

ff v e X is a translation invariant probability measure, then

= —h(vL8). (8.87)

Proof: Let x be an element of X such that (x*) > —cc. For any closed convex

neighbourhood C 3 x, we have

u(x*) <rn[C]; (8.88)

for e > 0 and all n sufficiently large, we have

— cc < (x*) < 1n[T C]+. (8.89)

For those n, Lemma 8.7 implies that, for defined in (8.78), we have

h(0)
c)

— (x*) + e < cc; (8.90)

since the level—sets of h( L8) are compact on the space M8, for each closed

convex neighbourhood C of x the sequence {i} has at least one limit point

which is a probability measure which we denote by /3c; Lemma 8.7 shows that Bc
belongs to C. The lower semicontinuity of the specific information gain on

implies that

h(/3c3) _JL(x*) + e < cc. (8.91)
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The net of probability measures {L3c } parameterized by the closed convex neighbour.

hoods of x* ordered by inclusion has limits points which are probability measures

because of (8.91). By definition, this net converges to x. Since the topology is

Hausdorff, the limit is unique and is thus a probability measure. If ii E
48

with

= —, then (8.73) implies (8.87); otherwise, the reverse inequality follows

from (8.79) and the lower semicontinuity of the specific information gain.

We consider again the setting of Section 8.1 with the empirical measure T regarded

as a random variable defined on the probability space (Q, F, /3), where j3 e 4+8
is

weakly dependent. We have the following result:

Theorem 8.5 Let /3 M’ be a weakly dependent probability measure. Then the

empirical measure T defined on the probability space (2, F, /3) with values in the

space of probability measures A4 satisfies an LDP with RL—function given by

( +8

—) _h(U8) E M1 8 92— —
v e \M8.

Proof: We know that we have an LDP on the space X. Since the empirical measure

T takes its values in M, the RL—function at v E Mt is equal to the above RL—

function; it remains to show the upper bound for closed sets. Let B be a measurable

set in Mt; denote by its closure in Mt and by B its closure in X. We have

B = Bx fl Mt; thus from Lemma 8.8 and the LDP on X we have

sup (x)=sup(x). (8.93)
xEBx xEB

The proof of Theorem 8.4 and Corollary 8.1 yield the following result.

Theorem 8.6 Let /3 be weakly dependent. Let {T} be the empirical mea

sure (8.61) or one of the the variants of the empirical measure given by (8.66) and

(8.67). Let 1M = /3 o T’ and let 1u be the RL—function of the pair ({1M}, {V}).

Let {C} be an LD—regular sequence in X such that there exists x’ e Fqioc so that

N C Nx’, where C := flcl C. Then the following hold:

a) The set of limit points of the sequence

{4,5[ . T, E C,j} (8.94)

is non—empty.

b) x’ is a subgradient of — for any point of the non—empty compact set N =

{x E Mt : (x) = supYEc /1(y)}.

In particular, if B is a convex set containing an interior point where u is finite, then

the sequence {C B} is LD—regular and there exists x’ so that Nc C N with

C := clB.
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9 Equivalence of Ensembles for Lattice Systems

As an application of Theorem 8.4, we discuss the question of equivalence of ensem

bles in the case of lattice systems, giving proofs of the results announced in [LPS1]

and [LPS2].

The setting is that of Section 8.1. An interaction = {} is a family of FA—

measurable functions A, indexed by the finite nonempty subsets A of 7Ld such

that

= , VA, Vi (9.1)

A potential is absolutely summable if

>2 AH <oo, (9.2)
A30

where is the supremum of 4)A(w) over 2. Another norm used with lattice

models is given by

:= >2 A/A. (9.3)
AO

For each interaction 4), we define a quasilocal function f by

f := >2 (9.4)
A3O

It is convenient to allow the interaction to be IRk_valued. For a given IR!’valued

interaction 4), we define

UA(w):= >2 4)A(L)), WA(w):= >2 4)A(w), (9.5)
A:ACA

and the families of mappings {S}, {S}, and {S} of 2 into IRk by

V5(w) = (Ui,(w),.. . , Uj,,(w)); (9.6)

VS,(w) = (Ui,(w) + W1,(wArç ),.. . , Ui(w) + Wk,(wA,.ri-1ç)). (9.7)

The first index of refers to the coordinate of IRk and the notation WA?7 means

the point of 2 whose A coordinates are taken from w while the A 7L’ \ A1.

coordinates are taken from i; {S} is {S} with i arising from w A by peri

odic continuation to iLd. The sequence {S} corresponds to the energy with free

boundary conditions; {S}, to fixed boundary condition i; {S}, to cyclic boundary

conditions.

The next estimates allow us to make the connection with the results of Section 8.3.

We define the A—boundary of the set A as the subset of d

8AA:={jEA:A+jA}. (9.8)

The following properties are obvious from the definition:

<1,Ac, (9.9)
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8AA
un = 0,A C (9.10)

We have

- AH -
(9.11)

ACA jeAn A3 jEAn
ACA

jEAn A3.

8AAnjAL
A30

Since
8AA 1 1

vfAf AjAj A, .1

and

= WH# <cc, (9.13)
AO

it follows from the Bounded Convergence Theorem that

lirnU AU < 1i8AAflhiU (9.14)
EA AcA A30

= lin 1-HAH = 0.

A similar estimate can be derived for {S} or {S} instead of {S} when the inter
action is absolutely summable because

HAU (9.15)
A” jEA A33

A\Aø AA

ç aAAAj.

A30

As above, we have

1irn 8AA AU/Vn = 0. (9.16)
A30

The next Lemma follows directly from these estimates.

Lemma 9.1 Let3 E M’6 be weakly dependent and be an IRkvalued interaction.

a) If <cc, then the RL—function of ({3 o S’}, {V}) exists and is equal to
the RL—function of ({,B a T;’}, {V}) with T =

b) If <cc, then the RL-functions of({3oSj’}, {V}) and ({/3oSj’}, {V})
exist and are equal to the RL—function of ({,8 a T;1}, {V}) with T =

The above shows that the RL—function determined by Fqjoc yields the RL-functions
for potentials. For the IRJC valued f E .FA, one defines the absolutely convergent
potential by

— f 8f jf A = Am*,

L 0 otherwise,
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Using (9.4) to define fj, we compute

f’ = (9.18)

thus the RL—fuction determined by ff coincides with that determined by f and

p(f’ L8) = p(f!/3) for all weakly dependent ,8 M. More generally, for f e Fqioc

there exists a sequence {f3} in . so that f = f, and fj < cc. Define

= > 4), where 4), is given by (9.17) with m* the smallest positive integer for

which f, E FAm• Then l4) <cc and f’ determines the same RL—function as

that determined by f.

Henceforth in this Section, P denotes a given translation invariant probability mea

sure which is the product of its marginals IP{2}, j 7L’. Let ‘I’ be a real—valued

absolutely summable interaction. For finite A C
, define

rA(w) := e(W (9.19)

with (IA and WA given by (9.5) with ‘I’ instead of 4). For each finite subset A of ‘,

we introduce a probability kernel ‘y : F x 12 —* [0, cc] given by

J’n 1F(7ALU7)rA(77AWX)IPFA(d7l)
7A(F,w) .—

(9. 0)
f rAQ17Awç)PF(d77)

where 1F is the indicator function of F F.

Definition 9.1 Let ‘1 be a real—valued absolutely summable interaction. Let P E

be the product of its marginals ]P{3}, j d A probability measure A on

(12,F) is a (‘I’,IP)—Gibbs state if and only if

EA(1FFa\A)(w) = 7A(F,w) A — a.s. (9.21)

for each finite subset A of 7Ld and each F F

It is known that a translation invariant probability measure A is a (f, IP)—equilibrium

state if and only if A is a (‘p, IP)—Gibbs state. For a proof, see [Ru2] or [G2]. Notice

that a Gibbs state is not necessarily translation invariant.

Lemma 9.2 Let ‘I’ be a real—valued, absolutely summable interaction. Any (‘.1’, IP)—

Gibbs state is a weakly dependent probability measure with

c(A) <4 8AA IlAU (9.22)
A30

Proof: Define
w(n) := ãAA (9.23)

A30

We have
e_2rA(wAflç) <rA(wAwç) < e2rA,(wAr-). (9.24)

If f e F10 is positive, then

f f(w)A[dw] = J A(f, w)AF [dw] (9.25)

4w(n) f (f [dw’]
e JAF_[dw].

J frAfl(wA71c)PIFA[dw] j

Integrating this inequality with respect to A[d’i7], we get

f f(w)A[dw] <e4w f f(ww)AIFA[dw] ®A1[d]. (9.26)

A similar lower bound can be proved; this shows that c(A) 4w(n).
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Theorem 9.1. is a more elaborate version of Theorem 5.2 of [LPS1J; see also {LPS2].

Theorem 9.1 Let ‘1.’ be an absolutely summable real—valued interaction and /3 a

translation invariant (‘p, IP)—Gibbs state on (1, F). Let be an absolutely summable

interaction, and C c IRk a closed convex subset such that ,u is finite at

an interior point of C, where u is the common RL—function of Lemma 9.1. Then

a) Each of the sequences

{A3[ S Cj}, {A/3[ jS E C]} or {A/3[ S E C]}, (9.27)

has at least one limit point.

b) There exists x’ ]Rk such that any limit point of the sequences (9.27) is an

((x’, 4) + ‘4’, IP)—Gibbs state.

c) The generalized chemical potential x’ is a subgradient of —,u for any point of

the non—empty compact set Nc = {x E IRk : i(x) = supc ,u(y)}.

d) If < cc instead of < oc, then any limit point of the sequence

{A/3[ S, C]} is an (f’,/3)—equilibrium state, with f’ := (x’, f’).

Proof: The theorem is essentially a corollary of Theorem 8.4. Any limit point A of

the sequences (9.27) is an (f.’,i3)—equilibrium state:

f’(w)A[di] =p(f/3)+h(A3). (9.28)

It is not difficult to show that

p(f/3) = p(f’ + fIP) - p(fIP), (9.29)

and, from Lemma 10.1. (see also [G2]), that

h(AI/3) = h(AI) - f f(w)[dw] + p(fwI). (9.30)

From these identities, we conclude that

f{f’(w) + f(w)}A[dw] = p(f’ + fP) + h(A); (9.31)

that is, A is an (f’+f, JP)—equilibrium state, and therefore also an ((x’,

Gibbs state.

Remark: Convexity is used to prove LD—regularity and the existence of x’; equiv

alence of ensembles can be proved in special cases without assuming convexity of

the conditioning set. Equivalence of ensembles for the empirical measure can be

proved in the case of absolutely convergent potentials in essentially the same way

as was done with Fqioc. Instead of Fcoc, one embeds Mt in the norm unit ball of

the Banach space dual of the space of absolutely convergent interactions.
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10 Information Gain and Specific Information

Gain

10.1 Information Gain

Let (, F) be a measurable space. Let \ and 3 be two probability measures on

(Q, F). The information gain 7((AB) of;\ with respect to /3 is defined by

:=
fin f(w)/3[dw], if [dwj = f(w)/3[dw],

()
I. +00, otherwise,

with 0 in 0 := 0. If B is a sub—u—algebra of F, then

(10.2)

where ;\ and /3 denote the restrictions of the measures to B.

Proposition 10.1 For probability measures;\ andj3 on the measurable space (c2, F),

we have

> 0. (10.3)

IfB1,B2 are sub—u—algebras ofF and B C B2, then

-s1P/) <7((/3). (10.4)

There exists a sequence {FA} of finite sub—u—algebras ofF such that

1imNj(/3) = ?t(.A(3). (10.5)

Proof: With(f)=f1nf—f+1wehave&(f)>0andff1nfd/3=f(f)d/3

when f 0 and ff d,8 = 1, which proves (10.3). Since /.‘ is convex, (10.4) follows

from Jensen’s inequality. For (10.5), if \ is not absolutely continuous with respect

to /3, take F to be the u—algebra generated by any set A F with X[A] > 0 and

13[A] = 0. Otherwise, let f denote a Radon—Nikodym derivative of \ with respect

to /3. Define B to be the u—algebra of subsets of the real line generated by sets of

the form

{x E IR: k/2’ x < (k + 1)/2’} for k = 0,. .

, 4L (10.6)

Let F = f’B. Let f, be the /3—conditional expectation of f with respect to

F. Then lim f,,. = f, /3—almost surely. If (A/3) < 00, the Legesgue Dom

inated Convergence Theorem implies the convergence of {?(/3)} to 7(/3).

Conversely, if {,()3)} is bounded above, ‘H(/3) is finite. C

Elementary considerations yield the following.

Lemma 10.1 If A = f/3, g is A integrable and f d/3 = 1, then

(Ae9/3)
+ J g dA = (A/3). (10.7)

Proposition 10.2 For probability measures A and /3 on the measurable space (Q, F),

we have

sup fgdA_lnfed/3, (10.8)
gEF

where Fb denotes the set of bounded, F measurable, real valued functions.
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Proof: If 7(X/3) < cc, we have

sup Jg dA — inf d/3 = sup fg dA = sup (A) —

(e/3) (10.9)
gEFb gE gEF

fedt

from (10.7). This shows that 7(A,8) is an upper bound for the right hand side of

(10.8). To show that it is the supremum, we first remark that if A is not absolutely

continuous with respect to /3, we can select A with A{A] > 0 and /3{A] = 0. Define

gc(w)
= { C E (10.10)

0 otherwise.

The supremum over {gc} gives an infinite value to the right hand side of (10.8). If

A = f/3, define
— fin f if in f n,

t. n sign(f) otherwise.

Then 1irn, f e d/3 = 1 and 1irnr fg dA = 7-(AI/3), which shows that the right

hand side of (10.8) can be no less than 7(Aj/3).

Lemma 10.2 Let (12,F1) and (122,F2) be measurable spaces. Let 12 = x 122

with F the corresponding product u—algebra. Let A and /3 be probability measures

on (12, F) with A, ‘\2 and /31, /3 denoting the restrictions to F1,F2 considered as

sub—u—algebras ofF. Assume /3 = /3 0/32. Then we have

= 7-I(AA ® A) ±-(A131)+ 7-t(A232). (10.12)

Proof: If ?(A/3) < cc, we have 7(A1/31) < cc and 7-(A2/32) < cc from(10.4). If

we write A = f(wi,w2)/3 and A = fi(wi),81,A2 =f2(w2)/32,the relation (10.12) is

a formal equality involving integrals. Since three of the four terms are finite, the

fourth must be finite and equality obtains. Similarly, if the terms on the right hand

side of (10.12) are finite, one can deduce the remaining Radon—Nikodym derivative

and equality obtains.

Lemma 10.3 For j = 1,. . . , m, let a, > 0, a1 = 1, and let A be a probability

measure with 7-i(Ai/3) < cc. Then

m m m m

+alna, a7i(A/3). (10.13)

Proof: Let X = a,A2. On {1,. .. , m} x 12, define the probability measures

and ) so that A*[{j} x B] = aA[B] and [{j} x B] =a3X[B]. A straightforward

calculation similar to that of the previous lemma shows that

m m

— l(EajAj/3) = 7(A*fX). (10.14)

This proves the second inequality of (10.13); the first follows by noting that, for fixed

j, the Radon—Nikodym derivative of A* with respect to A* is equal to or greater than

1/ai so that

?(A*l) =aln- <a,ln1/a,. (10.15)
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Proposition 10.3 For probability measures A and 8 on the measurable space (Q,F),

we have

W- v 27-(Ajj3), (10.16)

where the norm is the total variation norm.

Proof: If 7(A,8) = oo, there is nothing to prove. Otherwise, let A = ff3. Let

A = {i : f(ci) 1}. Let FA denote the (finite) u—algebra generated by A. With

x = A[A] and y = [Aj, we have

/3HTv = 2(x - y). (10.17)

Ifx=0ory=0orx=1ory=1,thenA=3. Otherwise, wehave

= x1n + (1— x)ln
— .

(10.18)

Since 7-t(A/3) 7rA(A/3), it suffices to show that

2(x
—

y)2 <x1n + (1— x)ln
.

(10.19)

But this is a consequence of the fact that the convex function

u(r) := xlnx + (1— x)ln(1 — x) — 2x2 (10.20)

satisfies u(x) — u(y) (x — y)u’(y) when 0 < x < 1 and 0 <y < 1.

10.2 Specific Information Gain

We prove Theorem 8.1 and Lemma 8.1. The setting and the notations are those of

Section 8.1.

Lemma 10.4 Let 3 M1 with Cm(/3) < oc. Then, for n > m, the restriction of

to the u—algebra TA and the probability measure

c:: 3IFAm ® IFAn\UjSjAm
(10.21)

are mutually absolutely continuous. The absolute value of the logarithm of the

Radon—Nikodym derivative is bounded almost surely by q(nm)cm(3).

Proof: Consider the analog of (8.6) with/3IFA and := Let

A FAR; since cm(/3) is finite,/3(FA(A) = 0 if and oniy f /3*(A) = 0. (8.6)

implies the a,s. bound of cm(i3) for the absolute value of the logarithm of the Radon—

Nikodym derivative. One repeats the argument for subsets of A \ Am.

Proof of Theorem 8.1
Proof of a): For n > in, we have from Lemmas 10.1, 10.2, 10.4 and translation

invariance the inequality

FA(AL) q(nm) (FA (Ala)
- )). (10.22)
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We have Cm(/3)/Vm —f 0 as m —* oo, and q(nIm)Vm/V — 1 as m —* oc. Therefore

we have

liminf7 > — (10.23)
Vr - Vm

Now take urn sup over m. The lower semicontinuity of 7tFA (.,8) and (10.23) imply

that h(/3) is lower semicontinuous. Indeed, let {.\,} be a net in M’ converging

to .; we have

Am()
- cm() 1Am() - Cm()

l1m1nfht)k,B) > hminf > . ; (10.24)
Vm Vm

hence we have liminfk h(kLB) > h(/3). The affine character of h(3) is a conse

quence of Lemma 10.3. For the proof of b), see for example [G2j.

Proof of Lemma 8.1

Fix the integer m> 0. For n m we have

r := 2 + (n — m) div(2m + 1) implies A C (2m+l)j(8:Am) (10.25)
jEAr

for any j E Am. Then, with j Vm, (10.12), (10.7) and Lemma 10.4 yield

<Vr(6iFm()+()), (10.26)

because 7()3) = ?pm(&jPmAf3). From translation invariance, we deduce

that 7jFm(j/3) = TAm0’/3) From (10.26) and Lemma 10.3, we then have

FA(AmPm) < Vr
(Am() + (10.27)

We divide by V, and use lim Vn/Vr = Vm. The other bound follows from (10.23)

applied to and Lemma 10.3.
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