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ABSTRACT

We consider the relationship between the conjectured uniqueness of the Moonshine

Module, V, and Monstrous Moonshine, the genus zero property of the modular in

variance group for each Monster group Thompson series. We first discuss a family

of possible Z meromorphic orbifold constructions of V based on automorphisms of

the Leech lattice compactified bosonic string. We reproduce the Thompson series for

all 51 non-Fricke classes of the Monster group M together with a new relationship

between the centralisers of these classes and 51 corresponding Conway group cen

tralisers (generalising a well-known relationship for 5 such classes). Assuming that

V is unique, we then consider meromorphic orbifoldings of V and show that Mon

strous Moonshine holds if and only if the only rneromorphic orbifoldings of V are

V° itself or the Leech theory. This constraint on the meromorphic orbifoldings of

therefore relates Monstrous Moonshine to the uniqueness of V in a new way.

* EMAIL: mphtuite’bodkin.ucg.ie



1. Introduction.

The Moonshine Module, Y, of Frenkel, Lepowsky and Meurman (FLM) [1,2,31
is historically the first example of a Z2 orbifold model [4] in Conformal Field Theo

ry (CFT) [5,6]. The orbifold construction is based on a reflection automorphism of

the central charge 24 bosonic string which has been compactified [7] via the Leech

lattice cf.[8J. The vertex operators (primary conformal fields) of V form a closed

meromorphic Operator Product Algebra (OPA) [3,9,10] which is preserved by the

Fischer-Griess Monster group, M [11]. By construction, yb has no massless (confor

mal dimension 1) operators and has modular invariant partition function J(r), the

unique modular invariant meromorphic function with a simple pole at r = cc and no

constant term. J(T) is unique because the fundamental region for the full modular

group is of genus zero cf.[12]. Conway and Norton [13] conjectured that this genus

zero property extends to other modular functions called the Thompson series T2(r)

for each conjugacy class of g E M [14]. Such a genus zero modular function is called

a hauptmodul and this conjecture that each Tg(T) is a hauptmodul is referred to as

Monstrous Moonshine. Borcherds [15] has now proved the Moonshine conjectures

but the origin of the genus zero property is still unclear. One of the main purposes

of this paper is to provide a derivation of Monstrous Moonshine from a new principle

related to the FLM uniqueness conjecture for V which states that V is the unique

central charge 24 meromorphic CFT (up to isomorphisms) with partition function

J(-r) [3]. Recently, Dong and Mason [16] have provided rigorous Z meromorphic

orbifold constructions based on prime order p automorphisms of the Leech theory

for p = 3,5, 7, 13 each with partition function J(r). The resulting CFTs have been

proved to be isomorphic to V for p = 3 and almost certainly so for p = 5, 7, 13,

lending weight to the FLM uniqueness conjecture.

This work is broadly divided into two parts. In the first part (2 and §3) we

discuss further evidence for the uniqueness of V where a family of Z meromorphic
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orbifoldings of the Leech theory (including the 5 prime ordered ones) which possibly

reproduce V are described [17]. We also argue that each such candidate construction

of Y° can be reorbifolded to reproduce the Leech theory again. In the second part

of the paper, in §4, we discuss other merornorphic orbifoldings of V with respect to

g M [181. We show that given the uniqueness of V, then this orbifolding of VC can

give only V or the Leech theory if and only if the corresponding Thompson series is

of genus zero. Thus, assuming the uniqueness of V, Monstrous Moonshine can be

derived from the constraints on the possible meromorphic orbifoldings of y:• The

advantage of our approach is that a natural interpretation for a Thompson series

is given and the origin of the modular invariance group for each series is clearly

understood. Furthermore, when we show that Monstrous Moonshine is equivalent to

the above constraints on the meromorphic orbifoldings of V (given the uniqueness

of Vt), a case by case study of the classes of M is not required.

We begin in §2 with a review of both the FLM construction of V [1,2,3] from

the point of view of CFT [5,6,19,20,21] and Monstrous Moonshine [131. In §3 a

family of Z1 meromorphic orbifoldings of the Leech theory (including the 5 prime

ordered ones) based on 38 automorphisms of the Leech lattice are described each

with partition function J(r) so that each orbifolding is a candidate construction

of V [17]. Extensive use of non-meromorphic OPAs for various twisted operator

sectors is made in both §2 and §3 since such algebras provide the most natural

setting for describing orbifold constructions [19,20]. However, it must be stated

that a fui.ly rigorous description of non-merornorphic OPAs has yet to be provided.

We show that for each Z,1 meromorphic orbifolding of the Leech theory there is a

corresponding reorbifolding with respect to a ‘dual automorphism’ which reproduces

the Leech theory again so that the Leech theory is an orbifold partner to each such

construction. Within these constructions, we naturally reproduce Tg(r) of genus zero

for all of the 51 non-Fricke elements of lvi i.e. Tg(r) is not invariant under the Fricke

involution r — —1/mhr, h an integer. We also find a generalisation of an observation

of Conway and Norton [13] (for prime order p = 2, 3, 5, 7, 13) relating the centralisers

of the non-Fricke elements in lvi to corresponding centralisers in the Conway group,

the automorphism group of the Leech lattice. Finally, we explicitly find for 11 of

the 38 orbifold constructions, a Z2 reorbifolding which reproduces the Leech theory

again and hence, as recently argued by Montague [22], these constructions must be

equivalent to V. All of these results strongly indicate that each Zft construction
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reproduces V and that va is indeed unique and that the Leech theory is the orbifold

partner to V for the meromorphic orbifoldings of Y with respect to non-Fricke

elements in M. In §4 we consider meromorphic orbifoldings of V with respect to

the remaining Fricke elements of M. We show that assuming the FLM uniqueness

conjecture for V, then a meromorphic orbifolding of V with respect to an element

g e i’I reproduces V (i.e. V° is an orbifoid partner to itself) if and only if T1(-r)

is of genus zero and is Fricke invariant. This result relies on the analysis of [18]

where we related Monstrous Moonshine to the vacuum properties of g e M twisted

operators. A standard construction of these twisted sectors is explicitly described

for elements related to Leech lattice automorphisms but otherwise, we assume such

twisted operator sectors exist. We also assume in all cases that these operators

satisfy a closed non-meromorphic OPA. Together with the results of §3, we therefore

find that, assuming is unique, then V has either only itself or the Leech theory

as a meromorphic orbifold partner if and only if Monstrous Moonshine holds for

Thompson series. In Appendix A we review the modular groups required to describe

Monstrous Moonshine. In Appendix B we discuss a subgroup of the automorphism

group for the OPA of a Z orbifolding of the Leech theory. This group is required to

express the centraliser relationship between M and the Conway group described in

§3.

2. The Moonshine Module and Monstrous Moonshine

2.1 Introduction. In this section we review the construction of the Moonshine

Module, denoted by V, of Frenkel, Lepowsky and Meurman (FLM) [1,2,3] in the

language of conformal field theory (CFT) [5,6,21]. We emphasise certain aspects of

this construction which we will later refer to both in considering possible alternative

constructions of VC in §3 and ‘reorbifoldings’ of V in §4. We also review the main

feature of this theory which is that the automorphism group of V is the Monster

group lvi, the largest sporadic finite simple group. Finally, we introduce the Thomp

son series [14] for g M which is the object of interest in the work of Conway and

Norton known as ‘Monstrous Moonshine’ [13].

The Moonshine Module is a Z2 orbifold CFT [4] and is based on a Euclidean

closed bosonic string compactified to a 24 dimensional torus T24 [7]. The torus T24
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chosen is that defined by quotienting R24 with the Leech lattice which we denote

throughout by A. A is the unique 24 dimensional even self-dual Euclidean lattice

without roots i.e. (a, a) 2 cf. [8,23]. The Z2 orbifolding construction is then based

on the reflection autornorphisni of A.

2.2 The Leech lattice string construction. We begin with the usual left-moving

closed bosonic string variables X1(z) where z = exp(2ir(o, + io1)) parameterises the

string world sheet with ‘space’ coordinate 0 1 and ‘time’ coordinate a [24].

On the torus T24 the closed string boundary condition is X(e2z) = X1(.z) + 2ir3

for E A. The standard mode expansion for X(z) is

X1(z) = q _.ipzlnZ +
—rrz

(2.1)
mIJ

with commutation relations

[qi,pj
(2.2)

[a,a] =

A similar expansion holds for the right-moving part of the string X(). The 1-

loop partition function corresponding to a world sheet torus z e2lniz e2’z is

parameterised by the modular parameter r with Im r> 0. Since A is even self-dual,

the partition function factorizes into Z(r)Z() where Z(r) is a modular invariant

function

Z(r) = Tr(qL0) = (2.3)

with q = e2ir and where e1(r)
= E3E.

q32/2 is the theta function associated

with the Leech lattice A and is a modular form of weight 12 [12]. L = p2 +

— 1 is the normal ordered Virasoro Hamiltomian operator and (r) =

q+r fl11(1 — qZ) is the Dedekind eta function arising from the oscillator modes. The

normal ordering constant gives the usual bosonic tachyonic vacuum energy —1 for

central charge 24.

The set of primary conformal fields or vertex operators for this theory also

factorizes into rneromorphic in z (anti-meromorphic in 1) pieces which form a local

meromorphic (anti-meromorphic) operator product algebra (OPA). We will consider

the left-moving string which forms a meromorphic OFT [9]. The associated set of
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primary conformal fields, denoted by V, consists of normal ordered vertex operators

{(z)} of the form

flf...!Z(/’
z) =: 8 X (z)...8 Xt(z)elX( : c(j3) (2.4)

with integer conformal dimension h = n +...+TLr+!92/2 where c(,t3) is the standard

‘cocycle factor’ necessary for a local inerornorphic OPA (3,23,10]

= (w)(z) C(z - + (2.5)

The first equality in (2.5), which is the locality condition, relies on a suitable analytic

continuation from Izi > Iwi to zj < wi. The cocycle factors in (2.4) are elements of

a section of a central extension A of A by ±1 and obey

c(a)c()c’()c’() =(-1)’ (2.6a)

c(a)c(j3) =E@,8)c(a +) (2.6b)

€(3)(a +,7) =E(a,/3 ±7)8,7) (2.6c)

The commutator (2.6a) defines the central extension whereas j3) E {±1} of (2.6b)

is a two-cocycle which depends on the section of A chosen and must obey the cocycle

condition (2.6c). Let us denote the Hubert space of states associated with V, {j)

lim.....0 (z)I0)}, by N. These states can equivalently be constructed as a Fock space

by the action of creation operators {a}, m > 0, on the highest weight states given

by {Jj3)} where pi/3) = j3’j3). The trace in (2.3) is then performed over 7. Z(r)

is a merornorphic and modular invariant function of r with a unique simple pole at

q 0 due to the tachyonic vacuum energy. Z(r) is therefore given by the unique (up

to an additive constant) modular invariant function J() as follows

Z(r) = J(r) + 24 (2.7a)

J(r)
= E(r)

— 744 = + 0 + 196884q + ... (2.7b)
r (r) q

where E2Qi-) is the Eisenstein modular form of weight 4 (121. Since A contains no

roots, there are only 24 massless (conformal dimension 1) operators 8X’(z).

The FLM Moonshine Module (1,2,3] is an orbifold CFT [4,191 based on the Z2

lattice reflection automorphism — for j3 A. The elements of V form a



projective representation of the a.utomorphism group of A, the Conway group Cot,,

due to the cocycle factors of (2.6) [1,3]. Thus the a.utornorphism group of V which

preserves the OPA (2.5) is a central extension 224.Co() of Co!, by Z.4 (where 224

denotes Z4 and where 4.B denotes a group with normal subgroup A and quotient

group B = A.B/A). In particular, the lattice automorphism lifts to a set of 224

automorphisms of V. With the cocycle factors chosen so that (a,,t3) = E(—a, —3)

we can define a distinguished lifting of to r by

rc()r’ =c(-) (2.8a)

r8zXt(z)rl = — axz(z) (2.8b)

which respects (2.5) and (26). Defining the projection operator Pr (1 + r)/2, we

let ()(z)= Pr(z) and () (1 P,.)(z) be ±1 eigenvectors of r. The set of

operators {b(} = PrV’ then also form a meromorphic OPA. However, the corre

sponding partition function Trp(qL0)
=

1
+

r
) is not modular invariant,

employing the standard notation for the world-sheet torus boundary conditions e.g.

[6,20]. Thus, under a modular transformation S : — —1/i-,

r fl
= 1

1 fl = 212{
(T)

24 (2 9)
r) ii(r/2)

where i(r) = [r,(2T)/r7(r)]24. Therefore a ‘twisted’ sector Nr is introduced to form

a modular invariant theory [1,4,19].

2.3 The twisted string construction. Consider a closed string field X1(z) obeying

the twisted boundary condition (monodromy condition) X(e21z) = —X(z) + 27r,13,

/3 A with mode expansion

= q + i mm
(2.10)

mEZ±k

where the oscillator modes obey the same commutator relations as given in (2.1) and

E L = A/2A, the fixed point space of the torus. Then L = Z which we denote

by 224. The states {]b)} of the twisted sector 7r can again be constructed from a

set of vertex operators V acting, in this case, on a degenerate twisted vacuum.

can be also constructed as a Fock space from the action of creation operators

{&}, m > 0, on this degenerate vacuum. These states are graded by the twisted
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Virasoro Hamiltonian L =
aa77, + with half integer energies where

the normal ordering constant is now . The resulting partition function is then

TrN(q)
= 1

of (2.9).

For each (z) V there is a corres onding operator q5(z) V, with the same

conformal dimension, which is physically interpreted as the emission of an untwisted

state from the twisted vacuum. V then provides a representation of the CPA for Y

which is non-meromorphic because of half integer grading [3,19,10]. The construction

of (z) is similar to (2.4) where the cocycle factors are replaced by a finite set of

matrices, {cT(,13)}, acting on the degenerate twisted vacuum with a representative

element of L where 5 a — a E 2A. These cocycle matrices are defined as

follows. The commutator map (2.6a) also defines a central extension L of L by ±1.

Then L- = 224, which denotes an extra-special group of the given order (with the

defining property that the centre {±1} and commutator subgroup coincide). There

exists a unique faithful irreducible 212 dimensional representation ir of L in which

the centre of L is represented by ±1 [3,25]. The elements of ir(L) are the twisted

cocycle matrices {cT(13)} and the vacuum states, {I°)}, 1 = 1, ....212, form a basis

for the vector space on which ir(L) acts. These cocycle factors are again necessary

for the twisted vertex operator modes to possess well-defined commutation relations

[3,26,27,10]. 7r() can be constructed from appropriate Dirac matrices since the

elements of L form a Clifford algebra [23,10].

The defining characteristic of the operators {(z)} which act on the degenerate

vacuum states {l°-.)} is the moiiodromy condition associated with r

(±)(e27ziz) = r_1(z)r (2.11)

where r(±)(z)r_1 ±(±)(z) as defined above on the corresponding untwist

ed operator (z) e.g. 8zXi(e2rniz) —8X(z). Using the principles of CFT

[5], each vacuum state I°-.) is created from the untwisted vacuum by a primary

‘twist’ conformal field (intertwining operator ) o.(z) with conformal dimension

where Jc-.) lim_0 o.(z)J0) [3,27,10]. From (2.11), these operators form a non

meromorphic CPA with the vertex operators of V and V [19,27,10] as follows

(z w)_h03/2)(w) + ... (2.12)



with a. suitable analytic continuation assumed in the first equality. (w) is a

primary conformal operator which creates a. higher conformal dimension h,,, twisted

state from the untwisted vacuum where (2.11) implies that Z, h,(_) Z+1/2
(-I-) -i Ie.g. the first excited twisted states i = a_112 Or) with h,1 = 2 are given by

lim_z”28X1(z)Io-.), the action of the first excited operators of V. We denote

the set of operators {/.(z)}, which includes {o(z)}, by V,..

The lattice automorphism also lifts to a set of automorphisms of Yr. Since L

is invariant under , is lifted to ±1 in its action on the degenerate vacuum. We

choose the lifting, which we also denote by r, to be

=
- (z) (2.13a)

r(z)r = ±i(z) =e2i(z) (2.13b)

which preserves the CPA (2.12) so that the operators with integer valued conformal

weights are invariant under r. Then (2.11) and (2.12) imply that the twisted operators

Vi. when acting on the vacuum 0) obey the monodromy condition

/(e2z) =e_2’b(z) = r(z)r’ (2.14)

(2.14) implies that under the modular transformation T r r+1,
1

__

Thus the lifting of chosen in (2.13) is compatible with the twisted vacuum energy

of 1/2 and ensures that no extra phase occurs in this transformation.

The CPA (2.12) can be generalised by replacing a.(w) by any twisted state

Yr. Likewise, we may define for each /.i(z) e Vi. a vertex operator (z) E

Yi. which acts on the twisted vacuum to give an untwisted state. The set of such

operators forms a closed non-meromorphic CPA [3,19,27,101

C(z - w)hik(tv) ±
... (2.15a)

b(z)b(w) C(z - W)k(W) ± ... (2.15b)

Y is thus enlarged by the inclusion of the twist fields {o.(z)} to V’ = Y 8Yi. which

forms a closed non-meromorpb.ic CPA. Furthermore, the r invariant set PrW forms a

closed meromorphic CPA and defines a modular invariant meromorphic CFT. This is

the FLM Moonshine Module V [1,2,3]. As far as we are aware, a completely rigorous
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construction of (2.15) does not yet exist except for this ‘Pr projection which forms a

meromorphic CPA. This projection ensures the absence of the 24 massless (conformal

dimension 1) operators 8X1(z) whreas the twisted sector operators are all massive

since the twisted vacuum energy is 1/2. Therefore, the modular invariant partition

function for the associated Hilbert space of states 7i2 is

Tr(qL0) = ‘Pr [1 + Pr = J(r) (2.16)

1

where J(T) is the unique mdiu1ar invariant of (2.7b) without a constant term.

The absence of any massless operators in V is the crucial feature that sets the

Moonshine Module apart from any other string theory. Normally such operators are

present and form a Kac-Moody algebra. However, in the present case, the 196884

conformal dimension 2 operators, including the energy-momentum tensor T(z) =

— 8X(z)8X(z) :, can be used to define a closed non-associative commutative

algebra. FLM [1,2,3] showed that this algebra is an affine version of the 196883

dimensional Griess algebra [11j together with the energy-momentum tensor. The

automorphism group of the Griess algebra is the Monster finite simple group M

of order 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71 8 x FLM further

showed that M is the automorph.isin group for the full CPA of V where T(z) is

a singlet. Thus the operators of Y of a given conformal weight form (reducible)

representations of M. This explains an earlier observation, of McKay and Thompson

[14] that the coefficients of the modular function Jfr) are positive sums of dimensions

of the irreducible representations of M e.g. the coefficient of q is 196884 = 1 + 196883,

the sum of the trivial and adjoint representation formed by the Griess algebra.

2.4 A Monster group centraliser and Z2 reorbifolding V. We may iden

tify an involution (order two) automorphism i M, defined like a ‘fermion num

ber’, under which all untwisted (twisted) operators have eigenvalue +1(—i). i

clearly also respects the larger non-local CPA of (2.5) and (2.15). The centralis

er C(ijM) = {g e Mig = gi} may also be determined since this is given by all

CPA automorphisms which map PrV and PrVr into themselves. As stated earli

er, the automorphism group of Y consists of all liftings of the Conway group Co13

to automorphisms of the CPA (2.5) and is given by L.Co0 where L = 224. The

fixed point space L is invariant under and the automorphism group of the twisted
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sector Yr is L.Co1, an extension of the Conway simple group Co1 = Coi,/{1} by

= 224. The extension is determined by the autornorphisin group of the twisted

cocycle matrices cT(a) E ir(L). In particular, the inner autornorphisins of 7r(L7) de

fined by cT(a) : cT(i3) — cT(a)CT(J3)CT()’ (—1)3cyC3) describe the liftings of

the identity element of Co1 and the given extension. The automorphism group for Yr

then follows from (2.12). Putting these autornorphism groups together, one can show

that the corresponding autoinorphism group for the projected set of operators PrY’

is C(ilM) = 2i.t24.Coi (see Appendix B). This result is an essential part of the FLM

construction since Griess showed-that 1v1 is generated by224.Co1 and a second

involution a’. FLM constructed a’, which mixes the untwisted and twisted sectors,

from a hidden triality CPA symmetry in the theory [1,2,3,28] and so demonstrated

that the automorphism group of Va is M.

The automorphisms i and r can be said to be ‘dual’ to each other in the sense

that both are automorpbisms of the non-meromorphic CPA for V’ = V’eVr and that

the subsets invariant under i and r, Y and Y repectively, form meromorphic OPAs.

Then we may ‘reorbifold’ Y with respect to i by employing the 24 massless operators

{8X(z)} to re-introduce the r = —1 eigenvalue operators {(H} e {} where

(schematically) (8X /.i()t9X ‘-fl’ &( from. (2.5) and (2.15) i.e. the

operators {8X(z)} create the states of the i twisted vacuum. Similarly, monodromy

conditions analogous to (2.11) and (2.14) also hold with replaced by i, Y replaced

by Y in (2.11) and Yr replaced by {}e {(—)} in (2.12). From this point of view

the two meromorphic constructions Y and Y are placed on an equal footing with

each contained in the enlarged set Y’ and each related to the other by an appropriate

Z2 orbifolding procedure. Equivalently, we can define V’to be the set of all operators

which form a meromorphic CPA with PrY = ThY i.e. Y’ is ‘dual’ to PrY PVc

in the sense suggested by Goddard [9]. The orbifolding of Y with respect to r is

then YC = PrY’ and the orbifolding of V with respect to i is V’ = 21Y’ i.e.

V’
‘Pr

/ r (2.17)

Y

where the horizontal(diagonal) arrows denote an orbifolding(projection).
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2.5 Thompson Series, Hauptrnoduls and Monstrous Moonshine. The states

of of a given conformal weight form reducible representations of the Monster

group lvi. The Thompson series T(r) for g E lvi is then defined by

T(T)
=Tr.(gqL0)

1 (2.18)

which depends only on the conjugacy class of g where x. is the character of the

196883 adjoint representation and where the other coefficients are similarly positive

sums of irreducible characters e.g. for the involution i, T(r) = 1/r(r)±24. Likewise,

an explicit formula may be found for g E C(iM) = 2i24.Co1 [2,3] (see §4.4).

The Thompson series for the identity element is the partition function J(r). The

compactification .T of the fundamental region F = H/I’ (where 1’ is the full modular

group and H is the upper half plane) is isomorphic to the Riemann sphere of genus

zero. The function Jfr) explicitly realises this isomorphism by providing a one to

one map between F and the Riemann sphere. Such a function is called a hauptmodul

for the genus zero modular group F. A modular invariant meromorphic function is

a hauptmodul if and only if it possess a unique simple pole on F. Once the location

of this pole is specified, this function is itself unique up to constant. Thus J(r) is

the unique (up to a constant) modular invariant meromorphic function with a simple

pole at q = 0 e.g. [12,18].

Based on ‘experimental’ evidence, Conway and Norton suggested in their famous

paper ‘Monstrous Moonshine’, that the Thompson series for each g E lvi is a haupt

modul (with a simple pole at q = 0) for some genus zero modular group Tg under

which Tg(r) is invariant. Tg was explicitly found by Conway and Norton as follows.

Monstrous Moonshine. Let g M, g of order m.

(a) The Thompson series T9(r) is invariant up to h roots of unity under a subgroup

ofiV(I’u(N)) of the form I’u(mh)+ei,e2,... where h24 , hm andN =mh.

(b) The subgroup Fg of these transformations which fixes T(r) (and contains F(N))

is of genus zero where T2(r) is the corresponding hauptmodul.

The modular groups Fu(n]h) + e1,e2,... and iV(To(N)), the normalizer of

F(N) det = 1} in SL(2,R) are described in Appendix A. This result

has been rigorously demonstrated by Borcherds [15] by identifying each Thompson
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series with a Weyl-Kac determinant formula for an associated generalised Kac-Moody

algebra. The proof of Monstrous Moonshine then ultimately relies on a case by case

study of these formulae so that the origin of the genus zero property remains obscure.

Apart from two classes of order 27, the Thompson series and corresponding genus

zero modular group is unique td each class of M. Following Conway and Norton, we

will abbreviate the notation denoting the modular groups above and the correspond

ing Monster group class in the following way : rU(flih) + e1,e2, ... is abbreviated to

nih +e1,e2,... and to n ±e1,e23.. when h 1. If all AL possible involutions are

adjoined, these groups are denoted by nh+ and n+, respectively, whereas if no AL

involutions are adjoined, thenthèy are denoted by nih— and n—, respectively. Thus

each class of M will be denoted by g = nih + e1, e2, ... corresponding to the modular

group for T2(r) in this notation. As an example, for the involution i, T(r) is a

hauptmodul for the genus zero modular group T0(2) and i is a member of the class

2—.

3. Other Constructions of the Moonshine Module

3.1 The FLM uniqueness conjecture. In the last section we reviewed the FLM

construction of the Moonshine Module V. There we saw that YC is a modular

invariant meromorphic CFT without any massless states with partition function J(r).

FLM have conjectured that Y is characterised (up to isomorphism) as follows [3]:

FLM Uniqueness Conjecture. V is the unique meromorphic conformal field the

ory with modular invariant partition function J(r) and central charge 24.

This uniqueness conjecture is analogous to the uniqueness property of the Leech

lattice as being the only even self-dual lattice in 24 dimensions without roots. In

this section we will discuss some evidence to support this conjecture by considering

alternative orbifold constructions which are modular invariant meromorphic CFTs

without massless operators and with partition function J(r). Within these construc

tions, we will recognise known properties of the Monster group and will also find

a new relationship between 51 centralisers of the Conway and Monster groups gen

eralising an observation made by Conway and Norton [13]. In the next section we

will also link this uniqueness conjecture to the Monstrous Moonshine properties of

Conway and Norton [13].
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3.2 Z orbifoldings of V” with partition function J(r). Let us now consider

orbifold models based on other order n automorphisms {a} of the untwisted Leech

lattice theory V [3,17,161. a will be chosen so that each model contains no rnassless

operators, has a merornorphic CPA and is modular invariant with partition function

as in (2.16) and hence, according to the uniqueness conjecture, reproduces V.

In each construction, we will alo be able to identify an automorphism g, where g,,

(or a power of g,) is ‘dual’ to a. We will find a total of 51 such automorphisms which

we will argue are representatives of the complete list of 51 Monster group classes

nh + e1,e2, ... with e n/h i.e. elements whose Thompson series are not invariant

under the Fricke involution r —* —l/nhT. Such elements of M are called non

Fricke. Each stage of the original construction reviewed in §2 will be appropriately

generalised but a rigorous treatment along the lines of FLM is not yet available in

general with the exception of the prime ordered cases recently described by Dong

and Mason [16].

Let us consider an CPA autornorphisin a of V lifted from an automorphism

Coo of A given by

ac(j3)a1e2(’)c(B) (3.la)

aôX(z)a1=wSi8zXl(z) (3.lb)

where we choose a diagonal basis for = diag(w3t , ...,w4) with. w e27/. fa(/3) E

Z/2 describes the lifting of to an automorpliism a of A which preserves (2.6). We

only consider lattice automorphisms without fixed points in order to ensure that no

untwisted massless states 8X(z) survive projection under P = (1±a+...+a’)/n.

This condition also guarantees that a and are of the same order n throughout [29].

Each conjugacy class of Co0 is parameterised by the characteristic equation for a

representative element as follows

det(z
— ) = JJ(zk

— 1) (3.2)
kjrz

kfn denotes that Ic divides n, the order of and each aj is a not necessarily positive

integer where

kak = 24, 3 ak 0 (3.3)
kn krz
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The absence of fixed points for implies the second condition and also that a1 0.

e.g. is pararrieterised by r2 = —r = 24 with det(
—

= (x ÷ 1)24. For n = p

prime, the parameters are given by a, —a1 = 2d where (p — 1)2d = 24 with

d = 12,6,3,2,1 for p = 2,3,5,7,13.

Since a is an OPA automorphism for yA, PVA also forms a rneromorphic OPA

which closes. The associated partition function Trp(qL0) is not modular invariant,

as before, necessitating the introduction of S = a’ twisted sectors where S is lifted

from S .= of order m = n/(m,r) with characteristic equation parameters {bk}.

Thus we find that under the modular transformation S - — —1/v [7,181

es. (r) D!2 e-() D.!2
b = 1 =

_________

5 qE
+

Q(ql/m)) (3.4)

1
77r)

where

O_(r) =
q132/2, r) = fl(kr)bk fr) = ll1i(T/k) (3.5a)

kjm kjm

= II k = detT(1
— ), E = — (3.55)

him kjm

Here we have chosen the lifting S of 5 to an automorphism of A where bc(j3)5’ = c(,B)

for 3 Ag-, the sublattice of A fixed by b. A has dual lattice A.. = AH 2g-A- and

is of volume Vg- lA11/A/2. The determinant of (3.5b) denotes the exclusion of all

unit eigenvalues of 5. These expressions simplify for S = a lifted from E in which case

= 1 and V- = 1.

3.3 51 automorphisms of the Leech lattice. We may anticipate some features of

a S twisted sector V5 with the partition function
1

We expect b to have vacuum

1/2 b 1.
degeneracy Dg- /Vg- and vacuum energy E0. From (3.4), is invariant up to a

phase exp(2irimE) under T T — + m i.e. the action of S on the twisted sector

is of order m up to this phase. However, to construct a meromorphic orbifold CFT

with a modular invariant partition function we must have mE,’ = 0 mod 1 i.e. there

is no global phase anomaly [30,31]. Equivalently, there is no such anomaly provided

is invariant under the modular group Fo(m) [30,181. Lastly, if E 0 then the S

twisted sector may reintroduce massless states. Let us initially consider the a twisted

sector here and study those automorphisms with mE = 0 mod 1 and E > 0 [171.
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As we will see below, these conditions are sufficient to ensure the absence of a global

phase anomaly and massless states in any of the 5 = a’ twisted sectors in the full

orbifold construction. We therefore restrict ourselves to the study of automorphisms

obeying [17]

aj =0, E[,’ > 0 (3.6a)

kIn

nE =0 mod 1 (3.65)

In column 1 of Table 1 we give a complete list of the 38 characteristic classes of Co

[32] that obey the constraints (3.6). with parameters ak,...,aj,—a,,...,—a7,> 0

is denoted by called the Frame shape notation. In each case

a obeys the ‘symmetry relation aj = —an/k and therefore, from (3.3) and (3.5b),

= 1/n. One may also check that S = aT of order m obeys mE = 0 mod 1

and hence no global phase anomaly occurs in the S twisted sector. Under a general

modular tranformation r ‘ (ar ± b)/(cT + d) we also find that
a ad

in the usual way. Therefore for 7 E F0(n) where -y r —÷ (ar + b)/(cnr + d),
a ,, a = a

since (d,n) = 1 i.e. n and d are relatively prime and hence

= ij. In column 2 we give the full modular invariance group ra of
a

in

the notation described in §2.4. In general, r does not uniquely specify a class of

Co0 but does do so for classes obeying (3.6a). In Table 2 we give a complete list

of the remaining 13 classes of Co0 that obey the constraints (3.6a) only. Each of

these classes is characterised by the existence of an integer h 1 with hjk for all

0 where, from (3.3), h]24. In each case the parameters {ak} obey the symmetry

relation a = —ah/k and therefore E = 1/nh violating (3.6b) for h 1. Column

2 shows the modular group T under which
a

is invariant up to phases of order

h (and hence forms a projective representation of I’a). This set of classes cannot be

employed to construct a meromorphic orbifold CFT but is of interest since for each

in Table 2, appears in Table 1. In general, ‘Table 2 contains all the remaining

classes of Co0 with some power in Table 1.

The modular groups F appearing in Tables 1 and 2 are amongst the list of

genus zero groups considered by Conway and Norton [13] i.e. for each Fa there is

a corresponding g M with a Thompson series T(r) of (2.18) invariant under

Pa (up to phases of order h). Furthermore,
a

= 1/(r) is the hauptmodul
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for T (or, for h 1, the subgroup of Ta that leaves
a

invariant) and hence

2’ (i-) = l/(r) — a1 where the constant is fixed by the absence of massless states

in V. We will identify such an element g explicitly below. Also note that none of

these modular groups includes the Fricke involution w : T —k —l/nhr since ij-(r)

is inverted under w, with r(r) — D’12/-(r) and hence
1

=D2rr(i-/nh).

In fact, column 2 of Tables 1 and 2 gives an exhaustive list of all the modular

groups for Thompson series which are not invariant under the Fricke involution i.e

the corresponding elements grz M are the non-Fricke elements.

3.4 The twisted string construction. Let us now consider the construction

of the a twisted sector, which is similar to that of §2, for the automorphisms of

both Table 1 and 2. We will briefly discuss the construction of the general 5 =

twisted sector later on and in Appendix B. We introduce X1(z) obeying the twisted

monodromy condition C(e2tiz) = wX(z) ± 27r/3 (with in the diagonal basis)

‘with mode expansion [29,25,4,33]

(z) ± i (3.7)
mEZ+s /n

where & obey the commutation relations (2.2). = A/(1 — )A is the fixed

point space of the torus and is a finite abelian group of order D = det(1
— 4

The twisted states 7 with Virasoro Hamiltonian L0 = Em && + E and

1
partition function

a
of (3.4) can be again constructed. from a set of vertex op

erators Y which form a representation of the untwisted set V. These act on a

degenerate vacuum of dimension D.!2 and their OPA forms a representation of the

CPA (2.5) which is a non-meromorphic CPA due to Z/m grading. The construction

of (z) V is similar to (2.4) where now the cocycle factors are replaced by {cT(a)}

defined as follows [29,25]. Consider a central extension L of L by (w), the cyclic

group generated by w = e2t/Th, given by

c(a)c(/3)c(’ c(3)’ =exp(2iriSa(a,$)) (3.8a)

Sa(a,) = —5,a) =(a,(1 _1) mod 1 (3.85)

where a,18 are representative elements of L and Sa(a,,B) E Z/n. Associated with

each section {c(a)} is a 2-cocycle e(a,,3) (w) as in (2.6b) obeying the cocycle
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condition (2.6c). In general, the commutator subgroup of La- is a subgroup of the

center (w) and for n = p, prime, is equivalent to (w) in which case La-
= an

extra-special p group c.f.[3J. For the full set of automorphisms obeying (3.6a), La- is

given in column 3 of Tables 1 and 2. The group La- has a unique irreducible faithful

representation ir of dimension D!2 in which the center is represented by the roots

of unity (w) [29,3,25]. The elements of ir(La-) are then the cocycle matrices {cT(cz)}

which act on a vector space with basis formed by the a twisted vacuum states {]a-)},

1=i,...D2.

For each operator ‘(z) V there is a corresponding operator (z) i’ which

acts on the a twisted vacuum states {]o)} and obeys the inonodrorny condition

associated with the automorphism a as follows

(e2wiz) a’(z)a
= w_k(k)(2) (3.9)

where (z) V’ is an k eigenstate of a. The twisted vacuum states are in turn

generated by twist operators {a(z)} which act on the untwisted vacuum. For the

automorphisms of Table 1 which lead to a modular consistent theory, these twist

operators are of conformal dimension h. = 1 + = 1 ± 1/n. The remaining

constructions based on the automorphisms of Table 2 are discussed below. The

construction of {o-(z)} can be explicitly performed [33] where these operators form

a non-rneromorphic CPA with the vertex operators of V and V

(z)o(w) = (w)(z) (z — + ... (3.10)

with a suitable analytic continuation assumed in the first equality [33]. (z) de

notes a conformal field that creates a twisted state from the untwisted vacuum where

(3.9) implies that the conformal dimension h, E Z—k/n. Thus the first excited twist

ed states = with energy 2/n are given by lim_) z(7L_h1L8zI(z)la)

for i = 1, ..., a1 i.e. they are created by the lowest conformal dimension operators

8X’(z) of V which are 12 eigenvectors under . We denote the set of operators

(k) . . i{ (z)}, including {oa(z)}, by Va.

The lattice automorphism acts as the identity on the fixed point space La-.

This allows us to choose a. lifting of E as an automorphism of ir(La-), which we also
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denote by a, given by ac-r(a)a1 = w’cT(a) which is the appropriate choice for

= 1/n. We may then define the following automnorphismn of the CPA (3.10)

ao(z)a’ =w’a(z) (3.lla)

a(z)a’ =w(z) =e2/i(z) (3.llb)

From (3.10), the twisted operators bf therefore obey the twisted mondromy con

dition when acting on the vacuum 0)

b(e2z) = aa(z)a’ (3.12)

Thus e2L0 I) a1 I) which implies that under T : T r + ,

a

in the expected way e;g. [6]. The lifting of chosen therefore ensures that no extra

phase occurs in this transformation and that there is no global phase anomaly [30,31].

For the automorphisms of Table 2, the twist operators have conformal dimension

h = 1 + 1/nh and /$(z) has conformal dimension h(k) E Z — (k + 1)/n ± 1/nh.

(3.11) must therefore be modified where now o(z) and ‘(z) are, respectively,

unit and w1 = wi/he_2’ eigenstates under a. Likewise, an extra phase of

appears on the RHS of (3.12). Hence
1

is invariant under Trz only up to an

overall global phase of e2t/ giving the global phase anomaly anticipated earlier.

Furthermore, from (3.10), the twisted operators of Va do not form a meromorphic

CPA with respect to PV and hence a meromorphic orbifold CFT is impossible to

construct in these cases.

Examining the twisted partition function for these cases, we also notice that

it is related to that for ah with
1 = [1 (h.r)jh where Da-h = D and

ii (r) = [r)a-(r/h)JL in (3.4). This observation leads us to an isomorphism between

the corresponding twisted Hubert spaces with

(3.13)

where the RHS denotes a tensor product over h copies of 7. The explicit form of this

isomorphism is found by first noting that La-h La-x ... x La- for each automorphism

of Table 2. Since 1h has no fixed points we have (1_)_1

so that the commutator subgroup of La- obeys [La-,La-] (w’) from (3.8b). The

representation ir(La-) acts on a vector space Ta- of dimension D2 where the centre
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is represented by the cyclic group of phases (w). Thus T defines the vector space

for a projective representation for L with phases in (c.,..iIz). Taking the tensor product

of h copies of T we obtain the vector space T ® ... ® T for the representation
1/2 h/2 .

7r(L-7.h) of dimension D,, D. which forms a projective representation for Lh

x ... x La- with phases in (w.’L). Thus the vacuum states of the twisted Hubert

spaces of (3.13) are isomorphic. No’vv define Il.h(z)
=j1(zh1) ®

which acts on these twisted vacuum states. Then (z) obeys the monodromy

condition (3.9) for aIt. The operators {(z)} obey a non-meromorphic OPA due to

hZ/n grading and create Virasoro eigenstates in 7 (but are not primary conformal

fields in V). The vacuum states of 7i4 which are created by the twist operators

11...’k I h I IiE (z) = QaL (z ) ...® a- (z ) have energy hE = h/n and hence the global phase

anomaly disappears by taking this tensor product. Thus the isomorphism between

Hubert spaces in (3.13) follows.

We may repeat the Va construction above for the remaining sectors Vô with

X(z) twisted by b = ‘ in (3.Tb). This is briefly reviewed in Appendix B. For r

relatively prime to n, b is of order n also and V& is isomorphic to Va. Otherwise,

b may have unit eigenvalues and (3.7b) must be modified to include a momentum

component belonging to and where now lies in the b fixed point space of the

torus L- = A/(1 — b)A.2- with A’ = {,B E Aj2j3 = 0}, AT = (1 — P)A. L is a

finite abelian group of order D/V. The construction of the D.!2/V- twisted vacuum

states {I°)} can be similarly defined [29,33] together with vertex operators V which

create with partition function
1

of (3.4). Likewise, the non-meromohic OPA

of (3.10) and mondromy conditions of (3.9) and (3.12) are generalised with a. replaced

by b throughout and Va replaced by Vb. These other twisted sectors are required for

modular invariance and for the expected closure of the corresponding meromorphic

OPA. In particular, we expect the original a. twisted operators {aj(z)} to form an

intertwining non-local OPA with the operators of each sector where

(z — w) _hxl)(w) + ... (3.14)

where
(k)

E V are k eigenstates of a and where for each l,bb(z) e

there is an operator b(z) which acts on the a twisted vacuum creating a state in

the ab twisted sector. The b = aT monodromy condition (generalised from (3.12))

implies that has conformal dimension h Z — kr/n.
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We therefore enlarge the meromorphic set of operators VA by the introduction

of the twisted operators {o} to the set of operators V’ = 9 V, 9... $ V- which

forms a closed but non-rneromorphic CPA. V’ consists of all operators which form a

merornorphic CPA with PVA i.e. W and ?VA are dual [9j. Then V(1) = PV’ forms

a closed meromorphic CPA which is self-dual. Note that only this merornorphic P

projection of the intertwining CPA (3.14) has been rigorously constructed and then

only in the prime ordered cases p = 2 in [1,27,1OJ and for p = 3,5,7, 13 in [161. We will

assume that (3.14) is true in general. The partition function for the corresponding

space of states 7rb is modular invariant with a unique simple pole at q = 0 as before

and is therefore given by Zorb(T) J(r) + N1, where N is the number of massless

operators. The condition E, > 0 ensures that no massless operators occur in the

a twisted sector i.e. there is no a invariant operator i/°(z) with h = 1 which

satisfies a meromorphic monodromy condition )(e2iz) = ((z) from (3.12).

Nevertheless, there may be a massless operator .zL,t0)(z) present in one of the other

b = aT twisted sectors where /,(U)(z) is b invariant from the b monodromy condition

(e.g. for = 48/18, the twisted sector corresponding to b = = 216/18 has a

massl.ess vacuum from (3.5b)). Taking the a invariant projection we find P/’(° = 0

unless z) is also a invariant and therefore contradicts our assumption. Thus

no inassless operators that may occur in the other twisted sectors can survive the

2a projection and hence the condition E, > 0 is sufficient to ensure the absence of

massless operators in ‘rb and the partition function is Zorb(T) = J(r) once again.

Therefore, according to the FLM uniqueness conjecture, we expect Vrb V for each

of the 38 automorphisms of Table 1. Let us now consider some evidence to support

this.

3.5 Centralisers, Thompson series and Z reorbifolding Vob. Let MOb be the

automorphism group of the CPA for Vrb which, from the FLM uniqueness conjecture,

we expect to be M, the Monster group. For the prime ordered cases p.= 3,5,7 and

13, Dong and Mason have recently demonstrated that Mb il/I for p = 3 and very

nearly so for p = 5, 7, 13 [161. We may identify an automorphism a M of order m

(which generalises the fermion number involution i in the original FLM construction)

under which the operators of Yak are eigenvectors with eigenvalue k. From (3.14),

a is also an automorphism of the non-meromorphic CPA for the enlarged set of

operators V’ = VA 9 V 9 ... 9 V_ and a is ‘dual’ to the automorphism a i.e. the a
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invariant subset of V1 is rb whereas the a invariant subset is V. Furthermore, V’

is the set of all operators which form a merotnorphic OPA with P,LV = 2V( and

hence we may reorbifold V,rb with respect to a to reproduce We can see this

explicitly as follows. Consider the znassless states {a.1lO)}, i = 1,...— a1, which are

w eigenstates of a. The operators of Vrb obey the a twisted monodromy condition

when acting on these states

(U)(2i)
= wb(z) = a’(z)a (3.15)

which is analogous to (3.9) i.e. the —a1 massless operators {8:Xi(z)}, i = 1, ... — a1

implement the a monodroiny condition for Vrb and create the a twisted vacuum

states. The resulting non-meromorphic OPA closes once again in the enlarged set V’

of which the a* invariant subset is V. Thus

VI

a

(3.16)

where the horizontal(diagonal) arrows represent orbifolding(projecting) with respect

to the denoted autornorphism.

We may also compute the Thompson series T,(r) for a MOb by taking the

trace over 7rb’ the Hilbert space of states created by yab, as follows

Ta°(r)
Tra(a*qL0) = + w ± ... + 7 (3.17)

1 a

Forn p, prime, a is of prime order andhence T°(r) = J(r)+(p—1)T°(r).

This is also equal to
1

+ (p — 1)
a

from (3.17) where Eka*k ulshes on each

twisted sector. Therefore we find that T(T)
= a

+ 24/(p — 1) = 1/(T) ± 2d.

Thus a MOh has the same Thompson series as p— E M with genus zero modular

group F0(p). We can show that this generalizes to all orbifoldings generated by the

elements of Table 1 where

Torb(T)
= 1

— a1 (3.18)

which is the hauptmodul for the genus zero modular group m ± e1, e2 This result

follows from a consideration of the singularities of Ta°(r) and showing that they
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agree with those of 1/r(r) [17!. Thus each a the automorphisin of i())

dual to a, has the same Thompson series as the non- Fri cke elements n H-,e2, •..

n.

(3.18) may be generalized to include the other automorphisms fE} of Ta.ble 2. As

already described, such autoxnorphisins cannot be used to construct a meromorphic

orbifold CFT. However, E , of order m = n/h, can be so employed to construct

an orbifold with partition function J(). Let g, denote the lifting of E where g =

is dual to a’ = a Lifting of . gn then acts on each twisted space and is in the

centraliser of a in 1ib (see below). We may compute the Thompson series for g as

a trace over
7rb

by a similar trick to the prime ordered cases above. g’ gTLa/k

is of order n for each /c = 1,2, ...m and has the same Thompson series as Likewise,

for each k,
g =

and therefore Tg, (r) T,i÷ (r)
gfl

1/-(r) where vanishes on each twisted sector. Thus (3.18) also holds for

the automorphism g (since a1 = 0 for h 1) and g, has the same Thompson series

as mjh + ej, e2, ..., with e n/h and h 1, a non-Fricke element.

We may next compute the centraliser C(gM) = {g E I(g’gg = g}.

For the 38 autotnorphisms with h = 1 this consists of all CPA automorphism

s that do not lILix the various projected sectors PVa of orb For the remain

ing 13 automorphisms g with. h 1, C(gjM0)C C(a’1i’vI). Every element

g E C(aMrb) must commute with a in order to preserve the P projection. Thus

C(alM:rb) is some extension of G, = C(Co0)/(E), the non-trivial part of the

Conway group centraiiser, which is reproduced from [34j in column 4 of Tables 1

and 2. The nature of this extension can be seen by considering the automorphism

group preserving the twisted sector PV [171. Let g and g’ be two inequivalen

t liftings of to automorphisms of ir(L), the faithlul representation of L whose

elements are the a twisted cocycle matrices {CT(a)}. Thus g’g is a lifting of

the identity lattice automorphism. However, the inner automorDhistns of ir(L)

given by c-r(a) : cT(,8) cT(a)cT(/3)cT(a)1 = ezp(2riSa-(a,3))cr(3)describe

the inequivalent liftings of the identity and hence the inequivalent liftings g of .

As discussed above in (3.11), the lifting a. of to an automorphism of w(L-) is

acy(c)a = wcT(a). Hence g commutes with a. and in turn, defines an automor

phism for 7’V through (3.10). Thus we find that the group of inequivalent CPA

automorphisms preserving 7V is an extension of G. The same result also
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holds for the isomorphic twisted sectors 2V where a is of order n i.e. k is relative

1.y prime to n. In Appendix B we discuss the contribution of the remaining sectors

to C(a]Mb). There we also consider the other 13 a.utomorphisms with h 1 and

demonstrate that for all 51 automorphisms g,

C(gflJMh) = (3.19)

In column 5 of Tables 1 and 2 we have reproduced C(g,JM) from [13] which may

be compared with L- and G in. columns 3 and 4 to verify (3.19) assuming that

Morb 2 iW and gn 2 njh + e1, e2, ..., a non-Fricke element of M. (3.19) is a new

generalisation of the original observation of Conway and Norton concerning the five

m = p, prime, cases where C(p — JM)
pi;+2dQ with a = p— [13]. For the other

46 automorphisms of Tables 1 and 2, there are only 11 cases for which (3.19) can be

explicitly checked using the available information about these centralisers in [13,34].

However, the order of these groups agrees with (3.19) in each case supporting the

very likely validity of the result in general.

From (3.10) we may observe that La.Gn must be an extension of G =

C(a1224.Coo)/(a), the subgroup of automorphisms of V which preserve where

the extension contains the central cyclic group generated by g. This extension is

due to the presence of the D!2 twist operators {o} which form a. representation of

On. Thus for the prime ordered cases 02 =224.Co1 and G = G for p = 3,5,7,13.

In. particular, we also note that if the a. twisted vacuum is unique, then L.Gn is

isomorohic to A similar observation will be useful in §4 when we consider

other possible orbifoldings of V.

3.6 A Z2 reorbifolding of VOb. Recently, Montague made the interesting sug

gestion [22] that a CFT, such as V:rb, with partition function J(r) can be shown to

be isomorphic to V by the estence of an involution i of Vrb and a set of twisted

operators with non-negative vacuum energy (see §4). Then the Thompson series

T(r) is T0(2) invariant with a unique simple pole at q = 0 and must be the haupt

rnodul 1/i(i-) + 24. Therefore, assuming that we can reorbifold Vrb with respect to

we obtain a CFT with partition function J(r)+24. But V is now known to be the

unique CFT with this partition function [22] and hence this reorbifolding reproduces

V. If we consider the involution i dual to which acts on V, then the 24 massless

operators of V are —1 eigenvectors under i and hence i can be identifled with the
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involution r introduced in the original FLM construction. Thus V, can be obtained

from V by orbifolding with respect to i r and must be isomorphic to l).

We will now consider the constructions of VLt) given above and find an involution

i with the correct Thompson series in 11 cases in addition to the standard FLM

construction. We will only consider here an involution in the centraliser C(aIi’v1,) =

which is lifted from the reflection autotnorphism of A. This restriction

excludes 13 aütomorphismsof even order n (including the original automorphism F

adopted by FLM !) denoted by f in the last column of Table 1 for which tt/2 = =

so that F G. For the remaining autornorphisins we can compute T’(r) similarly

to (3.17). Under S : T —f —1/r we obtain given the usual modular transformation

properties

Pa + Pa +...+ Pa (3.20)
r

j ia

which is T2 invariant and hence T(r) is r(2) invariant. We can determine whether

T(r) is a hauptmodul for T(2) by considering the behaviour at r = 0 via (3.20).

The sector twisted by i has vacuum energy +1/2 because i is lifted from F and

therefore contributes no singularity. Each sector twisted by iak, of order rn, has

vacuum energy which always obeys E0 —1/rn (see §4.4) and therefore contributes

no singularity unless rn = 2 with E0 = —1/2 since (3.20) is T2 invariant. This occurs

when iak is lifted from — with Frame shape 18.28 i.e. is of even order n = 2k

and i has Frame shape 216/18 which is the case for the 14 automorphisms denoted

by in Table 1. Otherwise, for the 11 remaining automorphisms, denoted by * in

Table 1, T(r) has a unique simple pole at q = 0 and is therefore a hauptmodul

for r0(2). These consist of 3 even ordered automorphisms and all the odd ordered

autoinorphisms including the odd prime ones considered by Dong and Mason [16J.

Thus, in these 11 cases, one can construct the required involution. In the remaining

cases, a more technical construction is required and is currently under investigation.

To summarise this section, we have described 38 meromorphic orbifold construc

tions Vrb (including the original one of FLM and the prime ordered constructions

of Dong and Mason) with partition function J(T). Amongst these constructions, we

have found 51 automorphisms {g$ that can be identified with the 51 non-Fricke Mon

ster group classes where g satisfies g = aIE, the automorphism dual to a’ = For

each g, the Thompson series agrees with the corresponding Monster group Thomp

son series and the centraliser in (3.19) also agrees explicitly in many cases (and very

24



probably in all cases). For 11 of these new constructions, an involution can also be

found which is dual to the involution ‘r of V used in the FLM construction of va and

so V for these cases (assuming that the various twisted sectors obey the OPAs

(3.10) and (3.14)). We also note that we may in general compute the Thompson se

ries within Vcr, for each element of C(gZji’vJ) as a sum of traces over each sector

P7- (in [17] we give an explicit formula for the prime ordered constructions). In

particular, it is straightforward to show that Tgk (r) agrees with the expected result

in each case. All of these results support the conjecture that V, E V as expected

from the FLM uniqueness conjecture. Finally, we expect a generalised version of the

hidden triaJity symmetry in the FLM construction which mixes the untwisted and

twisted sectors to exist [1,3,28]. Thus there should exist some symmetry group E

which mixes the various sectors of Vrb where C(gTjM) and ETL generate A’I. In the

prime cases p = 3,5,7, 13, E has been constructed by Dong and Mason [16].

4. Orbifolding the Moonshine Module and Monstrous Moonshine

4.1 Monstrous Moonshine and orbifolding V. Let us now consider one

of the the main objectives of this paper which is to discuss the relationship of the

FLM uniqueness conjecture to Monstrous Moonshine, the genus zero property for

Thompson series [13]. Our main result is as follows: Assuming the FLM uniqueness

conjecture holds, then the Thompson series for g e M is a hauptmodul if and only if

the only ineromorphic orbifoldings of V with respect to g are or V.

We will assume throughout this section that the FLM uniqueness conjecture

is correct. Therefore Vrb V for each of the orbifoldings described in §3 and

can be reconstructed by reorbifolding V with respect to the non-Fricke dual

automorphisins a = m + e1, e2, ... with e n. The Thompson series for a* of (3.15)

is then recognised as a contribution to the partition function for this reorbifolding.

It is natural to interprete all the Thompson series T2(r) in this way and to construct

an orbifolding of VC with respect to each g E M [18]. In particular, we expect that

under S : r —f —1/i-, Tg(i) = Tr,.(gqL0) transforms to the partition function for a

g twisted sector as follows:

Tg(r) 1 =Ngq+... (4.1)

1 g
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where the superscript denotes a trace contribution to the orbifolding of ya (in

distinction to orbifoldings of •VA) and where the g twisted sector V has vacuum

energy E and degeneracy Nrj. For the 38 automorphisms a’ dual to a we ftnd from

(3.16) that 1 = —a1+D!2r7(r/n)with vacuum energy E1 = 0 and degeneracy

—a1. In these cases, V. = {(1)} 8
{1)}

8 ... 9 the subspace of

VA 8 V e ...
V-L with eigenvalue w under a where, as noted in §3, the a’ twisted

vacuum is created by the massless operatorsa5x(z), i = 1, ... — a1. Likewise, the

other 13 non-Fricke automorphisms gTL with g = b (where b* is dual to a” and

h 1) have vacuum energy = 1/nh and degeneracy iV, = D!2 and therefore

possesses a global phase anomaly leading to an orbifol.d construction which is not

meromorphic and not consistent with modular symmetry [30,31]. The twisted space

of operators V will be discussed in §4.3 and §4.4 below. For the remaining Fricke

classes of .Pvf, g nIh+, e2, ... (i.e. e1 ), we will assume that the twisted operator

sector V, with a corresponding Hubert space of states 7-, can always be constructed.

There are a total of 120 of these classes (including two classes 27A, 27B which have

the same Thompson series) of which 82 classes have h = 1 [13]. For many of these

classes, the method of construction of these sectors is not known since the origin of

the automorphism is not geometrical as was the case for the lattice automorphisms

of §3. However, for automorphisms in the centraliser C(iM) =224.Co1which are

associated with Leech lattice automorphisms, a method of construction is given later

on §4.4.

The q1 coefficients of the trace on the RHS of (4.1) must all be non-negative

since this is the partition function Tr.H
(qL0) for the Hubert space N associated

with V. (In fact, from the point of view of the representation theory of Virasoro

algebras, Tr.Na
(qLo) is the characteristic function and is arguably a more natural

object to study than the original Thompson series). For the Fricke classes T9(r) =

1 (nhr) whereas for the non-Fricke classes T (r) = 1/i(r) — a1 = —a1 ±

g

+ 1 ‘ (mhi-)). Therefore the qfl coefficients ofT0(r) must be non-negative

gTz

for the Fricke classes and of mixed sign for the non-Fricke classes. These properties

are indeed observed for all Thompson series.
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For orbifold constructions leading to a theory with modular consistency, the

vacuum energy E[j’ must also satisfy nE’ 0 mod 1 and 1 is T invariant.

g
Assuming the usual orbifold trace modular transformation properties, for all

r(n) where 7 : T —* (ar ± b)/(cnr ÷ d) we find Tg(r) gd
= Tq(r) since

1

(d, n) = 1 i.e. m and d are relatively prime so that g and g(l are in the same conjugacy

class and hence have the same Thompson series. Thus, in the absence of a global

phase anomaly, Tq(r) is r0(n) invariant and hence Ii = 1. Let us consider, for the

present, only Thompson series with this property.

In general, we assume that there exists a set of operators {(z)}, I = 1, ..., Ng

of conformal dimension h. = 1 + j/n which create the vacuum operators of Y. We

also assume that for each operator b(z) Y, there is an operator (z), which acts

on this twisted vacuum and creates a state in 7. If iz) E V is an k eigenstate

of g then we assume that when acting on the vacuum states {Ia)}, ((z) satisfies

the following monodromy condition

(e2z) w(z) = g’(z)g (4.2)

Similarly to (3.9) and (3.10), (4.2) follows from a non-meromorphic OPA which the

twisted operators {o-,(z)} satisfy with ‘-‘ where

(k)(z)o.i(w) = (z — (4.3)

where the operators {o(z)} are w eigenvectors of g and x(z) has conformal

dimension h e Z — k/n and is an k eigenvector of g. Then each xg(z) E V obeys

the usual mondromy condition

Xg(e22z) = gg(z)g’ =e2”’0(z) (4.4)

when acting on the untwisted vacuum 0) so that T : 1 — g’ as expected,

g g

without any global phase anomaly. Likewise, the twisted sectors {V } are assumed

to exist with vacuum energy E and degeneracy N where together V’ = e

e ... e V_ forms a closed non-meromorphic OPA. Taking the projection we

define Vrh = PgV’ the CFT constructed from V by orbifolding with respect to g.

27



The operators of V[, form a meromorphic OPA and the partition function is again

Znrl)(T) J(r)+N where N0 is the number of rnassless operators. For each of the 38

non-Fricke automorphisms aE dual to a, this construction give us V with N0 = 24.

Assuming that Thompson series are hauptinoduls, we will show below that N1 0

for the remaining 82 global phase anomaly free Fricke classes (which we denote by

f = m ± n, e2, ...) so that Vb Y again i.e. every meromorphic orbifolding of VC

with respect to g E M either produces V or reproduces V again. Conversely, we

will show in §4.2 that given this result then T(T) must be a. hauptmodul for some

genus zero modular group.. -

We begin by describing how Tg(r) can be a hauptmodul in terms of the vacuum

properties of for a meromorphic orbifolding of V with respect to g. We assume

that under a general modular transformation 7(T) = (ar + b)/(c-r + d), T(-y(r)) =

g_d J . Thus any possible singular behaviour of Tg(r) at a cusp point a/c =
gC

limr... 7(T) is governed by the vacuum energy and degeneracy of the gC twisted

sector. In [18J we showed that for g = n + e1,e2, ... M, Tg(r) = g is a

1
hauptmoduJ. for the modular group Fg = I, (n) ± e1,e2, ... if and only if the vacuum

energies and degeneracies of the twisted sectors V obey the following properties

Vacuum Properties.

(I) The vacuum energy E9 for is non-negative unless gC is of order e

{e1,e21...} in which case = —1/e (V is tachyonic) and the vacuum degeneracy

Ngk 1.

(II) (A.tkin-Lehner Closure) If both sectors and are tachyonic (with

vacuum energies —1/e1,—1/e2) then the sector V is also tachyonic (with vacuum

energy —1/ea) where gk3 is of order e3 =e1e2/(e1,e2)2.

Condition (I) is required to ensure that T2(r) has the correct residue and pole strength

at any singular cusps whereas condition (II) ensures that the composition of two

Atkin-Lehner involution invariances of T9(r) is another Atkin-Lehner invariance as

in (A.4).

The Vacuum Properties are easily understood for g of prime order p as follows.

As described above, Tg(T) is always r0(p) invariant. The fundamental region for

this group, F = H/Fu(p), has two cusp points at r = c (q = 0), where T(-r)
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has a simple pole and r = 0, at which Tg(r) may have a second pole determined

by the sign of the vacuum energy E’ and residue given by N2 from (4.1). Thus E

is non-negative if and only if T(r) has a unique simple pole at q = 0 i.e. T2(r) S

a hauptmodul for F)(p) and g = p—. For g = p± where T,(r) is invariant under

the Fricke involution V7 : r —. —1/pr, then g
: (r) 1 (pr) and we have

1 g

N2 = 1 and E = —1/p, as given in• the Vacuum Properties. Conversely, if N2

1, E[’ = —i/p then f(r) = T2(-r) — T,(W(r)) is I’u(p) invariant without any poles.

Therefore f(r) is holomorphic on the compactification of .F (a compact Riernann

surface) which is impossible unless f is constant. But f(W(r)) = —f(T) implies

f = 0. Therefore, T2(r) is I’u(p)+ invariant and has a unique simple pole at q = 0 on

H/Fu(p)± and thus r()+ is a genus zero modular group with hauptmodul Tq(r).

A similar argument to this applies in the more general situation where g is not of

prime order and Tg(r) can be invariant under other Atkin-Lehner involutions [18j. In

addition, the Vacuum Properties imply that Thompson series obey the power-map

formula which relates Fg to F. This is an empirical observation in {i3J not derivable

from the genus zero property [18J.

For the 82 Fricke classes f n + n,e2,..., 1 (r) = (r/n) =

f 1

+ 0 + Q(ql/fl). Thus, despite the fact that E = —1/n, V contains no niassless

operators because the first excited states of ?-Yf with energy i/n are created by the

action of conformal weight 2 operators of V on the f twisted vacuum. We may then

repeat the argument of §3 to conclude that no massless operator b(0)(z) present in

any other twisted sector can be invariant under the Pf projection (otherwise

y(u)(e27tiz) = fb(°)(z)f’ = b(°)(z) obeys the defining monodromy condition for a

massless operator twisted by f which is impossible). Hence, for these Fricke classes,

Vb contains no massless operators so that Zorb(T) = J(r) again. Therefore, given

the uniqueness of Vc, we find that Vrb
y: We have therefore shown that orbifold

ing with respect to the 38 non-Fricke classes {a*} gives V whereas orbifolding V

with respect to the 82 Fricke classes {f} reproduces V, assuming that Y is unique

and the Vacuum Properties hold (i.e. the Thompson series are hauptmoduls). Thus

we have

4.L+ v: (4.5)
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where each arrow represents an orbifolding with respect to the denoted automorphis

in. We will refer to (4.5) as the Unique Orbifold Partner Property for V.

4.2 Monstrous Moonshine from the Unique Orbifold Partner Property. We

will now argue that the converse to the statement above is also true i.e. assuming

that V is unique and (4.5) holds for all inerornorphic orbifoldings of Y with respect

to g ]vI, then the Vacuum Properties hold and hence each Thompson series Tg(r)

is a hauptmodul for a genus zero modular group.

We begin with an orbifolding of Y with respect to an autornorphismn, which we

denote by a, which produces the Leech theory is dual to an automorphism a

of V which must belong to one of the 38 classes described in §3. However, assuming

the uniqueness of Y, then there must be exactly 38 different corresponding classes

of automorphisms {a} of V with Thompson series Ta-(r) = l/r(r) — a1. The

associated twisted sector V. therefore has vacuum energy = 0 (and degeneracy

Na = —a1) in agreement with the Vacuum Properties concerning Y.. Furthermore,

Ta (r) is known to be a hauptmodul for the genus zero modular group r0(m) +

e1,e2, ..., m and hence a’ is a non-Fricke element of type n + e1, e2 Thus

the remaining Vacuum Properties concerning V must also hold for these elements.

We will briefly consider further reasons for this result later on in the light of our

discussion of the Fricke elements.

Let us now consider the remaining allowed orbifoldings of V with respect to

automorpbisms, which we denote by {f}, which are assumed to reproduce yq Each

orbifolding is necessarily free of global phase anomalies and hence, as described above,

Tf(T) is Fo(m) invariant where f is of order n. We will show that the Vacuum

Properties hold for, these automorphisms and that Tf(T) is a hauptmodul which is

Fricke invariant.

Vrb V implies the absence of massless operators in V. Therefore the twisted

vacuum energy obeys either E > 0 or = —1/n (so that is tachyonic). The

first case is the only possibility in a regular lattice orbifolding as in §3. E = —1/n

is also possible for an orbifolding of V because the lowest excited energy operators

{2(z)} of V are of conformal dimension 2. Based on our experience with lattice

orbifoldings, we expect the first excited states of to be created by the action of

some of these operators on the twisted vacuum as in (4.3). These excited states can

then have minimum energy 1/n so that the absence of any inassless operators in V. is
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directly due to a similar absence in 11arn On the other hand, any other negative value

of E would result in massless operators in ‘V.. We will directly observe this situation

below in §4.4 when we consider automorphisms based on lattice automorphisms for

which can be explicitly constructed. Thus, we have determined that for any

(Later on we will eliminate the possibility of E > 0 by studying the singularities and

modular, properties of Tf(r)). As described before, the behaviour of Tf(T) at a cusp

point a/c is determined by f’ (where ad — bc = 1) with singular behaviour
fC

when Er < 0 where fC is of order m’. Therefore Vb V with E = —1/n” and

the residue of this pole is Np, the vacuum degeneracy of the twisted sector Vp. We

will next show that Np = 1.

As was the case for the lattice orbifold constructions of §2 and §3, we may identify

an automorphism f, which is dual to the automorphism f, where the operators of

are eigenvectors with eigenvalue wk for = e2i/n. f* is then an autoinorphism

of the OPA for Vb where Vb V by assumption i.e. f* M and Vb V. We

can then calculate the Thompson series Tf. (r) = Tr.HJ (f qLo) = ,k
7

urb fk

which is F0 (n) invariant using the usual modular transformation properties of these

traces. Furthermore, we can show that Tf (r) = Tf(T) by considering the sum of

Thompson series Tfk(-r) = Tr.j (f*kqLo). Since only the untwisted
vb

sectors contribute we find

d1.T.r() = d,.Tfr(T) (4.6)
rjrz rim

where ci,. is the number of integers k E {1, ...,n} with (k,n) = r so that Tfr(T) =

Tf(-r) and likewise for f* For n = p, prime, we have d1 = p — 1, d = 1 and (46)

implies that Tf- (r) = Tj(r). For n not prime we may identify the singularities of

Tf(r) and Tf..(r) as follows. Consider the modular function r) = di(Tf. — Tf).

As described above, the behaviour of (r) at r = 0 can only be singular if either

= —1/n or = —1/n or both where (—1/r) = Aq11 ± 0 + ... for A = Nf or

Nf or Nf. —Nf respectively. But from (4.6), (r) = Zr>i dr(Tfr _Tf.r) has singular

behaviour at r = 0 determined by (—1/r) = Bq_Tz ÷ ... which is inconsistent

unless E = = —1/n and Nf = Nf for all tachyonic sectors. Therefore (r)
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is r0(n) invariant without singularities and defines a holornorphic function on the

compactification of H/I’u(n) (a compact Riemann surface). This is impossible unless

(r) is a constant which must be zero since Thompson series contain no constant

term. Therefore Tf- (r) = Tf(r) and so f and f* can be identified as members of the

same conjugacy class of M (apart from the classes 27A, 27B where possibly f and

f* are in different classes).

We next examine the centraliser C(f* IM) by a similar analysis to that of §3 and

Appendix B. Define Au(2fV) to be the automorphism group of the CPA for V,

which maps 2,V into itself. Then n.4ut(2fV) C(fM) where the extension is

the central cyclic group generated by f. From (4.3), the vacuum operators {o(z)}

of must forxn a Nf dimensional representation for C(fjM)/(f) which defines

some extension L0. so that Au(PfV) =L0..(C(fIM)/(f)). Therefore we find that

n.L.(C(fIM)/(f)) C(f*M). However, this is impossible since f* and f are in

the same conjugacy class of M unless L0. = 1 so that the twisted vacuum of is

unique where Nf = 1. (For the two classes 27A, 27B, the centralisers are of the

same order so that again L0. = 1).

We have shown that for any f E M where Vb V, Y has vacuum energy

E> 0 or E —1/n with degeneracy Nf = 1. We will now eliminate the possibility

of E > 0. If E1j 0 for all k n, then Tf(r) has a unique simple pole at

q = 0 and is therefore a hauptmodul for F0(m). This is only possible for 2 n

10, n = 12, 13, 16, 18 with hauptmodul Tf(T) = 1/(r) — a1 for the corresponding

automorphism Co0 in Table 1 with modular group r0(n) = n—. Then under

S : r — —1/r we get E = 0 with Nf = —a1 0 in contradiction so that E = —1/n

in these cases which includes all the prime ones. For the remaining non-prime cases

with some E <0, we consider the composition of two orbifoldings of V which will

allow us to determine the location and strength of any singularities of Tf(r).

Choose f E M of non-prime order n (where either Ef > 0 or = —1/n)

such that for any f M of order n1 < n where Vb V then E’ = —1/ni.

This choice includes the automorphism f of least order with E1, > 0 which we will

show cannot exist. With this choice of f, if V v for fT of order e =

must be tachyonic with E = —1/e. (We may assume that rjn since and

Vrt are isomorphic for (n,r) = (n,r’) in general). We will show that must also

be tachyonic with Ef = —1/r where (e,r) = 1 i.e. elm. This corresponds to the

singularities given in (I) of the Vacuum Properties and will also lead to the closure
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property in (H) once we have shown that E’ —1/n. In constructing Vb

we employ twisted operators which are also involved in constructing V. The

contribution to from these operators is

Pf(Y 8 8 ... 8 = (1 + f + ... fr_1)Vfr Pf’V (4.7)

where f’ is an automorphism of VC of order r defined by the automorphism f acting

on V, (since f acts as unity on V,). But 7s V is the untwisted contribution to

the orbifolding of Vrb with respect to f’. Furthermore, the orbifolding of V with

respect to f is a composition of the orbifolding of V with respect to f’ and the

orbifolding of Vrb V with respect to f’ as follows

/ (4.8)

where the arrows represent an orbifolding with repect to the denoted automorphism.

Thus Vb V and therefore is also tachyon.ic with E6’ = —1/r by our choice

of f since f’ is of order i <n. We can check for the consistency of this composition

of orbifoldings by considering the Thompson series Tf (Sr) for f’ as a trace over

Under S : r —* —1/r this becomes

(4.9)

k=1
fl±rk

which must have leading behaviour q1/r ± ... from (4.1). Therefore, at least one of

the twisted sectors contributing to the RHS of (4.9) must be tachyonic with vacuum

energy —1/r and fl+rk of order r < n. Thus r(1 + rk) = ni for some I so that

el — iJc = 1 which implies that (e,r) = 1. Therefore, elm (and run) and is

tachyonic with vacuum energy —1/r (as is the isomorphic twisted sector since

(1,r) = 1). Thus orbifolding va with respect to f also reproduces V. To summarise,

for f of order n as chosen, if Vb V (so that Vr is tachyonic) where if is of order

e = m/r then e(ln and must also be tachyonic with Vb

This translates into information about the singularity structure of Tf(r) [18].

If we choose the representative form for the Atkin-Lehner (AL) involution W =
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(e

e’
for e n, as in Appendix A. Then Tf(W(r)) f’ (er) = q1

fi.

0 ± 0(q) when Vb V. Note that the constant term is zero since Vr contains no

niassless operators. We define r = We(cc) = 1/r which we call an AL cusp. On the

fundamental region (n), the singularity at r is then a simple pole since

W9 is an autornorphism of F7.. In addition, Tf(i-) also has a simple pole at the AL

cusp = 1/e = W,.(co) since Vb Vc. Thus Tf(r) has simple poles with residue

1. at r = cc (q 0) and possibly at r = 0 (if E = —1/n) and at the AL cusps

and i-i..

We next show that Tf(r) must always be singular at r = 0 with E = —1/n.

Suppose that > 0, then under the Fricke involution W : T —* —1/ni-, T and Tr

are interchanged. Then (r) = Tf(T) — Tf(W7(T)) is a r(n) invariant meromorphic

function on F7 with two simple poles at r = cc (q = 0) and r = 0. (r) also has

zeros at Te and r7. since (W(r)) = q’ — q’ + 0 + 0(q) where it is essential that

the AL poles have the same strength and residue and that and contain no

massless operators. Likewise, (r) has zeros at any other such pairs of singular AL

cusps. But (r) is odd under W and therefore also has a zero at the W fixed point

z//. Thus has two simple poles and at least three zeros on the compactificatioii

of .F, which is a compact Riemann surface. But every ineromorphic function on a

compact Riemann surface has an equal number of zeros as poles. Therefore, there is

a contradiction and hence E = —1/n.

We have now derived condition (I) of the Vacuum Properties for f. In addition,

a restricted version of the AL closure condition (II) has also been demonstrated.

Namely, if and are tachyonic (where if is of order efjn), then so is where

fC is of order r = ne/e2. We can use this to generate the general AL closure property

as follows. Suppose that and are both tachyonic with f f” and f2 =

with r1 n/r2 where f is of order e where eIIn. (We can take r,n, as before,

since Vr and are isomorphic for (n,r) = (n,r”)). Then the sectors twisted

by fCi of order are also tachyonic. By interchanging e with rj if necessary we

can assume that (e1,e2) = 1. This is easily shown by observing that the order n of

every element of VI has at most 3 distinct prime divisors (n < 2.3.5.7 = 210). Then

e3Jn for e3 = e1e2 and 73 = i’ii’2/(ri,i’2)2 = m/e3 with i’ r3e2 and r2 = r3e1.

Consider g = fT3 of order e3. Then get
= f’2 and ge2 flt are of order e2 and e1,

respectively, so that the corresponding twisted sectors are tachyonic. Therefore, by
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taking the composition of orbifoldings with respect to g, as in (4.8), we find that

is also tachyonic with g = f’ of order e = e1 e2. As before, the sector twisted by

f of order r3 =rir2/(rj,r2)2 must.also then be tachyonic. Thus the general AL

closure condition (II) is derived.

We have now demonstrated that the genus zero property for Thompson series

can be derived from (4.5) assuming that V is unique and so we have

Monstrous Moonshine is equivalent to the Unique Orbifold Partner Prop

erty. Assume that the FLM uniqueness conjecture holds. Then Tg(r) forg E Mis a

hauptmodul for a genus zero modular group Ftj(n) + e1,e2, ... if and only if the only

meromorphic orbifoldings of V with respect to g are V and V.

We note that we may also understand the Vacuum Properties already found for

the non-Frjcke elements a dual to a in a similar fashion to this derivation for the

Fricke elements. Suppose that f = a*T of order e = n/r is Fricke so that Vrb =

We can then deduce that elm and that a*C is non-Fricke as follows. The orbifolding

of VC with respect to az (which gives V) is the composition of the orbifolding of V

with respect to f and the orbifolding of Vrb
C with respect to b of order r where

b is the action of az on Vorb Thus b* is dual to b, one of the 38 automorphisms of

discussed in §3. It is straightforward to then see that b = ae (lifted from E) has the

correct action on V(rb to be dual to b. If we examine the 38 automorphisms listed in

Table 1, we find that is contained in Table 1 if and only if elm and i(r) is invariant

under the AL involution We (but is inverted by Wy.). In fact, in each such case this

follows from the symmetry properties of the characteristic equation parameters where

= —an/k = —arL/k (with h = (Jc,e) and k7. = (k,r)) so that b =

has parameters bk = —b7./k. Similarly, the closure condition (II) follows directly from

these parameter relationships.

4.3 Moonshine for nih ± e1,e2, ..., h 1. Let us now consider the Thompson

series for the classes of M which cannot be employed to construct a meromorphic

modular invariant orbifold due to a global phase anomaly. These classes consist

of the 13 non-Fricke classes of §3 and 38 Fricke classes. The twisted sector for

the non-Fricke classes and some of the Fricke classes can be constructed since they

belong to the centraliser C(ilM) = 2’24.Co1 as described below in §4.4. We find

that E = 1/nh for the non-Fricke classes and E = —1/nh for the Fricke classes

where kin. We will assume that this latter property is also correct for the remaining
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Fricke classes. The integer h 0 1 parameterises the global phase anomaly present in

these cases where T7L : 1 : e±21 1 : In §3 we considered the 13 Leech

g g
lattice autornorphism with a global phase anomaly where we found an isomorphisni

between 7-z 0 ... 0 7 and 7- in. (3.13). A similar isomorphism is also expected

here between the twisted Hubert spaces ‘N, and as follows [181. Let /.(z)

create a twisted state in 74 by acting on the twisted vacuum states {I°)} Then

‘i...h(z) =ibjI(zh)0...®jh(zIz) which acts on IEL”) =Io )0...oo) obeys

the monodromy condition (4.2) for g of order n/h. W(z) creates a state in 74,,
but is not a. primary conformal field: For the non-Fricke classes the states IEg)

are of energy h/n whereas for the Fricke classes, E) is unique and is of energy

—h/n and reproduces the vacuum of 7i,,. Thus as before, the global phase anomaly

disappears by taking such a tensor product. Thus an identification can be made

between the non-massless states of 74,, and 74 ® ... 74. For the non-Fricke classes,

?-,, always contains N2 > 0 massless states whereas the energies of all the states of

74 ... 74 are positive. On the other hand, for the Fricke classes, 74,, contains

no massless states but 74 ® ... 7 contains hN1 massless states ‘where N1 is the

number of operators of 74 with first excited energy level —1/nh + 1/n. Therefore

the partition functions are expected to be related as follows:

[1 D(hr)jh 1 D(r)+C (4.10)

g gh

where C = Ng for the non-Fricke classes and C = hN1 for the Fricke classes. In

terms of the Thompson series this is the harmonic formula of Conway and Norton

[13]

[Tg(r/h)lh Tg(r) + C (4.11)

This relationship implies that T2(r) is Tu(njh) + e1, e2, ... invariant up:to h roots of

unity. We also know that 1 (r) is T” invariant from which we may show that

g
Tg(r) is r0(N) invariant with N = nh. Thus ru(n]h) must be in the normaliser of

r(N) and hence hJ24 from Appendix A. The invariance group I for Tg(r) of index

h in To (njh) + e1, e2, ... can then be shown to be of genus zero with hauptmodul Tq(r)

because the invariance group r0( ) + e1, e2, ... of T (7-) is of genus zero [18].
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4.4 Twisted operators for c C(ifM). We will now discuss the construction of the

twisted sector V for c E C(ijA’.[) where c is lifted from a Leech lattice automorphism

Coj and is therefore geometrical in origin. Because c does not interchange the

sectors P,.V and 7,.V7. in the original FLM construction, the Thompson series for c

can be explicitly computed [1,2,3] to be

T(r) =CPr + CPr D
1 (4.12)

1{O.(r) O.(r)
T

77(
T

77(7-)

2 (r) (r)
r(cT)(/) r(CT)(/2)}

where e_ is the theta function for the sublattice A± of A invariant under ± and

is the eta function as in (3.5a). The lifting of to an automorphism c of V is

chosen so that cc(/3)c c(,B) for all A (see (3.la)) and similarly for rc lifted

from — (where r and c commute). CT 1S the action of the lifting of on the vacuum

of 1-’,.. Given the usual modular transformation properties for the traces of (4.12),

T(r) is automatically F0(m) invariant (up to possible phases) where m is the order

of ±E in Co1. We also find that under S r — —1/r

T(-1/r)={1 D±D±’D±’}

1D e:(r) Tr(cT) i(r) (4.13)
2 V i(2r)

D’ e.(r) Tr(cT) i(r)

V r) — 9d/2

where e..(r), iE(r) and D± are defined as (3.5) and is the volume of A±.

= c determines the number of unit eigenvalues of ±E with characteristic

equation parameters {c} as in (3.2). From (4.1), we may therefore define the twisted

sector for each such c C(ijiVl) to be

PrVc e PrVrc (4.14)

where V and V are the twisted sectors constructed in the standard way from

the A compactified string as described in §3.4 and Appendix B [29,25,4,33] where

C(e2z) = ±()1X(e2iz)±2ir8. Then E V and Xrc E Vrc obey the monodromy
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conditions Xr(e2z) = CXc(Z)C’ and Xrr(e2Z) = rcX,.r(z)(rc)’ as in (3.12). For

we expect the (schematic) OPAs
— and X to hold together

with the usual OPAs of (2.5), (2.15) and (3.14). Since r and c commute, r preserves

these OPAs and hence the projection with respect to 2r can be taken. Then for

e = P,.(Y e V,.), tile inonodromy .conditions and CPA (4.2) and (4.3) follow

where {a-} denotes the vacuum operators for P,.(V e Vr). Thus V given in (4.14)

satisfies the defining relations for the c twisted sector.

We may check for the other properties satisfied by V (particularly when c is

a Fricke element of M) which lead to Thompson series which are hauptmoduls as

described in §4.2, and §4.3. In [35] a survey is presented of the modular functions
c = = q’ + c1 + ... for all E Co0. It is shown that is a

hauptmodul for a genus zero fixing group njh ±e1,e2.. for all but 15 classes of Co0

(thereby falsifying a conjecture of Conway and Norton [13]). We will return to these

anomalous classes below. For the remaining classes, we may describe some general

properties of the vacuum of V, similar to the vacuum properties of above. Thus

is Fricke invariant under r —* —1/nhr if and only if the vacuum energy of Y

obeys E = —1/nh and the vacuum degeneracy N = DV2/V = 1. (We will call the

corresponding class of Co0 a Fricke class). Otherwise, E 0 and the vacuum may

be degenerate. Likewise, the other vacuum properties of §4.1 must hold.

For all the Fricke classes, the characteristic equation parameters c are observed

to obey the symmetry condition cJ = Cnh/k where hjlc for all c 0 [35]. Therefore

= (nh)’, (i-) = r/nh) and hence E = —1/nh. Similarly, from (4.13) we find

that since N = 1, T/ = (nh)’1/2 and ø,(r) = e(T/nh) where 132 2hz, 32 4

for ,5 e A C A. Thus for h 1, 13*2 4/n whereas for h 1, 13*2 2/n for all

13*
E A. Furthermore we can observe from [36] that A /A* in many such

cases (e.g. for = 1484/2242 of order n = 8, A = /D4 and A = D//

after a 7r/4 rotation). This non-trivial property for A is very likely to be true for all

such Fricke automorphisins of the Conway group.

From (4.13), the uniqueness of the c twisted vacuum a) for the Fricke classes

implies that Tr(cT) = €r2duI2 where ro) = with ,. = ±1. For h = 1,

when E = —1/n, the first excited (massless) states of this sector are given by

= a l/Tj0c) = 1imzu z11 8:X(z)IQc) for i = i,...,c where 8X1(z) is an

w1 eigenvector of which implies rf) = Since 132
4/n, no rnassless

states are associated with the dual lattice A.. Hence, for any Fricke class Co with
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h = 1, we have either = q_l+0+Q(qh/1t) for = 1 or ci +O(qu/Ta)

for er = —1. For the Fricke classes with h 1, the first excited states of V with

energy —1/nh ± 1/n are given by b) above together with states I) created by

for t3*2 = 2/n. Thus for h = 1, PrYc. contains either a unique vacuum

with energy E = —1/n but no massless operators (r 1) or else has a massless

vacuum (s,. = —1). Similarly, for h 1, P7.’1-’ contains either a unique vacuum with

= —1/nh with first excited operators of energy —1/nh + 1/n or else has a vacuum

of energy —1/nh + 1/n.

We may use these observations to describe the corresponding properties of V

defined in (4.14). Consider E any Fricke element of Coo, of order n with h = 1. If

n is odd then —E is of order 2n and V,., has vacuum energy E[ = 1/2n > 0. If n

is even then — is of order n or n/2 and we can observe from [35] that E 0 in

all cases. For — of order n with E = 0, one can check from (4.13) and [35] that

Iorc) rI°rc), with . as above, so that ‘PrVrc contains no massless operators for

= 1. If — is of order n/2 then /2 = and r = cf/2 so that e. = —1 from (4.13)

(by considering invariance under T —* r ± n/2). Thus, for any Fricke element E e Co0

with h = 1, V contains either a unique vacuum of energy —1/n and no m.assless

operators so that c M is Fricke or V contains a massless vacuum and c E iVI is

non-Fricke. One can similarly show for a Fricke class E Co0 with h 1 that Y

either contains a unique vacuum with energy —1/nh and first excited operators with

energy —1/nh ± 1/n (c is Fricke in M) or else has a vacuum of energy —1/nh + 1/n

(c is non-Fricke in M). Likewise, if and — are both non-Fricke then c is non-Fricke

in .tW and V has the required properties. Thus V defined in (4.14) possesses all the

properties for a Monster group twisted sector as described in §4.2 and §4.3.

Let us now discuss the 15 anomalous automorphisms {E} mentioned earlier for

which
1

= 8/ is not a hauptmodul but is fixed by a genus zero modular

group [35]. These classes fall into 5 families of the form {i , E2, c3 } with each Ej

of the same order n = 6, 10, 12, 18 or 30. For each such E, part (I) of the vacuum

properties §4.1 is satisfied but the Atkin-Lehner closure condition (II) fails and so

eZ/7-/-E is not a hauptmodul. For example, for n = 6, {Ei , C2, C3 } have Frame shapes

{12.6/3, 236/1, 13.6/2} (where E = —E2). Then O / has simple poles

with residue 1 at the cusps r = c, 0 and the AL cusp -r2 = 1/3 but not at the

AL cusp 73 = 1/2. Likewise, for E2 and c3, the poles occur at {,1/2,1/3} and

{co, 0, 1/2}. The other anomalous families have very similar properties [351 Despite
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this behaviour, one can repeat the analysis above to show that V of (4.14) possesses

all the required properties given in §4.2.

We will end this section with some remarks concerning the reorbifolding of V

with respect to Fricke elements of i’v[. Fói a. Fricke element c E C(ifM) of order m

with V as in (4.14), then given (4.5), we find Vc
= = Pc(V e1’c:e...e:,a_i) is

just a Z2 X Zm orbifolding of V with respect to the abelian group generated by r and

c. We can similarly expect that the observations of this subsection can be generalised

to the other assumed constructions of Va given in §3 based on the 38 automorphisnis

of Table 1. Thus for c e C(aM), we can define V = PV e ... e PVr-i, where

a and c commute, which satisfies the monodromy conditions and OPA of (4.2) and

(4.3). Then reorbifolding Vrb with respect to an element of C(aIM) is equivalent

to a )< Zm orbifolding of V with respect to the abelian group generated by a and

c. Thus, assuming (4.5) so that Vrb = V for a Fricke element c E C(aIM), we can,

in principle, provide a large family of ZTL x Z77. orbifold constructions of V from V.

5. Concluding remarks.

We conclude with a number of observations concerning various open questions

and some generalisations of the constructions considered above. We begin with a few

remarks about Norton’s Generalised Moonshine [37] which concerns Moonshine for

modular functions associated with centraliser groups of elements in the Monster. In

[21] it was suggested that these correspond to orbifold traces of the form g for

g2

g E C(g2M). Given the usual modular transformation properties for such traces,

then the structure of the vacuum of the Monster twisted sectors described here

should be sufficient to to show that each such trace is a hauptmodul. A general

discussion of this will appear elsewhere [38] but we make three brief observations

here. Firstly, for g a non-Fricke element, the vacuum of V2 is degenerate in most

cases so that each g is actually an element of an extension of C(g2i’vI) in these cases,

as observed by Norton [39]. For the remaining non-Fricke and all the Fricke classes,

no such extension of the centraliser is required. Secondly, i
: can be easily

g2
shown to be a hauptmodul for g. and g of relatively prime order m1 and n2 with

associated modular groups m1 + e1, e2, ... and ri2 + eç, e,, .. i.e. h1 h2 = 1 where the
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corresponding twisted sectors are global phase anomaly free. Since (n1,n2) = 1 we

havem1b+n2a 1 for some a,b. Define g = of order m = n1n2 so that g]. =

and g = ga’. Then under a modular transformation with respect to 7 =

a

—721 fl2

wefind

Tg(r)g g”2 fl =g1 (5.1)
1 gttt g

. .‘.

Therefore g is a hauptmodul for F2 n + n, e1, e, e2, e, ... if e = r and

g2

= n2 for some i, j and F9 = n + e1, e, e2, ... otherwise i.e. g is Fricke if and

only if both g1 and g are Fricke. This property is observed for all the appropriate

modular functions associated with the centralisers of the limited number of elements

of M discussed in [40]. Our last observation concerns Moonshine for C(g2IM) where

T92(r) has modular invariance groupm2(h+ei,e2, ... with h 1. From §4.3 we expect

that the following harmoni formula should hold for each g

[gi
(hr)]h_

g Da(r)+C (5.2)

g2 g

where C is a constant. For the case g = 33, this formula can be verified [40].

The use of non-meromorphic OPAs has been central in our discussion. Such

algebras were employed both in defining the properties of twisted operators and in

considering reorbifoldings. From this point of view, the two meromorphic CFTs

which are orbifold partners are embedded in a larger set of operators V’ obeying a

non-meromorphic OPA. However, a rigorous construction of such a non-meromorphic

OPA has yet to be given even in the simplest Z2 case. Another interesting question

is to ask what form does the automorphism group for V’ take ? This has not even

been determined in the original FLM Z2 construction with OPAs (2.5) and (2.15).

We know that in this case this group contains the original reflection. involution r

together with the dual involution i and other extensions of elements of the Conway

group Co0. Furthermore, the triality symmetry [3,28] interchanging the untwisted

and twisted sectors may also still hold. Given this, then we can speculate that the

automorphism group for V’ may be the ‘Bimonster’ or wreath square of the Monster

[41]. Similarly, for the other orbifold constructions, the automorphism group for V’

may provide other enlargements of the Monster which would be of obvious interest.
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Finally, apart from these more general considerations, the Monster Fricke element

twisted sectors not related to Leech lattice autoniorphisins have also to yet to be

constructed explicitly.

Appendix A. -Modular groups in Monstrous Moonshine.

In this appendix we describe the modular groups relevant to the Moonshine

properties of Thompson series described by Conway and Norton [13].

Fu(N): The group of matrices contained in the full modular group of the form

( ), det=1

where a, b, c, d Z.

The normaliser .A/(I’0(N)) = {p e FSL(2,R)pFu(N)p’ =r0(N)}, is also re

quired to describe Monstrous Moonshine. Let h be an integer where h2]N (h2 divides

N) and let N = mh. Then we define the following sets of matrices.

r0(njh): The group of matrices of the form

(a ), det = 1 (A.2)

where a,b,c,d Z. For h the largest disor of 24 for which h2]N,r0(nh) forms a

subgroup of Jf(r0(N)). For h 1, To(mjh) = ro(m).

W: The set of matrices for a given integer e

f’ae bN

cN de,)
det = e etIN (A3)

where a, 5, c, d Z. e(IN denotes the property that ef N and the greatest common

divisor (e, N/e) = 1. The set We forms a single coset ofr0(N) v(r(N)) with

=r0(N). It is straightforward to show that (up to scale factors)

= 1 mod (r0(N))

We1We2 = WW = W3 mod (r9(N)), e3
= e1e2

2(e1,e2)

The coset W is refered to as an Atkin-Lehner (AL) involution for r(N). The

simplest example is the Fricke involution W with coset representative ( )
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which generates -r —. —1/Nr and interchanges the cusp points at r = and r = 0.

For e n we can choose the coset representative ( ) where ed — bN/e = 1

which interchanges the cusp points at i’ = c and r e/N.

we: The set of matrices for a given integer e of the form

( ), det = e,

where a, b, c, d Z. The set w is called an Atkin-Lehner (AL) involution forT0(nfh).

The properties (A.4) are similarly obeyed by w with I’(N) replaced by I’t,(nlh).

iV(Tu(N)): The Normalizer off0(N) in PSL(2,R) is constructed by adjoining

to ro(nlh) all its AL involutions Wei,We,, ... where h is the largest divisor of 24 with

h2jN and N = nh.

F0(nfh) + e1,e2, ... : This denotes the group obtained by adjoining to ro(nlh) a

particular subset of AL involutions w , w2, ... and forms a subgroup of K(r0(N)).

Appendix B. Automorphism groups for twisted sectors.

In this appendix we will derive the centraliser formula (3.19) by describing the

automorphism group which preserves the OPA of VQb where no midng between

the various sectors ?Vb is considered where b = ar is lifted from b = of order

m = n/i” with ‘r’ = (n, i’). In general, b may have unit eigenvalues (for r1 1) so

that A contains a b invariant sublattice AE- which has dual lattice A.. = A PTA.

Likewise, we define A’ to be the sublattice of A orthogonal to A- where the dual

lattice is A = AT E (1 — P)A. It is then easy to show that Af1/A AT/AT so

that the volume of A is given by V- = A/A’2 AT/AT 1/2.

The b twisted states are constructed from a set of vertex operators V’ which

form a representation of the original untwisted OPA (2.5) with a non-ineromorphic

OPA. These operators act on a b twisted vacuum which from (3.4) we expect to

have degeneracy DJ2/V. The construction of VA follows from considering a string

with twisted boundary condition X(e2z) = bX(z) + 27r?3 where E A [29,25,33]

with a mode expansion similar to (3.7). The corresponding states are graded by

= Zm n-m + + E where has eigenvalues in A1 and E is the vacuum

energy given in (3.5e) which obeys mE = 0 mod 1. As before, cocycle factors
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{ cT(a)} are required for a local OPA. These are defined as follows. Consider the

central extension A of A by ((_1)mp) (where
,

w e2u/n) given by the

following commutator [29]

c()c(/3)c(cz)’ c(j3)’ =exp(27ri5(a,!3)) (B.la)

= —5,a) ={) + (aT,(1
—1T)] mod 1 (B.lb)

where {c(a)} is a section of A and where aH = E A11, aT = (1 — ?)a E A.

(B.lb) reduces to (2.6a) when b = 1 and to (3.8b) when b is without unit eigenvalues.

(BJ) also defines a central extension. A.’ of the sublattice A’ by (p) with centre

determined by the lifting of (1 — b)A C At’. Taking the quotient of these two groups

we obtain a central extension L- of L = A’/(1 — b)A by (p) with centre (p). L- is a

finite group of order JA/(1
— b)AI = A’/ATUAT/(1 — b)Al = D/V. In addition,

L- has a unique irreducible faithful representation ir(L) of dimension DV2/V in

which the centre is represented by phases (p) [29,3]. Let Tb denote the vector space

on which ir(L-) acts. Then the states {Job)} of the degenerate 5 twisted vacuum form

a basis for T” and the cocycle factors {CT(a)} are a valued matrices acting on To

which obey (B.1).

Let us now describe the group of inequivalent automorphisins Aut(V) of the

OPA of V which act on the vector space T°. This group is an extension of the

centraliser C(bICoo) where each lattice automorphism C(bf Coo) acts on X(z) in

the usual way but is lifted to a set of automorphisins {g} of A where

gc(a)g’ = e2c() (B.2)

where fg(a) pararneterises the liftings of . Let g and g’ be two inequivalent liftings

of . Then e = g’g’ is a lifting of the identity lattice automorphism. The group

of liftings of the identity automorphism form a normal subgroup of Au(V) and is

parameterised by fe(a) obeying fe(a ±$) f(a) + fe() and fe(O) = 0. Let be

a basis for A and a dual basis where (O,A)) = S. Then define =

so that fe(a) = = (p.,a) with a = aj\ and ,u = i.e. each lifting is

paraineterised by
.

We may determine ,u by considering the inner automorphisms

of A where c() : c(a) ‘ exp(2iS, a)]c(a) from (B.1) and hence = —ll/2 —

(1 bY13T for 3 A. As described above, the cocycle factors {cT(a)} used in

constructing the vertex operators V are defined to act on the twisted vacuum space
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T&. Hence only the inner automorphisms generated by cT(A) =

with ,u (1 — b)’A., give the inequivalent liftings of the identity to

automorphisms of Y since cT(A’) maps Tb onto itself. Furthermore, from (B.2),

the liftings of b itself are themselves equivalent to liftings of the identity lattice

automorphisin to automorphisms of {cT(a)}. (In particular, we may define one

distinguished lifting in the centre of ir(L), denoted by b exp(—2wiE) (p). b

then describes the twisting of the vacuum states with exp(2riLu)Ia&) =

Thus we find that the group of inequivalent automorphisms Aut(V’) is given by

We next describe AU(PaV) where a is the lifting of C(bICou) to an au.

tomorphism of the OPA of PaY’ with ar = b. a. acts as the identity on

and hence each g Aut(?aV) must commute with a. Therefore, g is lifted from

G = C(E1Cou.)/(). The inequivalent liftings of are given by the inequivalent

liftings, e, of the identity which commute with a. Using the parameterisation above,

this implies that (,u, a) = (j,) mod 1 for all a E A and hence E (1 —E)’A. From

above we also know that u E (1 b)’A’. Together, we find that 1u (1 —

so that the inequivalent liftings of the identity that commute with a are given by

the inner automorphisms generated by K cT(( -)A’) ir(L). Two elements

cT((f—)aT), cT((fE4)/3T) of K are equivalent (f_)(a
— 18T) = (1 — b) for

A a = (1 — )\ with \ e A. Thus K = m.K, a central extension

by (p) of K A’/(1 — We therefore find that

= K.G, (B.3)

where K is the normal subgroup of automorphisms lifted from the lattice identity

automorphism.

In the case where r” = (r,n) = 1 we have K = L and so 4ut(?aV) =

For all the other sectors, including the untwisted sector, the corresponding

automorphism group can always be expressed as a quotient of by some normal

subgroup. In the untwisted case when r = 0, the elements of Aut(2aV) must

commute with a. and are determined by (1 —E)’A as above. Thus Aut(VaV)

= (L-.G)/(w) i.e. A(2aV) is a quotient group of For b = r and

0,1, L-.G contains a normal subgroup i = r’.J with J A/(1 —E)A. J is the

group of automorphisms of 2aV lifted from the identity lattice automorphism and
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given by the inner autoxnorphisms generated by cT() (Note that the commutator

(B.1) in this sector is determined by 5(,$) = (a,(1 — )‘3)). We therefore find

that 4ut(7V) = K.G = (L-.G)/J. Thus for all sectors including the

untwisted one, we may describe the CPA autoinorphism group 4u(Pj)) by

where some normal subgroup may act as the identity on namely (w) for r 0

and J for r’ 0,1.

The operators of 2aV create b twisted states from the twisted vacuum vector

space T”. We may then define vertex operators {bb} = PVb which create these

states from the untwisted vacuum where (schematically) with 2V

and ob creates a twisted vacuum state. This CPA algebra is also invariant under

L-.G with an appropriate identity action under a normal subgroup as described

above. Likewise, the intertwining CPA between the various twisted sectors PaYb as

in (3.14), which is expected to exist, is invariant under Note that we are not

considering here mixing (triality) automorphisms between the various sectors which

are expected as in. the usual Moonshine constructions [3,28,16]. We therefore find

that the CPA of b = Pa(V 8 V 8 ...V-,.) is invariant under La-.Gn where no

mixing between the various twisted sectors is considered. With a* defined on Vorb as

in §3 (the operators of V are eigenvectors with eigenvalue c?) we have

C(aM:rb) (B.4)

where Mrb AUt(V:rb) is the complete automorphisin group for Vob. This is the

result given in (3.19) for the 38 modular invariant orbifold constructions from the

lattice autornorphisms of Table 1.

We may also compute the centraliser C(gfljM) where g is lifted from one of

the 13 lattice automorphisms of Table 2. Orbifolding V with respect to

gives a modular consistent construction Vb and g a* where a/* is dual to

the lifting of E’. From (B.4) we have C(gIM) C C(a’lIvI) = La’.Gn’ where

= C( ICou )/(E). We may next repeat most of the argument given above to

firstly find the automorphism group for the CPA of the vertex operators Pa’Va’.

Each automorphism g C(gn4ut(2aiVi)) is lifted from a lattice automorphism

E C(Coo) = m.G where the inequivalent liftings are determined by the group of

liftings of the identity lattice automorphism which commute with. g. This forms a

norma’l subgroup of 44Ut(Pa’V’), as before, generated by the inner automorphisms

46



with respect to CT((1jj)A) C 7r(L’). This group together with g1 itself generates

Thus the group of autornorphisms of ?,‘Y’ that commute with g,, is

By following an argument similar to that above, we can also show that the automor

phisms of Pa’Vb’ which commute with g7 are given by the quotient group of L-.G,,

by a normal subgroup. Thus the centraliser is C(gM,) = as in (3.19).
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The 38 conjugacy classes of Co0 obeying (3.6). The first column gives in

Frame shape notation. The corresponding modular group r appears in column 2.

The groups appearing in columns 3, 4 and 5 are expressed in terms of standard

Atlas groups [4].] where k denotes the direct product of k cyclic groups of order rz.

and [p .p...] denotes an unknown group of the given order. 11 x B denotes a direct

product group and 11.3 denotes a group with normal subgroup A where B = 11.3/A.

E Cot, -___________
C(g71M)

21+24
31±12

448

51±6

21±12 x 3
2 x 31+8

2+6 x 31±4

71±4

8.(82
9(92

5x
2x

21+4

4x

x 42)

x 32)

21±8
51±4

x 1+2

31±4

2247124

312/112

48 / 18
56/16

2666/1636

36/12
2.6/P3

74
/
4

2284/1442

9/1
210/15
52102/1292

2.10/15

42122/1232

22 3.12/1 4.62

132/12

214/17
32152/1252

2.162/128

9.18/1.2
2332183/136293

2.3.182/12 6.9
2252202/1242102

7.21/1.3
22222/12112

2.324.242/126.8212

4.28/1.7

2.6.10.30/1.3.5.15
223.5.302/126.10.152

3.33/1.11
2.9.36/1.4.18

223272422/1262142212

2.46/1.23
3.4.5.60/1.12.15.20
2.5.7.70/1.10.14.35
2.3.13.78 / 1.6.26.39

9—

3—
4—

6±3
6±2
6-
7— V

8—
9—.

10 ± 5
10 ± 2

10—
12 ± 4
12 ± 3

12—
13—

14 + 7
15 + 5

16—
18 ± 2
18 ± 9

18—
20 ± 4
21 ± 3

22 + 11
24 + 8
28 ± 7

30±6,10,15
30 ± 3,5,15

30 + 15
33 ± 11
36 ± 4

42 ± 6, 14,21
46 + 23

60 + 12, 15, 20
70 ± 10, 14, 35
78±6,26,39

Co,
2.Sz

2.26.56(2)

2.HJ
3. U4 (3) .2

21±6. U4 (2)
2. U4 (2)

2.117
[2.3]
[2 .33]

(A x
21±4.113

2A
2.2.SG
[2 32]

[2.3]
2.114
L2(7)
2.115
[2j

[2.3]
[2.3]

2.3
2.54
2.3

53
[2j

2

116

53
2
9

2
114

1
2
1
1

21±24.Co,
3l±1295z

4.2’ .28.56(2)
1+6 .2.HJ

2’ ÷ 12 32 U4 (3) .2
2.31±8.21+6 .U4(2)

2.3’ .21±6 .U4(2)
71±4211

[222.3]

[2.3”]
5 x 2’.(A x

2.51+4.21±4 11
2.51+2 .21±4.A

[211.37.5]

[2’.3}
[210.34]

131+2.2.114

[2’ .3.72]

[2 36 .52]

[2’3j
[2.3 I
[26.35]

[2.31
[26 .3.5j
[2.32.73]

[26 .3.11]
[2.3]
12.7]

[24.33.52]

[26.32.5]

[2 .3.5]
[2.3 .11]
[2 .34]

[2 32.7]

[2.23]
[2.3.5]

V

[2.5.7J
12.3.131

*

*

t
*

4.
*

4.
*

t
*

*

t
*

*

t

4.
*

t

t
*

1-

1

1-
t

4•44 x 3
442 x 31+2

131±2

7 x 2’

5 x
31±4

16.82

2 x 992

21+4 x 9
21+2 x 932

4 x 51±2

3 x 71+2

2’ x 11
3 x

31+2

442 x 7
2x3x5

21±4 x 3 x 5
21+2 x 3 x 5

31±2 x 11
4 x 932

2x3x7
21±2 x 23
4x 3 x 5
2x5x7

2 x 3 x 13

Table 1
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E E Coj C(gIM)
412/212 4(2— 4.212 G2(4).2 4.212.G2(4).2
68/38 613— 3 x 21+8 449 3 x 21±8.A

8/2 8(2— 8.4 2.2.A9 8.2°.2.A
8°/4° 8(4— 8.26 (13(3) 8.2°.U(3)

62 122/2242 1212 + 2 4 x 31+4 [23J [2°.3°]
12/6 1216— 3 x 4.2 A x 2 [29.325(

152/32 15(3— 3 x 2.444 [23.32.531
42202/22102 20(2 + 5 4.2 x 5 A [28.3.52]

8.24/2.6 24(2 + 3 3 x 84 [2.3] [28.32]

12.24/4.8 24(4 + 2 8 x 31±2 [22] [2.3j
242/122 24(12— 3 x 8.22 3 [25.32]

6.42/3.21 4213 + 7 21+2 x 3 x 7 1 {2.3.7]
4.6.14.84/2.12.28.42 84(2 + 6, 14,21 4 x 3 x 7 1 [22.3.71

Table 2

The 13 conjugacy classes of Co0 obeying (3.6a) only. For such each E there is an

integer h(n, h(24 where i/ appears in Table 1.
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