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§1. Introduction

Measures with random weights arise naturally in statistical mechanics. By

measures with random weights we mean measures of the form
m = E JYJ 531 N
J

where the a;’s are fixed points and the X;’s are random variables. These are to be
contrasted with empirical measures where the opposite is the case, the X;’s being
fixed numbers and the a;’s random variables. While there is a large literature on
large deviation results for empirical measures (see, for example, [2] and [3]), not
many people have addressed the problem of large deviations for measures with
random weights. This problem has been studied mainly in the context of the
Bose gas [4, 5]. For the Bose gas the points a; represent different momenta or
energy levels, while the random variables X; represent the number of particles at
each a; corresponding to Bose statistics. The present paper is motivated by the
results of [4]. While we follow the general outline of [4], here we are interested in
studying the problem in an abstract setting, isolating what is general from what is
dependent on Bose statistics. We succeed in proving the large deviation principle
for a largé class of measures with random weights and obtaining the corresponding
rate function in an explicit form. A benefit of our general approach is that the
results of this paper also apply to the Fermi gas [6] and the spherical model. We
shall decribe these, together with the Bose gas, after we have set up the problem.

Let o be a positive Borel measure on the closed halfline R4 and for s € R we
define

w(s) = ln/l;! e’Yo(dy) . (1.1)

Let v = sup{s € R : 7(s) < oo} and assume that vy > —co. The function = is
lower semi-continuous, convex and on (—o0,~) it is C*°. We shall assume that if
v < 00, then limyty 7'(s) = oo.

Let X be a locally compact Hausdorff space and let £ be a function mapping
X into R. We assume that £ satisfies the following conditions:
Hypothesis 1.
(i) € is continuous.
(ii) —& has compact level sets; i.e. for each b < oo, the set {z € X : —€(z) < b}

is compact.

(iii) &o =sup ex é(z) < 7.



For each n € N let {z;(n) : j = 1,2...} be a countable subset of X and let
an € R be such that a, — c0 as n — co. We assume that if 4 is a compact subset
of X, then |[{j € N: zj(n) € A}| is finite, where | - | denotes cardinality. Define

a measure i, on X by the formula
pn(A) = (an) {7 €N: zj(n) € A} (1.2)

for every Borel subset A of X. Let G be the family of continuous functions g

mapping X into R and satisfying

sup g(z) <y
zeX

and

sup |g(z) — aé(z)| < b
zeX

for some positive real numbers a and b depending on g.
The following more or less standard definitions are used in this paper:
A positive Borel measure v on X is a positive Radon measure if
(i) v(K) < oo for every compact subset K of X.
(ii) For every Borel set A C X

v(A) =inf{vy(V) : ACV, Vopen}.
(iii) For every Borel set A C X such that A is open or v(A4) < o
v(A) =sup{v(K) : K C A, Kcompact}.

A positive Radon measure v is said to be regular if (iii) is satisfied for every Borel
set A C X.

A measure v is said to be a bounded Radon measure if it can be expressed in the
form v = v; — v, where v; and v, are positive bounded Radon measures.

Let E be the space of bounded Radon measures on X. Form € E and f € C*(X),
let

m.) = [ f@ymida). (13)
X
We can define a norm || - || on E by the formula
Im|| = sup{|(m, f) : feCX), |flleo = 1}.

Let E be the set of positive bounded Radon measures on X. We note that if

m € E, then m is regular and ||m|| = m(X). Here we equip E with the narrow
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topology. The narrow topology is the weakest topology for which the mappings
m — (m, f) are continuous for all f in C*(X).
“ In order to formulate our large deviation theorem, we shall also assume that
there is a positive regular Radon measure p on X satisfying the following condi-
tions:
Hypothesis 2.

(i) suppp = X.

(ii) Foreachg € G,

/[n z)|u(de) < oo and /[g V' (9(2))uldz) < oo.

(iii) For each g € G,

tim [ w(gle)un(de) = [ wlo()plde).

-0 X

The following lemma gives some useful consequences of Hypothesis 2. Because
the lemma follows fairly easily from the convexity of =, we do not give the proof

here but save it for an appendix.

Lemma 1.1 Suppose that Hypothesis 2 is satisfied. Then the following statements
hold.
(i) For each g € G

/ ~(9(2))u(dz) < co.
X

(ii) For each g € G and f € C%(X)

i [ F(a)n" (o) un(d) = / F(2)7 (g(2))u(dz).

n—oQ

(iii) If {cn} is a sequence of real numbers converging to zero, tben for each

g€ G and f € C¥(X)

lim i [ {m(9(2) + enf(@)) = nlo(@hunld) = [ F@)(o(e)ulde).

n—co

For each n € N let {XJ(-n) : j = 1,2...} be positive independent random

(n)

variables, X](n) having distribution o™, where

5= (Mg (dy)

(n) .
o; (dy) fR+ €= (Mg (dy)

(1.4)
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Let P, be the corresponding product measure on {2 = RL\_J andlet = {weQ:
ZjZI X](‘n)(‘-“) < oo}. Since

ECE X(™) = an [ #(6(@)un(d) (1.5)

i1

and the integral in (1.3) is finite by conditions (ii) and (iii) in Hypothesis 2, we
have F’n(Q) = 1. For each w € Q, define the bounded measure L,(w,-) on X by

the formula
La(w, A) = a7t >~ XM ()65, (ny(4) (1.6)
i21
for every Borel subset A C X. L, takes values in E. Finally let K, be the

probability measure induced by L, on Ej i.e.,
K.,=P,oL;. (1.7)

One of our goals is to prove that the sequence of probability measures {K,} on
E satisfies the large deviation principle. Before formulating this, we will specify,
in thrée important examples that arise in statistical mechanics, the quantities o,
7, £ and z;(n) appearing in the general definitions.
The Bose Gas |

For the Bose gas o is the counting measure, c(A) = |[ANN]|. Hence for s <0

x

m(s) =1n Zej’ = —In(1 —€’).

=0

Thus v = 0. We also set X = R? and £(z) = o — ||z||? for some a < 0. Hypothesis
1 is satisfied. The set {z;(n)} is {27n~%k : k € 1%}, so that if a, = n, then
ln converges in the sense of Condition (iii) of Hypothesis 2 to g = (27)~%m,
where m is Lebesgue measure on RY. Hypothesis 2 is satisfied. In this model
the measures in E are interpreted as the occupation densities for the momentum
states corresponding to {n~7k : k € Z¢}.

An important objective in statistical mechanics is to obtain the grand canon-
ical pressure p in the thermodynamic limit. For some Bose models, p can be

expressed in the form

= lim E—lnf et GmK  (dm),
E

n—co dn
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where G is given by the formula

G(m) = (||m|| — -él- /‘( /;( v(z,z")m(dz)m(dz"). (1.7a)

Here ¢ € R and v is a bounded, continuous, positive definite function mapping
X? into R. If the topology on E is chosen so that G is continuous, then one can
use Varadhan’s Theorem [1, 2] to obtain a variational expression for p. A suitable

topology is the narrow topology.

The Fermi gas
For the Fermi gas o(4) = |AN {0,1},

m(s) =1n(1l + ¢€°)

(so that ¥ = c0) and £(z) = a — ||z||? for some a € R. The other quantities are
the same as for the Bose gas. Hypotheses 1 and 2 satisfied.

The Spherical Model .
In this model
1
—dy.
7r

o(dy) = N

Hence for s < 0
1 1

7(s) = ln/R e’? \/ﬁdy =-3 In(—s).

Thus v = 0. Let {c1,¢a,...,c4} be a basis for R? and let A be the Bravais lattice
generated by this basis:

d
A= {Zmici T mE Zd}.

For n € N let A, be the subset of A given by

d ,
Anﬁ{zmici . me{—-n,—n—%—l,...,n—l,n}d}.
=1

We define a, to be the number of lattice points in A,; that is a, = (2n + 1)%.
We also choose a positive function u : A — R such that ) ., u(y) < co. Define
{b1,b2,...b4} to be the basis of R4 satisfying (ci,b;) = 2mdij, and let A" be the
parallelepiped

d
1
A'—'—-{inbi:xéﬂd, ]xiiﬁi, i:l,...,d}.

=1
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'Define a function £ : A" — R by the formula

yEA

We set X = A" and £(z) = a — é(z) for some a < 0. Hypothesis 1 is satisfied. Let
AT be the lattice reciprocal to A,: -Z#

d ;
AL = (2n+1)—lzmjbj :mée{-n,—n+1,...,n—1,n}?

j=1

The set {z;(n)} then is equal to AJ, so that u, converges in the sense of condition
(iil) of Hypothesis 2 to u = C~'m, where m is Lebesgue measure on A" and C is
the volume of A". Hypothesis 2 is satisfied. This completes our presentation of

examples.

We return to the general development, recalling the probability measures K,
on E defined in equation (1.7). The first objective of this paper is to prove that if
E is equipped with the narrow topology, then the sequence of probability measures
{K.} on E obeys the large deviation principle [1, 2]. We recall that the sequence
of probability measures {K,} on E is said to obey the large deviation principle
with constants {a,} and rate function I : E — [0, 0] if the following conditions
are satisfied:

(LD1) I is lower semi-continuous;
(LD2) For each b < oo, the level set {m € E : I(m) < b} is compact;
(LD3) For each closed set C

limsupa, ' InK,(C) < -I(C);

=0

(LD4) For each open set G,
lilrninfaz;1 InK,(G) = -I(G).
—00
Here we have used the notation

I(A) ifiréi](m) (1.8)

for a non-empty subset A of E and we set () = co.
Let us go back to the example of the Bose gas discussed earlier and assume that

the functiom G on E given in equation (1.7a) is continuous in the narrow topology
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on E. Then the large deviation principle for {K,} and Varadhan’s Theorem give

a variational formula for the pressure p; namely

= lim 2 a2 G(m) _
= nl-li%o ZlnLe Kr(dm) = ilé%[G(m) — I(m)].
Knowledge of the minimizers of this variational expression can give great insight
into the physical properties of the equilibrium states of the model. Clearly, an
explicit form for the rate function I is very helpful in the study of the variational
problem. The second objective of this paper is thus to obtain an explicit formula
for the rate function in the general case.

This paper is set out as follows. In Section 2 we shall prove that {K,} satisfies
the large deviation principle (Theorem 2) and give an explicit formula for the rate
function I. (Theorem 3). The proofs of Theorems 2 and 3 depend crucially on the
Approximation Theorem, stated in Theorem 1 and proved in Section 3. Lemma

1.1 is proved inan appendix.



§2. Large Deviations

In this section we prove the large deviation principle for the sequence of mea-
sures {K,} and obtain an explicit form for the rate function I. These results are
based on the Approximation Theorem which is stated in Theorem 1 in this section

and proved in Section 3. The large deviation principle is stated in Theorem 2.

Let D = {f: f € C%(X), sup(é(z) + f(z)) < ~}. For f € D, define

Colf) = =ln [ ™I (dm) = laE{ep(Y fe (X)) (21)
n E ) n s
Then :
Co(f) = [ {7(€(@) + F(&)) = 7(E(a) (o). (22)
If we define ,
C(f) = lim Calf), (2.3)
then by condition (iii) of Hypothesis 2
C() = [ {x(6(@) + () = n(e(a))u(do) (2.4)
Note that by using the convexity of 7 and Lemma 1.1 (i), one may easily check
that C is continuous with respect to the supremum norm || - [|eo on D. Form € E
we define
I(m) = sup{(m, f) = C(f)}- (2.5)
f€D

In Theorem 2, we shall prove that I is the rate function in the large deviation
principle for {K,}.
For f € D define
pl(z) = 7'(é(z) + f(=)) (2.6)

and
m(dz) = 7' (&(2) + f(2))u(da); (2.7)
i.e. mf is the element of E which is absolutely continuous with respect to y and

has density pf. In Section 3 we shall prove the next theorem.

Theorem 1. (Approximation Theorem) Let p be a positive regular Radon
measure on X satisfying Hypothesis 2. Let m be an element of E such that I(m)

is finite. The following conclusions hold.
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(a) If m is absolutely continuous with respect to p and has density p, then there
is a sequence {f,} in D such that

Lo lim B lo(z) = p?*(2)u(dz) =0,
1 fay —
2. nl;n;lo I(m’") = I(m).

(b) If N is a neighbourhood of m and e > 0, then there exists f € D such that

1. mfenN,
2. |I(mH)=I(m)| <e

K 4

In order to prove the large deviation principle, we shall also need the following
four lemmas. Choose a number 4 € (£p,v) and for each k € N define the function
fr : X — K by the formula

0 if £(z) > —k + 4,
fr(z) =4 =k(l(z) +k—-7)/2 if -k+7-1<¢(z) < —-k+7, (2.8)
: k/2 ife(z) < —k+5 1.
‘We note that
0% fule) < k.

Ifé(z) < =k + 7, then

Since (¥ — é(z)) > 0, when £(z) > —k + 7, we have fe(z) = 0 < (7 — £(x)).
Therefore for all z € X

I
~~
pAN
N
+
2t
S
IN
[SVE
o
+
2
AN

2

fi(z) +¢(2) <

and so fr € D. Let fmaz(2) = supg»; fk(z). Then

1.
0 S fma:z(z) S 5('7 - 6(3))
Note that frq.r need not be in D. For M > 0 define

Sy =(|{meF : (mf)<M}={meE : sup(m,fi) < M}
k>1 E>1

and
Bu={meE : |m| <M},

9



and put Wy = ®p N By, @ar is clearly closed. We shall prove that Wy is
compact after the next lemma. We need the following definition.

Definition: A set ® C E Is uniformly tight if given ¢ > 0, there is a compact
subset I' C X such that m(I'°) < € for all m € ®.

Lemma 2.1 The set s is uniformly tight.
Proof: Let m € ®5r. Then (m, fr) < M for all k € N, and so

3o [ mam= [ fe)mlde) s m s <M
{z:6(z)<—(k+1-%)} {z:6(x)<—(k+1-7)}

for all £ € N. Hence given ¢ > 0 there exists n € N such that m{z : {(z) <
—(n+1-7)} <eforall min ®p; but {z:€(z) > —(n+1—7)} is compact by
~condition (ii) of Hypothesis 1. This completes the proof of the lemma with

'={zeX:€z)>-(n+1-9)}

We now prove that Wy, is compact.

Lemma 2.2 The set Wy is compact in the narrow topology.

Proof: Since Wjs C By, the set Wy is uniformly bounded; since Wiy C @y,
the set Wp is uniformly fight. Since X is a locally compact Hausdorff space, it
follows from Prokhorov’s Criterion (Theorem 1 of Number 5.5 of [7]) that Wy is

compact.

a

In order to prove the upper large deviation bound, we want to show that the
sequence of measures {K,} is exponentially tight; that is, given L € (0, c0) there

exists a compact subset Ay of X such that

limsup--l-—ln Kn(47) < -L.

n—oo Qn

This is carried out in the next lemma.

Lemma 2.3 The sequences of measures {K,} is exponentially tight.
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Proof: For each M € (0,c0) the set Wi = Bar N @ is compact and Wy, =
BS§; U ®5,. Hence it suffices to prove that

1
lim limsup — InK,(Bj;) = —c0 (2.9)
M—o0 n—oo an

and

lim limsup —1—111 Kn(®4) = —o0. (2.10)

M—c0 paco Gn

Choosing « € (0,v — &) we have

Ka(BS) = / Kn(dm) < / ganallml=MIC  (dm)

{meE:||m||>M} {meE:||m|>M}

S /eana(nm]l—M)Kn(dm) — e—anaMeanCn(o:)'

Therefore .
limsup —InK,(BY;) < —aM + C(a)

n-—+co an

and since a > 0, the limit (2.9) follows.

We have
_l_ gtn squ?-l(m’fk)Kn(dm) < -]:—h‘l/ " fx fmaz(x)m(d.t)Kn(dm)
an JE an E
< _}_ln/ o fx %(%—-E(r))m(dr)Kn(dm)
An E
1.
- n (33 - ¢ta)
1 1.
= [ {=(Ge@ +37) = nte@) } unlaa)
X 2
Hence

lim supi— ln/ e SUPkz1 (MK (dm)
E

n—oo dn

< [ {=(Gew+37) - (o) f uldo) = 4 < oo

Since by Chebyshev’s Inequality
Ka(@3) S oot [ eommeean NG ),
ST E

we have .
limsup — InK, (%) SA-M

n—oco Qn

11



and the limit (2.10) follows. This completes the proof of the exponential tightness
of the sequence {K,}.
d

The next lemma is needed'in the proof of the large deviation lower bound.
We shall use the following notation. For m € E and f € D let

I(m, ) = (m, f) = C(f).

Lemma 2.4 For f € D
I(mf) = I(m7, f);

that is, for m = m/ the supremum in the definition of I(mf) is attained at f.
Proof. For fixed z € X, define g : R — R by the formula

g(y) = 7'(&(z) + f(z)y — m(é(z) + y).
Then :
q'(y) = 7'(&(z) + f(z)) = 7'(E(z) +y)

and thus ¢’(f(z)) = 0. But g is concave and therefore g(y) < g(f(z)). Letting
y = h(z), where h € D, and integrating with respect to p, we get

j g(h(z))u(dz) < / o(f(2))u(dz).
X

X

This equivalent to

/Y ' (§(z) + f(z))h(z)u(dz) = C(h) < / ' (§(z) + f(2)) f(z)u(dz) = C(F)

X

or

I(m?,h) < I(mf, f).

It follows that I(mf) = I(m/, f), as claimed.

We are now ready to prove the large deviation principle.

Theorem 2. The sequence of probability measures {K,} on E satisfies the large

deviation principle with constants {an} and rate function

I(m) = sup{(m, f) = C(f)}.

feD

12
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Proof: We first verify (LD1)-(LD2). I is lower semi-continuous because the supre-
mum of a family of continuous functions is lower semi-continuous. Hence (LD1)
holds. To prove (LD2) (compact level sets of I), we first note that the lower semi-
continuity of I implies that the level set Sy = {m € E : I(m) < b} is closed. For
f € D and m in Sy wehave

b2 I(m) 2 (m, f) = C (). (2.12)

Choosing a € (0,v — &) and putting f(z) = «, we have

b2 alm] - [ (x(&(e) + @) = w(6(2) utdo).

It follows that if M is chosen large enough so that

M>al (b+ /X{W(E(l‘) + ) — W(f(m))}#(d$)> ;

then Sy C Bp. Also putting f = fir in (2.12) (the function fx is defined in

equation (2.8)), we obtain

b2 (m, fx) = C(f¥).

But by definition of the constant A (see equation (2.11))

Clfe) = /X (7(E(z) + ful2)) — w(E(z))}ulda)
< [ (3660 + 33) - n(e@)utds) = 4,

Hence (m, fi) < b+ A for all k > 1. It follows that Sy C ®ar forall M > A+b. We
have thus proved that, for M sufficiently large, the level set Sj is a proper subset
of Wis and that S is closed. It follows from Lemma 2.2 that S} is compact. Hence
(LD2) holds.

We now prove (LD3), the large deviation upper bound for closed sets. Lemma
2.3 proved that the sequence of measures {K.} is exponentially tight. Hence by
Lemma 2.1.5 in Deuschel-Stroock [3], it suffices to prove the large deviation upper
bound for compact subsets of E. In order to carry this out, we follow Lemma
VII.4.1 in [2] and make use of the next lemma, whose proof is essentially identical
and therefore omitted. We merely remark that this lemma uses the continuity,

with respect to the supremum norm || - ||, of C at 0.

13



Lemma 2.5 Given f € D and 3 € R, define H.(f,3) by the formula
Hi(f,8) = {meE: (m,f)—C(f) = 8}.

Let K be a compact subset of E. Then for any number 3 < I(K) there exists a

finite set fi,..., fr of non-zero elements of D such that

U fJnB)

The rest of the proof of (LD3) is standard; we give it for the sake of complete-
ness. Let K be a compact subset of E. For each 3 < I(K) we have by Lemma 2.5
and Chebyshev’s Inequality

( SZ H+ f]v/@)

Z an(C(fJ)+ﬂ)/ e (MK (dm)

— e"anﬁ Z ean[cn(fj)—c(fj)].

i=1

Hence .
limsup — InK,(K) < -4.

n—oo dn

Since this holds for all § < I(K), we have

lim sup L InK,(K) £ =I(K).

n—oco Qn

This completes the proof of the large deviation upper bound for the compact set
K. Thus (LD3) holds. |
We now prove (LD4), the large deviation lower bound for open sets. Let G
be an open subset of E. If I(G) = co, then (LD4) holds for G. So we suppose
that I(G) < co. Then for each ¢ > 0 there exists a measure m € G such that
I(m) < I(G) + e. By Theorem 1(b) there exists f € D such that mf € G and
I(mf) < I(m) + ¢, so that
I(mf) < I(G) + 2e. (2.13)

Now let
Ge=Gn{meE : |(mf)—(m/,f)l <e}

14



and for n € N define the measures K, on E by the formula
kn(a’m) = ean{(f,m)—-Cn(f)}Kn(dm)_

Recalling that
£3nCn(f) =/ e (mAK, (dm),
E

we see that K, is a probability measure on E. We shall prove that for all n

sufficiently large K,.(G¢) > 3. Since G is open and mf € G, there exist

fi,..., fr €C%X) and § > 0 such that
Nj = h{m € E: |{f;,m —mf)| < 8} C Ge.
. J=1 ‘
Define thve‘ fﬁnétion g : E— R" by the formula
9(m) = ((gm))1, (g(m))as - -, (g(m))e)

where for each j € {1,2,...,7}

(g(m)); = {f;,m —mT).

Then define @, = K, og~!. For real numbers s, s9,..., s, the Laplace transform

of the probability measure Q, is defined by the formula

a

Qn(51,32a s 7'57‘) = R’ 8—. Z;:l it Qn(dt)

= [ iR, 4
E

= e 2im i fm) o [ {cn<f - -1“ > sifi) = @(f)H :

n ]=1

By Lemma 1.1 (iii)
lim a, {Cn (f - é;sm) - C'n(f)} = —/X;ijj(m)ﬂ' (€(2) + f(2)) p(dz)

= —<Z;1 sjfj,m’).
Hence for (s1,s2,...,5r) € R"

lim Qn(sl,SQ,. ..,87-) =1
n—>co

15



and so by Chebyshev’s Inequality
lim @n.{R"\[-4,0]"} = 0.

Since

Ra(Ge) > Ru(NVs) = Kn 0 g7 ([=5,6]7) = Qu((~5,6]")

and Qn([—§,8]") — 1 as n — oo, we have that K,(G.) > 3 for all n sufficiently

large. Now

Kn(G) > Kn(Ge) = ea“c"(f)/ e'an(mvf)kn(dm) > ean[cn(f)_<m/vf)"f]Rn(Ge.).

P

Therefore by Lemma 2.4, we get

1
lim inf — InKA(G) > C(f) = (mf, f) —e=—I(mf) — e > —I(G) - 3e.
The last inequality follows from (2.13). Since ¢ is arbitrary, (LD4) holds. We have
completed the proof of the large deviation principle for the measures {K,} with

rate function I.

a

As we remarked in Section 1, one application of large deviations in statistical
mechanics is the use of Varadhan’s Theorem to obtain a variational formula for
the grand canonical pressure or the canonical free energy density. The variational
problem is not studied here, but clearly it is very desirable for applications to
have an explicit form for the rate function. The rest of this section is devoted to
obtaining an explicit form for the rate function I, analogous that found in [4] for
the Bose gas.

We split off that part of the measure m which is singular with respect to
p and deal with it separately. For m € E, let m = m, + m, be the Lebesgue
decomposition of m with respect to p into the singular part m, and the absolutely
continuous part m,; let p be the density of m, so that m,(dz) = p(z)u(dz). Define
U : E — [0,00] by setting U(0) = 0 and for m # 0 ‘

U(m) = {gg(‘f — £(2))m(dz) if v < oo,

if v = co.

We recall that v = sup{s € R : 7(s) < oo} and that by condition (iii) of Hypothesis

1 SUPzex E(:E) <7
The next lemma gives a useful formula for U(m).
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Lemma 2.6 For all m € E, supsep(m, f) = U(m).

Proof: Clearly if m = 0, supsep(m, f) = 0. Take m € E, m # 0. Suppose
v = oo and let f(z) = c for all z € X. Then f € D and (m, f) = c||m||; thus
sup ;ep(m, f) = c|lm|| and since c is an arbitrary real number sup tep(m, f) = =o.
Now suppose ¥ < co. Since f € D, sup, ¢ x(f(z) +£(z)) < v and so

sup(m, ) < /Yﬁ — &(z))m(dz). (2.14)

feD

In order to complete the proof, we show the opposite inequality. Let § € (0,v—460)
and for n € NN ((v = §) ™!, 00) define

fa(@) =(v—&(z) =n") An

for all z € X. Then f, € D and f, > 0 and by Lebesgue’s Monotone Convergence

Theorem

lim . ) = [ (v = €(@))m(ds)

P

Hence

sup{m, f) > /X (v - &(z))m(dz).

feD

The proof of the lemma is complete.

Lemma 2.7 For eachm € E,
I(m) = U(m,) + I(ma).

Proof: If m, = 0 there is nothing to prove, we may therefore assume that m, # 0.
For all f € D,

I(m, f) = (m, f) = C(f) = (ms, ) + (ma, f) = C(f)
= (ms, f) + I(ma, f) < U(ms) + I(ma, ).

Thus I(m) < U(ms) + I(ma).

In order to complete the proof, we show the opposite inequality. Let r <
U(m,) and choose g € D such that (g, m,) > r. Let B be a subset of X such that
mq(B°) = 0 and p(B) = 0 so that m, is concentrated on B. For n € N choose
compact subsets K, C B such that my,(B\ ) < -rl; and choose open subsets O,
such that B C Op+1 C On, ma(0r) < ;1; and p(0,) < % We recall that this is
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possible because m, and m, are bounded Radon measures and therefore regular.
By Urysohn's lemma there exists a function 7, € C®(X) such that 0 < 7,(z) < 1
forall z € X, mo(z) = 1 for ¢ € K, and 7o(z) =0 for z € 0. Let f € D and
define fn € D by

falz) = ma(z)g(z) + (1 = 7a(2)) f(2).

We then have ,
(m, fa) = (ms, g) + (ma, f) + /Y{l — ra(2)H f(z) = g(z)}ms(dz)
+ /‘{ m(z){g(z) — f(z)}m.(dz)

Since 1 — 7x(z) = 0 for z € K, and m,(B°¢) = 0,
[ =@ - g@madn) = [ {1 =@ H @) - g(a)bma(de)
X . X\Kn
= [ - m@HiE) - g(a)ma(de).
B\K,
Similarly since m,(z) = 0 for z € O% and m4(B) = 0,

[ (@) a(s) - £@)}matdz) = | (@) o(z) = f@)}ma(de)
X

n

- / r(2){9(z) — £(z)}maldz).
O,\B
Thus

(70 fa) = (M g) + {ma, ) + / (1= ma(@}HF(2) = g(z)}ma(dz)

B\ K,
+ /O ) = £ ma ()

2 (ma, g) + (ma, f) = 2{[| flleo Vllgllec}ms(B\ Kn)
- = 2{l[flles V llglloc}ma(On)

>4 (ma £) = = {1 flleo V llglac}.

Hence liminf,oo(m, fn) 2 7+ (ma, f).
Now since the function m(£(z) + t) is a convex function of ¢t € R, we have for
eachz € X

m(&(z) + fa(z)) < Ta(@)7(§(2) + 9(2)) + (1 = ma(2))7(£(2) + f(2)).
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Therefore
C(fa) /O Ta(z){m(é(z) + 9(z)) — m(&(z) + f(2))}u(dz) + C(f)

< [ In(e@) +o@lutda) + [ In(e(e) + f@)lutde) + €.
Thus by condition (ii) of Hs}pbtheéis 2 and Lebesgue’s Dominated Convergence

Theorem

limsup C(fr) < C(f).

[ Aamde ]

It follows that
I(m) > liminf({m, f2) = C(f2)) 2 7+ (ma, f) = C(f)
and so I(m) > r 4+ I(m,). Since r is an arbitrary number less than U(m,), we get
I(m) = U(ms) + I(ma).

This completes the proof.
O

For use in the next section, we note the following simple corollary of Lemma
2.7.

Corollary 2.8 If m € E satisfies I(m) < oo and if ¥ = co, then my, the singular
part of m relative to u, equals Q.
Proof: By Lemma 2.7, we must have U(m,) < co. If m; # 0, then since v = oo,

we would have U(m,) = co. We conclude that m, = 0.

In the next theorem we give an explicit form of the rate function [ in the large
deviation principle. Let 7#* : R — (—o0, 0] be the Legendre-Fenchel transform of
7; that is

7 (t) = sup(ts — w(s)).
<y

Fort € R and r < v let

J(t,r) =7*(t) —rt + w(r).
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Note that J(¢,r) > 0 and that ¢t — J(¢,7) is lower semicontinuous.

Theorem 3. For each m € E, let m, and m, be respectively the absolutely
continuous part and the singular part of m in the Lebesgue decomposition of m

relative to pu. Then
I( ms / J (d:v)

where p(z) = %—“—(z).
Proof: By Lemma 2.7, I(m) = U(m,) + I(m,). Hence we must prove that

ma) = / J(p Ju(dz)
Define J(t,r;s) =ts —n(s) —rt + w(r) for t €R, r < v and s < 7, so that

J(t,r) =sup J(¢,1;9).

s<

If f € D then

(ma, f) = C(f) = (ma, f) = [ {m(&(z) + f(2)) — m(£(z)) }u(dz)

X

- / F(@)p(z)uldz) — / (n(E(z) + f(z)) — 7(&(z))}u(dz)
X X
= [ Jip).&(x), f(z) + E(x)uldz)

X

< /X J(p(=), &(2))u(dz).

Therefore I(ma) < [y J(p(x),&(x))p(dz).

In order to complete the proof we must show the opposite inequality. If
I(m,) = oo, there is nothing more to prove. Suppose I(m,) < co. By The-
orem 1(a) there is a sequence {f,} in D such that if p, = p/~, then p, con-
verges to p in the L'-norm with respect to u and if m/~(dz) = pn(z)u(dz), then
limp—oo [(mf*) = I(m,). The sequence {p,} has a subsequence {pn, } which con-

verges pointwise p, p-a.e. Now since ¢ — J(¢,7) is lower semi-continuous we have

[ Tot@) @) ulda) < [ imint Ton, (=) £(2))u(d)

Y k—oo

< limint / T(pne (), () u(dz)

t‘)

..:



by Fatou’s Lemma. But by Lemma 2.4

I(mf")—f( " fn)

/ fala C(fa)

= [ Unl@)pala) + w(e(a) = m(6(@) + Frl)ulde)
= [ AU(E(@) + F(@))pnle) = (E(e) + Fale))] = E@hon(z) + 7(E(2)) hu(d)
Since for 5 < 7, 1°((s)) = 57/(s) = (5) and pa(z) = 7'(£(z) + fal2)),
" (pn(2)) = (& (=) + Fale))pn(z) — 7(E(2) + Fule))

Therefore

HmP) = [ (5" (oa(@)) = E(@)oa(z) + m(E(z)]u(de)

= [ Tonl@) @)uld).
Thus we have
/ J(p(2),§(2))p(dz) < liminf I(m fr) = I(my).

This completes the proof.

In the next section we prove the Approximation Theorem, Theorem 1.



§3. Proof of the Approﬁimation Theorem

In this section we shall prove Theorem 1. We first prove Theorem 1 (a)
and then show that Theorem 1 (b) is a corollary of (a). In part (a) we want
to approximate the density p of a,mea.'s‘{ure m that is absolutely continuous with
respect to u by the density pf of a measure m’ with f € D. We recall that

() = '(&(2) + f(2)),

so that the range of p/ must be a subset of the range of n’. In the first lemma,
Lemma 3.1, we prove that if m € E is such that I(m) is finite and m is absolutely
continuous with respect to x with density p, then p(z) must be within the range
of 7' almost everywhere with respect to u. The idea of the proof is that if ¢ € R
is outside the range of 7', then the Legendre-Fenchel transform =*(t) is infinite.
Let the range of 7/ be (p1, p2); i-e. p1 = lims——co m'(s) and p2 = limgpy 7'(s).

These limits exist since 7’ is monotonic.

Lemma 3.1 Letm € E and p(z) = dﬂ“ (z), wherem, is the absolutely continuous

part of m in the decomposition relative to p. If u({z € X : p(z) > p2}U{z € X :
p(z) < p1}) # 0, then I(m) = oo.

Proof: For s,s; € (—o0,7v) we have
m(s) = w(s1) < (s —s1)7'(s),
and therefore for p € R,
ps —7(s) = (p—7'(3))s + s17'(s) — m(s1). (3.1)
Let 7 < 0A~. Then for p < p; and s < s
ps —m(s) > (p—p1)s +s17 (s1) — m(s1). ' (3.2)

Let C = {z € X : p(z) < p1} and suppose p(C) > 0. Let Co = {z € X : p(z) <
p1—1l}and forn =1,2,... let

1
Cho={zeX :p— >p(:c)2p1-7—1-}.

n+1

Then C = Up>0Cr and therefore for some n, u(Cr) > 0. Thus there isan e > 0
such that u{z € X : p(z) < p1 — €} > 0. Since p is a regular measure, we can
also then find a compact set X C {z : p(z) < p1 — €} such that pg(A) > 0. Let
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¢y = infrex €(z) and ¢z = sup,ex €(z) and choose s < min(sy,cy, &, 7'(s1)).
Again since p is regular, we can then find an open set O such that K C O
and m(0O \ K) < 621__8. By Urysohn’s Lemma we can find 7 € C®(X) such that

0<r(z)<lforallz € X, 7(z) =1for z € K and 7(z) = 0 for ¢ € O°. Let

{s—c2 &(z) > ca,

—6(1) C1 S. 5(21) S Cc2 ,
s —c1 €(z)<er,

g(xj =

and let f(z) = 7(z)g(z); then f € D. Since g satisfles s —c3 < g(z) <s—c1 <0
for all z € X, f satisfies L e
s—cp < f(z) L0

for all z € X. By Lemma 2.7, I(m) = U(m,) + I(ms) > I(m,). (Note that the

proof of Lemma 2.7 does not use Theorem 1.) Now
I(ma) 2 I(ma, f) = / {p(2)(f(2) + £(a)) — n(f(z) + €(2))}u(da)
- [ (ple)ete) = m(e(e) (i) (3.3)
+ [ e@)f@+ [ (aee) - w(f@) + €e)uld)
O\K O\K

Since f(z) <0

I(ma) > / [p(2)(f(2) +£(2)) — 7(£(2) + E(2))(de)

- [ (@)@ - s(e@hutda) + [ ol@(e).
O\K

Thus by (3.2), since f(z) +&(z) =sforz € K

I(ma) = (e]s] = |s1l7’(s1) = m(s1))u(K) = eallm| + (s — c2)m(O \ K)

/ |7 (£(z))|p(dz)

= (els| = Isa|m(s1) = w(s1))u(K) — ezflm]| = 1 - /X l?f(é(.x))l/l(dz)-

Letting s — —oo we get I(m,) = co and therefore I(m) = oo.

Suppose pu{z € X : p(z) > p2} > 0. Clearly this is not possible if p; = co.
Therefore we can assume p; < co. One of the assumptions in Section 1 was that
if ¥ < co, then p; = co. Therefore here we can take v = co. Then from (3.1) with
s1 =0, we get for s >0

ps —m(s) = (p — p2)s — m(0). (3.4)
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By an argument similar to the above we can choose a compact set K C {z :
p(z) > p2 + €} such that u(K) > 0. With the same definitions of ¢; and ¢y we let
s> (0 V ¢). Since the measure [7(&(z) + s — ¢1)|u(dz) is regular, we can find an
open set O such that ' C O and fO\I |7(é(z) + s —c1)|u(dz) < 1. Let g and f
be defined as above. In this case 0 < s — ¢z < g(z) < s —¢; and thus

0< f(z) £s—¢ (3.5)

for all z € X. Using (3.3) and the fact that f(z) 20, we get
I(m.) 2 /A {p(@)(f(2) + €(@)) — n(f(x) + &(x)) }us(da)
== [ @) —meeNuldn) + [ (a(e(@) ~ n(f(@) +E)Iuld)
K | O\ K

Thus by (3.4) we get

I(ma) 2 (es — m(0))u(X) — coflm]| —/ m(§(z) + s — c1)u(dz) + /O m(£(z))u(dz)

O\K

> (es — 7(0))u(K) — x| — 1 / I (6(2)) u(dz).

Letting s — oo we obtain [(m,) = co amd hence I(m) = co. The proof of the

lemma is complete.

a

Lemma 3.2 Ifm € E and I(m) < oo, then [ |{(z)|m(dz) < oo.
Proof: We prove that [ |(z)|m(dz) = oo implies I(m) = co. Suppose first that
v < co. If [|é(z)|m(dz) = oo, then since

¥ —&(z) = v = &(=)] =2 [§()] = vl

we have [ (v — &(z))m(dz) = . If [((v — £(z))ms(dz) = oo, then I(m) = co
by Lemma 2.7 since I(m,) > 0. Suppose [ (v —&(z))ma(dz) = co. Then since
(v — &(z))mq(dz) is a Radon measure, given r € R there exists I, a compact
subset of X, such that

| 1= @)maldz) > r
K

Define f: X — R by

(4 —5<x>>} A {1@ _inf ey ))}

yeK



Then

05 f(z) < 50v = inf €)

for z € X and
(7 + &)

l\DI —

1
E(2) + f(2) < 3 (7 +£(2) <
for all z € X; hence f € D. Also f(z) = %(7 —¢&(z)) for z € K. Thus
1
I(mg) 2 I(ma, f) 2 —/ (v —&(z))ma(dz) — /X{W(f(fﬂ) + f(2)) — m(é(z)) }u(dz)
2r— [ {n(zlr e W} + (6@ ()
Since r is arbitrary, I(m,) ;:«eo. But U(ms) > 0, and so by Lemma 2.7 I(m) = oo.
Suppose that v = co. By Corollary 2.8, if m, # 0, then I(m) = co. (Note that
the proof of Corollary 2.8 does not use Theorem 1.) Therefore we can assume that
ms = 0. If [ [é(z)|m(dz) = oo, then at least one of the quantities [y &4 (z)m(dz)

and fX £-(z)m(dz) is +co. Suppose fX é+(z)m(dz) = co. Given r € R there
exists K C X, a compact subset of X, such that [, &4 (z)m(dz) > r. Define

F(z) = {€4()} A {§2§,s+<y>}.

Then f € D and

Hm) 2 Im,f)2r= [ {n(2¢()) = nl(a)}uldz)
{z:£(z)>0}
27— [ e - [ Inte(e)lutds),
and thus since r is arbitrary, J(m) = co. Similarly, if [ {_(z)m(dz) = co, given

r € R there exists K C X, a compact subset of X, such that IK —(z)m(dz) > r.

The same argument works with the function

) = 3 - A {sup -}

yeK

In this case

I(m) > I(m, f) 2 7 /{ . KO}{n(le(m — x(¢()) }u(da)

<

2= [ Ir(zeEDlutds) - ] i@ luas),



and again, since 7 is arbitrary, /(m) = co.

We shall now proceed with the proof of Theorem 1 (a).
Proof of Theorem 1 (a):
Let m € E be absolutely continuous with respect to u and let p(z) = %’;—‘-(x).

We first treat the case when p; = p2 = po, say. In this case by Lemma 3.1
I(m) < oo implies that p(z) = po p-a.e. On the other hand we must then have
7'(&(z)) = po for all z € X. Therefore p(z) = pf(z) p-a.e. with f(z) = 0 and
Theorem 1 (a) is immediate..

We now suppose that 0< p1 < p2. Then o does not consist of a single atom,
for otherwise 7/(s) would be constant. If ¢ does not consist of a single atom, then
7"(s) > 0 and 7’ is strictly increasing. Therefore 7’ is invertible on (p1, p2)-

Let f(z) = (7)Y (p(z)) — &(z). If f € D, the conclusion in Theorem 1 (a)
is true since then p = pf. However in general f ¢ D and we have to make some
approximations. We first approximate p by a continuous function j, since we want
Fa(z) = (7))~ (pn(z)) = £(z) to be continuous. Also we have to trim pn so that
pn(z) is in the range of n’.

Forne N, n> (py —p1)7! let
An = {nV|(m) T (n A (p2 —n7HI}

Since I(m) < oo, we have by Lemma 3.2

/ |€(z)|m(dz) < oo.
X

Define the measure
A(de) = (1 + () u(da).

Since [y p(z)i(dz) < oo, for each n € N we can find pn € C(X) with compact
support such that

[ 10(2) = olzlitee) < 43°
(see for example Rudin (8], Theorem 3.14). Then it follows that
[ 160(2) = pl)luta) < 437
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and

/Y 1n(2) — p(2)] €(2)|u(dz) < AZ?.

Now we trim j, in a suitable way. For each n € N, n > (p2 — p1)~! and each
€ X let Ba(z) = 7/(E(z) =n) and va(z) = (7/(£(z) =n)V (n A[p2 —n~1])). Then
0 < p1 < Bnl(z) £ vn(z) < p2 forall z € X. Let

ES ={z € X : pn(z) < Bn(z)},

Ep = {z € X : fa(2) < fn(2) < 1m(2)},
E7 ={z € X : pn(z) > 1m(2)}-

Define f, € D by

()7 H(Ba(z)) —&(z) = —n, =z € EY,
falz) = ()7 (pn(2)) = &(2), z € Ep,
()7 (1n(2)) = &(2), z€E7.
Note that since p, has compact support and f,(z) = —n for z ¢ supp fn, fa is

bounded. Also it is easy to check that

[fn(z)] < [6(2)] + An

for all z € X. Let pp = pf*; that is, let

pn(z) 2z € Ep,
m(z) z€E7.

Ba(z) z€ES,
pr(z) =
Let mp = mf~; that is m,(dz) = p.(z)u(dz). We want to show that the trimmed
density pn is still a good approximation to p; that is, we want to prove that
[x Ip(z) = pa(z)|u(z) tends to zero as n tends to infinity. Now
[ 1o@) = pa@lis@) = [ 1p(e) = pn@llstae) + [ 16(@) = pali)lu(ao)
X EQ ESUEZ
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Also

/Ip — pn(z)|p(dz)

] 1p(2) = Bu()|u(dz)
E<

- [ 16@) = Ba(@)lutiz) + [ 16t2) = Bul@)lutee)
{z:hn(2)Vp(2)<Bn(z)} {z:5n(2)<Bn(z)<p(2)}

= [ Gar- slenulde) + | (e(@) = Bulz)utae)
T {z:ha(z)Ve(2)<Bn(2)} ‘ {z:8n(2)<Bn(z)<p(z)}

< [ Gala) = ple)utde) + JRORTACIMED
{z:0(2))<Bn(2)} | {2:5n () <Bn(z)<p(2)}

< / (Ba(2) - p(z))u(dz) +E[ 1p() = () e(d2).

{z:p(2))<Bn(z)}

Similarly
I, 16@) = pr@lutde) < [ 16(@) = pul@)lue)
E2 s
+ [ e Al —n ),
{z:p(z)>nA(p2—n1)}
Thus

/lp — pa(@) 1 x)</lp 2) = pul2)|u(d2)

b e - - ple)utda)
{z:p(z) <7 (E(z)—n)}

+ / (p(z) = n A (p2 —n~))u(dz).

{z:p(z)>nA(p2—n~1)}

We consider the three integrals in the last display separately. For the first

integral, we have

/ lp(z) = pn(z)|u(dz) < A7? - 0 as n — co.
X
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Since by Lemma 3.1 pu{z: p(z) < p1} = 0, we have for the second integral

{r'(£(z)—n) — p(z)}p(dz) <
{z:p(2) <7 (£(2)=n)}

/{w%e(z) 1) - o1 }u(dz) + / ' (€(z))(dz).

{z:p(z)=p1} {z:p1<p(z) <7 (&(z)—n)}

Both terms tend to zero as n — co by Lebesgue’s Dominated Convergence Theo-
rem.
For the third integral we have to consider the cases p; = oo and p; < =

separately. If po = oo, then

(plz) = Alpr =~ ulde) = [(ol@) - n)u(da)

{z:p(z)>nA(p2—n=1)} {z:0(z)>n}

< [ oledutda)
{z:p(z)>n}

which tends to zero by Lebesgue’s Dominated Convergence Theorem. If ps < oo,

since by Lemma 3.1 u{z : p(z) > p2} = 0, we have for all sufficiently large n

(p(z)—nA(pz—n-l)wue)sTfE )[ o(z)u(dz) + / o(z)u(dz).

{z:p(z)>nA(p2—n—1)} {z:p2>p(z)>p2— %

Again these integrals tend to zero, the second by Lebesgue’s Dominated Conver-

gence Theorem. Therefore

n—>00

iz [ 16(z) = po(e)lu(z) = 0

It is easy to deduce now that m, — m in the narrow topology. For g € C®(X),

/ 9(2)(pn(z) = p(2))pe(dz)

<

(72, 9) = (mn, g)] = < Jlglles /Y |on(z) - p(z) ()

Therefore m, — m in the narrow topology.
To complete the proof of Theorem 1 (a) we have to prove that lim, . I(m,) =

I(m). Since m, = m/», we have by Lemma 2.4

I(mn) = (mn, fn) = C(fr)
= (mn, fa) = (M, fa) + I(m, fa)
S (mn, fn) - (m, fn> -+ I(m)
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Thus if limsup,, _, o ({mn, fa) —(m, fa)) £ 0, then limsup,_, . I(m,) < I(m). But

since m, — m in the narrow topology and [ is lower semi-continuous, we also have

liminf I(m,) > I(m).

n—co -

Therefore limp oo [(my,) = I(m). To finish the proof it is sufficient to show that
lim sup((mn, fu) = (m, fa)) < 0.

n-»CcQ

We have

(Mims fn) — (1o fr) = \« Fa(2)(pn(z) — p(z))u(dz)

« %:AHXPNAHV - N:AHVVEA&HV
+ \4 Fal(@)(Ba(2) — p(2))u(dz)
< \m 5y 2 n(2) = paleu(d)
+ \x Fal@)15n(2) = p(z)|2(dz).

Also
\_\Lav__miilli_tﬁi m\ 1£(2)|]pn(z) — p(z)|p(dz)
X X

.T»:\. |pn(z) — p(z)|pu(dz) < 472 + A7 - 0as n — .
X
For z € ES, fau(z) = —n and pn(z) > jn(z) and therefore

o< fr(z)(pnlz) — pn(z))p(dz) < 0.

Let 7p = (') (n A (p2 —n~1)). Clearly there is r € R such that r, > r for all n.

Let z € E3; and suppose ©'(§(z) —n) 2 nA(p2 —n~'). Then {(z) —n >r, and

fa(z) =—n 21 —§(z) > - ¢(2).
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1€
{F—ctd<(z)d<2d:7} X
(zp)r(2)d(|(2)3] + |4]) / + (zp)(|(2)3] + lll)/f%f >
¥ _zg<(7)d<ed:n) {zd=(z)d:z}

(2p)A(2)o(|(2)3] + ] / & (zp)A((2)3] + M)/

u —
- >

T

{(1-u—td)vu< (2)d:z)

(zp))((;_u = 2d) v u— (2)d)(|(2)3] + [4])

‘0 < &d oours

‘00 > Td J] "we109Y [, 20UsSI2AUO)) PajeUIWIo(] s,anSseqa] Aq 0I9Z 0 SPULY YOTUM
{u<(z)d:z} _ {u<(z)d:z}
(2p)(2)d(|(2)3] + [4)) / S (ap)(u — (2)d)((2)3] + 4]) / -

{(1-u~2d)vu(z)d:z}
()75 = 9) v u = ())(|(2)3] + |4)
usY) ‘oo = o J]
{(1-u=2d)vuc(z)d:z)
(@)((u =) v u = @3+ 1) [ + (4 ) S
{(z)vaA<(z)d:x}u 2T
(@ = @@+ 1) [+ 2GS
{(z)¥h>(z)d:zyu g
P )+ @ — @i+ 1) [+
{(n)yur< ()0} 2

(ep)r((2)4k — (2)d)(|(2)3] + |4)) / =
a

(1 14 + ()]0 — @@+ ) [ 5
24

(ap)ri|(z)#d — (2)%0](|(2)3] + || / =
. <A

(2p)ri((2)% — (2)5d)((2)3 — 4) / >

(2p)((2)4 — (2)2d)(2)%f

210j2191y pue (T)¥d > (z)¥d ‘27 3 T 103 MON
()3 —u< (2)7— Y= (2)¥f woyy ‘(;_u—2)vu>(u—(z)3)xpue 27 > ]l



Both terms tends to zero as n — oo and thus limsup,_, . ({mn, fa) —(m, fa)) < 0.

This completes the proof of Theorem 1 (a).

d

We now turn to the proof of Theorem 1 (b). The proof proceeds by a sequence
of reductions. First we show (Lemma 3.3) that if m € E and I(m) < co, then
m and I(m) can be approximated by m(™ € E and I(m(™) respectively, where
the singular part in the decomposition of m{™ relative to x has compact support.
We then show (Lemma 3.3) that analogous approximations can be made using a
measure m’ that is absolutely continuous with respect to u. Then Theorem 1,
part (b) follows from Iﬁé.rt (a). Lemma 3.4 is used in Lemma 3.5 in approximating

I(m) by I(m').

Lemma 3.3 Ifm € E and I(m) < co, then there is a sequence {m(™} in E such
that m(™ converges to m, limn oo I(m(™) = I(m), and the singular part in the
decomposition of each m™ relative to p, mﬁ”’, has compact support for each n.

Proof: If v = oo, then by Corollary 2.8 m, = 0. In this case we set m{®) =m for
all n and we are done. Now suppose v < oo. Let {K,} be a sequence of compact
subsets of X such that K, C Kny1 and m(X \ K,) < L. We can find such a
sequence {K,} because m is a Radon measure. Let (™) (dz) = 1k, (z)m,(dz). If

f €CX), then
(R, 7) ~ (0, Pl € = Flloo:

Therefore m{™ — m, in the narrow topology and consequently m(™ = m(™ £+ m,

converges to m in the narrow topology. Now

U(m{) = U() = [

IY

(v — E(z))i™ (dz) = /Yw — &(2)1k, (z)ma(do).

Thus by Lebesgue’s Monotone Convergence Theorem

n—oo

iz (U(m{™) = [ (= &(e)m (dz) = U(m,)
X
Therefore by Lemma 2.7
lim I(m™) = lim_ U(m{™) + I(mg) = U(m,) + [(m,) = I(m).

This completes the proof.



Lemma 3.4 Let m be a measure in E having compact support. If N is a
neighbourhood of m, f € C(X), and € > 0, then there exists m’ € N such that m’

is absolutely continuous with respect to p and satisfies

< €.

[ ftaimias) = | fem(ae)

Proof: Let I = suppm. There are f; ... fn € C®(X) and § > 0 such that
N'={m':|(m' fi)=(m.fi)| <é, i=1...n} CN.

Let ¢’ < ||m||~'min(e, §). Since Ii' is compact, there exists a finite number of open
sets Vi,..., V. such that ¥ C U;z__le andforj=1...7

sup fi(z) — inf fi(z) <¢é', i=1...n,
reV; zeV;

and

sup f(z) — inf f(z) < 4.

zeV; z€V;
By condition (i) of Hypothesis 2, the support of u equals X. Hence u(V;) > 0 for
j=1...r. We can find compact sets I;,... K, C X such that 0 < p(X&;) < o
and K; C Vj for j = 1...r. This is possible because y is a Radon measure and
each Vj is open. Define subsets Uy,... U, of X by Uy = V; and U; = V;\ U, for
J=2,...7t . Then U; CV;, U;NUj =0 for j #; and K C U§=1UJ‘. Let

r

' - m(UJ) 3
m(ds) = 3 T ()
Then .
m(U;) inf fi(z) < | filz)m/(dz) < m(U;j) sup fi(z)
=1 j AN =1 zeV;
and . |
Zm(Uj)xiél‘f;j fz) < [ filzym(de) <) m(Uy) sup fila).
J=1 ) =1 J
Thereforefori=1...n
/ filz)m(dz) ——/ filz)m'(dz)| < ||m]|é’ < 6.
X X
Thus m’ € N. Similarly
/ flz)m(dz) -—/ flz)m'(dz)| < |Im||d" < e.
X N
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The proof of the lemma is complete.

a

Lemma 3.5 If m € E satisfles I(m) < co, then for any neighbourhood N of m
and any € > 0 there is a measure m’ € N which is absolutely continuous with
respect to u and which satisfies |[[(m) — I(m/)] < e.

Proof: If ¥ = oo, then we may choose m’ = m, and we are done. Now suppose
that v < co. By Lemma 3.3 there exists a measure m € N such that m, has
compact support and |I(72) — I(m)| < ze. Since I is lower semi-continuous, there
is a neighbourhood M of m such that if m-€ M, then

I() > I(m) — ze.

o]

Thus if A € M, then
I(m) > I(m) —e.

Let L={m'"€ E:m'+m, € NNM}. Lis a neighbourhood of 1, and therefore
by Lemma 3.4 there exists m(!) € L such that m(! is absolutely continuous with

respect to p and satisfles

' 1
J tr=eE@mds) - [ (3= gonmaasn)| < e (3.6)
Let m(®? = m) 4 m,. By definition of L, since m(Y) € L, we have m(?) =

m) + m, € NN M and therefore
I(m?) > I(m) — e
On the other hand, by formula (2.14), Lemma 2.7 and formula (3.6)

I(m®) = sup I(m®, f) = sup {(mV, ) + I(, )}
feD feD ‘

< / (7 = £(2))m ™ (dz) + I(a)
X

< [ (= etem, ) + Toma) + 5e
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Thus the measure m’ = m(?) € N is absolutely continuous with respect to u and

satisfles |[/(m) — I(m')| < e. This completes the proof of the lemma.

Proof of Theorem 1 (b): Part (b) of Theorem 1 follows from part (a) by Lemma
3.5. S
a

The proof of Theorem 1 is now complete.



Appendix
Proof of Lemma 1.1

Since 7 is convex, we have for any two real numbers a and b in (—c0, )
(b—a)r'(a) < w(b) — 7(a) < (b—a)r'(b). (A.1)

(i) Suppose that g € G and choose € > 0 such that g + ¢ € G. Putting
a=g(z) and b =g(z) +€in (A.1) we get

en'(g()) < 7(g(z) + €) — n(g(=)).
Therefore |
/ (g(z))p(dz) < e / {Ir(a() + O + Ir(g(2))]} u(dz).

Thus by Hypothesis 2’ condition {ii)

[ #(g(a)utde) < o
X .

(i) Let g € G and f € C%(X). Choose € > 0 such that g + ¢f € G. Putting
a=g(z) and b = g(z) + ef(z) in (A.1) we get

ef(x)n (9(z) < m(g(z) + ef(2)) — m(g9(z)).
Therefore

/ F(@)7 (9(2))un(dz) < / (7(9(z) + e£(@)) - 7(g(2))} pn(dz).

Thus by Hypothesis 2, condition (iii)

lim sup / f(z Vitn(dz) < / {r(9(z) + ef(x)) — m(g(2))} lde).

n—oo

Using (A.1) again, we obtain

[ {rlo(e) + (@) = m(g(a))} ulde) < / £ (g(z) + ef (x))u(da).

It follows then that
limsup/ fla)m ) itn(dz) / flz)m'(g(z) + ef(z))u(dz).

n—+co



Using part (i) of this lemma and Lebesgue’s Dominated Convergence Theorem,

we see that

lim [ F(e)r'(9(2) + ef(@)ulda) = [ f(o)w'(g(e)utdo).
Therefore

limsup [ f(a)n'(gla))un(d) < [ S0 (gle)ude).

The other inequality

liminf | f(z)n'(9(z))un(dz) /X @) (9(=))u(dz)

) n-—o0 X

follows by a similar argument by putting b = g(z) and a = g(z) — ef(z) in (A.1).

(1i1) Let {cn} be a sequence of real numbers converging to 0. Let g € G and
f € C%(X). We first suppose that ¢, > 0 for each n. From (A.1) we get for n
sufficiently large

/f(z: z))pn(dz)
<en”? / (r(9(z) + cnf(2)) = 7(9(e))} unldz)  (A2)
X
/ (@) (9(2) + enf(2))in(dz).

By part (ii) of this lemma the left hand side of the inequality (A.2) gives immedi-
ately

/ f(2)7' (g())u(dz) < liminfca™ / {7(g(2) + caf(2)) — 7(g(2))} tn(dz).

n—»co
(A.3)
Given € > 0, then for n large enough so that c,||f|lec < € we get from the right
hand side of (A.2)

f {7(9(2) + caf(2)) — 7(9(2))} 1 (d2)
/ Fo (@) (9(2) + €)un(dz) — / F= (@) (9(2) — eun(dz).

This follows from the fact that 7’ is an increasing function. Thus by part (ii) of
this lemma

limsupen™ [ {r(o(e) +cnf(z)) = nlg(2))} un(d)

n-—>0C0

/ Fe (@) (9(z) + yu(dz) - / F- (@)% (9(z) — eu(da).
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By Lebesgue’s Dominated Convergence Theorem and part (i) of this lemma we

then have

limsupea™ [ {n(g(2) + enf(2) = 7(9(2)} n(de) < | f@r a(zuee)
(4.9)
Combining the inequalities (A.3) and (A.4) we get

Jm e [ (rlo(e) + caf(e) = mlo(e)} snlde) = [ Fla)w(g(a)ulde).

: (A.5)
If ¢, < 0 for each n we can replace ¢, by —c, and f by —f in (A.5) to obtain the
same result. This completes the proof of Lemma 1.1.
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