Title	Dielectric Response and a Phenomenon of a Narrow Band Absorption for a Classical Rotor in a Double Well Potential
Creators	Gaiduk, Vladimir I. and Gaiduk, Vladimir V. and Novskova, Tamara A. and Tseitlin, Boris M.
Date	1993
Citation	Gaiduk, Vladimir I. and Gaiduk, Vladimir V. and Novskova, Tamara A. and Tseitlin, Boris M. (1993) Dielectric Response and a Phenomenon of a Narrow Band Absorption for a Classical Rotor in a Double Well Potential. (Preprint)
URL	https://dair.dias.ie/id/eprint/721/
DOI	DIAS-STP-93-31

OIELECTRIC RESPONSE AND A PHENOMENON OF A NARROW BAND ABSORPTION FOR A CLASSICAL ROTOR IN A DOUBLE WELL POTENTIAL

Vladimir I. GAIDUK, Vladimir V. GAIDUK, Tamara A.NOVSKOVA, Boris M. MSETTLIN
Inatitute of Poulo Fngineering and Electronica
of the Ruaslan Academy of Sciences, Fryazino, Moscow diatrict 141120, Ruealan Federation and
James McConnell
Bohool of Theoretical Physiag, Dublin Inatitute for Advanced Studiea, Dublin 4, Ireland

The theory of delectric relaxation in a planar ensemble of polar molecules 19 presented ior a model where dipoles rotate in an intermolecular conservative double well potential, having a profile $U=U_{0} \sin ^{2} \theta$. The evolution of wide band dielectric spectro 13 demonstrated when the potential depth U_{0} is ∇ raried; an isotropic and anisotropic medium being taken as examples. The spectra comprise the Debye relaxation and the quasi-resonant Poley absorption region. The rigorous theory is compared with a simplified one which was called the hyorid quasi-elastic bond/ extended diffusion model. This spproximation da ralia for a qualitative description and also for the quantitative one at the large field parameter $p=\left[U_{0} /\left(z_{B} T\right)\right]^{1 / 2}$.

For $p \gg 1$ the spectrum comprises one narrow absorption band and one Debye that relaxation region considerably shifted to low frequencies. It is shown ${ }_{\wedge}{ }^{\text {in }}$ the long lifetime limit τ. there exists a minimum absorption band $\Delta \nu_{0}(\rho)$. The quantity $\Delta \nu_{0}$ becomes small if the parameter $p \gg 1$. The dielectric relaxation in ice 1 is discussed with regards to this phenomenon.

1.The Problem of Narrow Lines in a Classic Ensemble of Polar Molecules

During the last few years considerable attention has been paid to
elaboration of molecular models of dielectric relaxation in strong absorbing polar liquids. A possibility was demonstrated ${ }^{1-6}$ \longmapsto to describe by using such models the evolution of the spectrum of the orientational relaxation due to temperature change. A low frequency \longmapsto wing of this spectrum falls usually intothe microwave region while the the quasi-resonance Poley absorption falls intolifin spectral region.

Let us list the typical dielectric properties of polar liquids:
a) a considerable (several times or inforder of magnitude) rise of the frequency ω_{L} of a maximum absorption comparing Prequency $\omega_{g a s}$. The latter refers to the maximum rotational spectrum absorption due to the same (as in ${ }_{\mathrm{A}}$ liquid) polar molecules;
b) The frequency ω_{D} of maximum dielectric loss, $\varepsilon_{D}^{\prime \prime}=$
$=\max \left[\varepsilon \varepsilon^{\prime \prime}(\omega)\right]$, is one $\begin{aligned} \\ \text { two orders of magnitude less than the frequency }\end{aligned}$ ω_{I}, the Debse relaxation time $\tau_{D}=\omega_{D}^{-1}$ being a_{A} characteristic parameter or a liquid;
c) the wide band $\Delta \omega_{L}$ of the absorption spectrum is commensurable with the frequency ω_{I} of the absorption peak. Thus, in "simple" polar liquids
$\omega_{\mathrm{L}}>\omega_{\text {gas }} ; \omega_{\mathrm{D}} \ll \omega_{\mathrm{L}} ; \Delta \omega_{\mathrm{L}} \sim \omega_{\mathrm{L}}$.
The analytic theory based on classical descriptions. This assuption is also made in our calculations These are valid not $\boldsymbol{\sim}$
because of limitations imposed on a maximum radiation frequency ω (as one sometimes considers) but because the time τ, during which the local liquid structure exists, is small: τ^{-1} is usualiy not less than ω_{I}, the frequency of maximum absorption:
$\tau \ll \tau_{D}, \tau \sim \omega_{\Sigma}^{-1}$.
Simplifying the situation, one may "Justify" the applicability of classic description by the following argument. Because of frequent collision in liquids the superposition of individual
rotational lines occurs and consequentiy the fiscrete rotational spectrum does not appear as a rule. In etrongegosorbing liquids, unlike polar gas, the time τ between collisions is less ${ }^{6}$ than the collision time τ_{0} :

$$
\begin{equation*}
\text { [IIquid]: } \left.\quad \tau<\tau_{g} ; \quad\{g a s]: \tau\right\rangle \tau_{s} . \tag{1.3}
\end{equation*}
$$

It is because of this reason, the term "collision time", having a definite meaning in case of a gas, becomes vague in case of a liquid. Apart from this, quantum rotational lines characterizing a gas of weak interacting polar molecules shift considerably due to the strong intermolecuiar field.

We shall prove in the present investigation that in classical theory a new property of narrow absorption band is attributed to the effect of a strong conservative field on librating dipoles.

A dipole 13 a classicifotor (for simplicity we assume that it has a form of a linear molecule) which is haracterized by a moment of inertia I and by a dipole moment μ. Note that in a atrong intermotecutar field one narrow abaorptton bond arises as if an envelope of a quanturn spectrum werecompressed into a narrow classical band and wereahtfted to higher frequencles.

The Debye relaxation time fncreases substantialiy in this case as compared with a typical IIquid:

The following question arises. Does there exist a molecular system in which a considerable narrowing of an absorption band may be Interpreted as an influence on a classtoldipole of an effective intermolecular Pield? One example is more or less evident. It is 1ce 1 where the resonant sbsorption bands are several times narrower than in water, while the shift of the centres- 9 absorption peaks to higher frequencies is sbout ten per cent . On the other hand, in the case of tee the relaxation time is many orders of magnitude greater than in water.

It should be noted right away that both in ise and in fiquid water two quasi-resonant absorption hand are characteristic. This situation is more intricate thantin simple liquids. This fact * complicates the interpretation but has no great significance since when water freezes both the absorption bands in the spectrum of of orientational relaxation becomes narrower and both shift.

For the study of the delectric relaxation characterized by the properties (1.4), we use an approximation of plane trajectories (a plansr ensemble). We chote the \longmapsto potential profile

$$
\begin{equation*}
U(\theta)=U_{0}\left(1-\operatorname{cog}^{2} \theta\right) \tag{1.5}
\end{equation*}
$$

where ${ }^{g}$ is an angular shift of a dipole relative to the symmetry axis of a potential U. This profile 19 called the double well potential (DWP).

In an introductory section 2 the basic relations needed for further consideration are presented. In Sec. 3 taking an,
example of an isotroplc polar medium we shall discuss the results of rigorous calculations for the DWP model. With the profile (1.5). In section $4 \longmapsto$ we ghall show thet a hybrid quasi-elagtic bond / extended difusion (QEB/ED) model is also applicable and that approximate analytical expressions are much simpler than in the strict DWP model. In Sec. 5 on an example of an anisotropic medium we shall tum to the main effect of this work - to the narrowing of sbsorption lines due to action of a strong potential (1.5). In the final section 6 the relation of the field models of molecular rotation / dielectric relaxation to ice 1 is investigated.

2. The Approzimation of Instantaneous Collision: General Expressions

The dielectric response of an botropic medium to reorientations of dipoles is charsoterized by the complex susceptibility $\chi(\omega)=\chi^{\prime}-i \chi^{\prime \prime}$. The complex propagation constant $z^{*}=k^{\prime}+k^{\prime \prime}$ and dielectric permittivity $\varepsilon^{*}=\varepsilon^{\prime}+i \varepsilon^{\prime \prime}$ of a plane electromagnetic wave are related one to another by the equation

$$
\begin{equation*}
k^{*}=\frac{\omega}{C} \sqrt{\varepsilon^{*}}=\frac{\omega}{C}(n+i x), \tag{2.1}
\end{equation*}
$$

wherelatar * denotes complex conjugation. Let n_{∞} be an
optical repractive index. If one ignores the difference between an Internal and macroscopic eleotromagnetic ifeld in a medium, then ϵ is related to x by

$$
\begin{equation*}
E^{*}(\omega)=n_{\infty}^{2}+4 \pi \chi^{*}(\omega) \tag{2.2}
\end{equation*}
$$

Thus the constant k is related to the complex gusceptibility by the equation

$$
\begin{equation*}
e^{\psi^{2}}=\frac{w^{2}}{c^{2}}\left[4 \pi \chi^{*}+n_{\infty}^{2}\right) \tag{2.3}
\end{equation*}
$$

Equation (2.2) may be replaced by

$$
\begin{equation*}
\frac{s^{*}-n_{\infty}^{2}}{4 \pi} \frac{2 s^{*}+n_{\infty}^{2}}{3 s^{*}}=\chi^{*}(v) \tag{2.4}
\end{equation*}
$$

when the difference between internal and macroscopic fields is approximately taken into consideration, eq. (2.3) being retained.

In an antaotropic polar medium the dielectric susceptibility X. Is a tensor. In this york we ahall calculate right auny the scalar quantity k, the real partkof which determines the phase velocity of an electromagnetic wave in a medium, while the imaginary part $\mathrm{k}^{\prime \prime}$ determines the absorption coefficient a :

$$
\begin{equation*}
a=2 k^{\prime \prime}=2 \frac{\omega}{c} z=\frac{\omega E^{\prime}(\omega)}{c n(\omega)} \tag{2.5}
\end{equation*}
$$

ANISOTROPIO VEDIUM. We introduce an effective complex auaceptbullty χ of an anisotropic medium ${ }^{11}$, which 13 related to the propagation constant is (2.3), the relation ε to χ again feintaken in the $10 m$ (2. 2) or (2.4). The cause of an anisotropy $1 s$ an existence of an uniaxial intermolecular potential $U(\vartheta)$, veing the angle between the the gymmetry axis Z of the potential U and the dipole moment vector $\vec{\mu}(t)$ of a reorientating inear molecule. Note that if the directions of the local symmetry axes are random then in various points of the
a dielectric sample the medium becomes isotropic.
We asoume that the linearly polarized electric fleld $\mathrm{E}(\mathrm{t})$ \longmapsto Variea harmonically in any point of a medium:

$$
\begin{equation*}
E(t)=B_{m} \sin (\omega t+\gamma) \tag{2.6}
\end{equation*}
$$

We denote parallel and orthogonal direotions of the amplitude vector E_{m} to the symmetry axis, by symbols if and. The problem $1 s$
solved, if the frequency dependencres $\chi_{i 1}(\omega)$ and $\chi_{\perp}(\omega)$ are found for two crossed orientations gince for an arbitrary angle Φ between Z and F_{m} the sumceptibility $\chi 1 s$ a kown rational function of $\chi_{i 1}(\omega)$ and $\chi_{\perp}(\omega)$.

When investigating the dependence of \boldsymbol{x} on $\boldsymbol{\omega}$ we distinguish two
mechanisms of the wave - medium interaction \longmapsto Por molecular rotation at equilibrium due to: a) the periodic rotation of a dipole in a potential well of a prescribed profile; and b) the stochastic (Brownian) reorientation of molecules. With regard to a) we calculate the spectral function (SF) and denote it $\mathrm{K}(z)$. It should be noted that $\mathrm{K}(z)$ differs from the $S F L(z)$ introduced in work ${ }^{11}$ by the multiplier $3\left\langle q^{2}\right\rangle$, which is not dependent on the radiation frequency $\boldsymbol{\omega}$ and which will be difined later. The frequency dependence of $K(z)$ describes the dielectric response in the FIR spectral range. Here z defined by $z=x+i y$ is the normalized complex frequency, $x=\eta \omega$ and $y=\eta / \tau$ being respectively the normalized radiation frequency and the frequency of "strong" collisions, $\eta=\left[I /\left(2 k_{B} T\right)\right] 1 / 2$ is a normalizing parameter, k_{B} is a Boltzmann constant, T is absolute temperature and I is the moment of inertia. The $K(z)$ function is proportional ${ }^{11}$ to the spectrum of the autocorrelation function of the electric moment vector $\mu(t)$, which is performing undamped (periodic) rotation in a potential $\cup(\mathscr{V})$:

$$
\begin{equation*}
K(z)=3 i z\left\langle q_{0}^{\infty} \int\left(q-q_{0}\right) e^{i z \varphi_{0}} d \varphi\right\rangle \tag{2.7}
\end{equation*}
$$

Here the following dimensionless varisbles are used: the time $\varphi=t / \eta, q=q(\varphi)=\mu_{\mathrm{F}} / \mu$, where μ_{E} is the projection of the electric moment vector H^{2} on the direction of the amplitude field vector $E_{m}, \mu=|\vec{\mu}|, q_{0}$ is the value of $q(\varphi)$ at the moment $\varphi=0$ of a "strong collision". The q_{0} coordinate 19 regarded as a point in a phase space Γ, and averaging over Γ is denoted by brackets <...>.

The gecond factor b) is determined by a collision model and plays an important role only in the low-frequency (Debye) spectral region. For definiteness we take the modified Gross collision model in which x is related to K by the equation

$$
\begin{equation*}
\chi^{*}=g G z K(z)\left[g x+\frac{i y}{\sigma} K(z)\right]^{-1}, \tag{2.8}
\end{equation*}
$$

where $G=\mu^{2} N /\left(3 k_{B} T\right), N$ is a concentration of polar molecules, g is a Kirkwood correlation factor and

$$
\begin{equation*}
\sigma=3\left[\left\langle q^{2}\right\rangle-\langle q\rangle^{2}\right] \tag{2.9}
\end{equation*}
$$

where ($1 / 3$) $\sqrt[6]{ }$ is a dispersion of a q. In all equations below except Sec. 6 wt take $\mathrm{g}=1$, while in Sec. 6 a more realistic version of the Gross collision model in which g differs from 1 will be introduced.

For two cross orientations we write $\chi_{i n},\left\langle\sigma_{i n}\right\rangle, K_{i f}$ or $\chi_{1},\left\langle\sigma_{1}\right\rangle$, K_{1}. while at the "incifned" propagation of a wave

$$
\begin{equation*}
K(z)=K_{\|}(z) \cos ^{2} \pi+K_{1}(z) \sin ^{2} \pi \tag{2.10}
\end{equation*}
$$

We repeat that $\$$ is the angle between E_{m} and Z.
ISOTROPIC yEDIJW. Now we dwell upon an important case of a macroscopio isotropic polar medium. We suppose that only a local anisotropy exists, and that in a macroscopic volume of a dielectric sample the complex susceptibility is found by averaging eq.(2.10) over all angles \mathbb{I}. We shall consider 4 cases:
a) planar ensemble:

$$
\begin{equation*}
\langle q\rangle=0,\left\langle q^{2}\right\rangle=1 / 2 ; 0=3 / 2, \quad \mathbb{Z}(z) \equiv(1 / 2)\left(K_{i n}+K_{\perp}\right) \tag{2.11}
\end{equation*}
$$

b) quasi-space ensemble. In order to draw near real situation without substantial mathematical complication due to the calculation of trajectorles in space we may obtain $\bar{K}_{\|}(z)$ and $K_{1}(z)$ functions for planar trajectories while all averages are found for the "space" gtatistics:

$$
\begin{equation*}
\langle q\rangle=0,\left\langle q^{2}\right\rangle=1 / 3, \sigma=1, K(z) \equiv(1 / 3)\left(K_{1}+K_{\perp}\right) \tag{2.12}
\end{equation*}
$$

Notwithstanding these "tricks", the integrated absorption is only the half of a strict value because the number of degrees of ireedcm 1s sctually reduced in this approximation:

$$
\begin{align*}
& \int_{\infty}^{\infty} \omega \chi^{\prime \prime}(\omega) \text { d }=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\} \min ^{2} N /(3 I) \text { for }\left\{\begin{array}{c}
\text { quasi-space } \\
\text { space }
\end{array}\right\} \text { ensemble. } \tag{2.13}\\
& \text { c) For better greement with expertmont then }
\end{align*}
$$

c) For better ggreement with experiment the the spectral region we may eliminate the last drawback, doubling the value $K(z)$ found above for a quasi-space ensemble
$\sigma=1 ; K(z) \equiv(2 / 3)\left(K_{\|}+K_{\perp}\right) ;\left\{\begin{array}{c}\text { corrected } \\ \text { quasi-space } \\ \text { ensemble }\end{array}\right\}$.
d) space ensemble in which the following relations
hold
$\langle q\rangle=0,\langle q\rangle=1 / 3,0=1, K(z) \equiv(1 / 3)\left(K_{i \|}+2 K_{1}\right)$.
$K_{i i}$ and K_{\perp} must
and the true integrated absorption corresponds. be found by studying rotations in space.

In the three last cases b, c, d eq. (2.8) reduces to the following formula

$$
\begin{equation*}
\chi^{*}=g G z L(z)[g x+l y L(z)]^{-1} \tag{2.16a}
\end{equation*}
$$

which was widely used.2,6,11 Here the spectral function

$$
L(z)=\left\{\begin{array}{l}
I_{\text {planar }} \\
2 I_{\text {planar }} \\
I_{\text {space }}
\end{array}\right\} \text { for }\left\{\begin{array}{l}
\text { quasi-space } \\
\text { quasi-epaoe with doub- } \\
\text { space } 1 \text { ing of } S F
\end{array}\right\} \text { ensemble } \begin{array}{r}
(2.16 \mathrm{~b}) \\
(2.16 \mathrm{c}) \\
(2.16 \mathrm{~d})
\end{array}
$$

$$
\begin{equation*}
I_{p l a n .}=(1 / 3)\left(K_{\|}+K_{\perp}\right) ; \bar{I}_{\text {space }}=(1 / 3)\left(K_{\|}+2 K_{\perp}\right) \tag{2.16e}
\end{equation*}
$$

DEBYE RELAXATION. "Static" (at $x=0$) Value of $K \equiv K_{0}=K(l y)$ determines the parameters of the Debye relaxation, i.e. the gtatic susceptibility χ_{s}, the relaxation time τ_{D} and susceptibility at the end of the Debye relaxation region (K_{0} is real). The Debye Irequency dependence has the form

$$
\begin{equation*}
\chi^{*}(x)=\chi_{\infty}+\left[x_{a}-\chi_{\infty}\right]\left[1-i x \tau_{D} / \eta\right]^{-1} \tag{2.17a}
\end{equation*}
$$

and so

$$
\begin{equation*}
\max _{x}\left\{\chi^{\prime \prime}(x)\right\}=\chi_{D}^{\prime \prime}=\frac{1}{2}\left[\chi_{a}-\chi_{\infty}\right] \quad \text { at } x=x_{D}=\eta / \tau_{D} \tag{2.18a}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi_{a}=\left.\chi^{*}(x)\right|_{x=0}, \quad \chi_{\infty}=\left.\chi^{*}(x)\right|_{x \rightarrow \infty}, \quad \tau_{D}=\frac{\eta}{\chi_{a}-\chi_{\infty}} \lim _{z \rightarrow 0} \frac{\chi^{\prime \prime}(x)}{x} . \tag{2.18b}
\end{equation*}
$$

For the Gross collision model, generalized to the case when $g \neq 1$, the above mentioned parameters are related to the spectral function $K_{0} 39$ Pollows

$$
\chi_{a}=g \sigma G ; \quad \chi_{\infty}=G K_{D} ; \quad \chi_{D}^{\prime \prime}=\frac{1}{2} G\left(g 0-K_{0}\right) ; \tau_{D}=g \tau \sigma / K_{0}{ }_{t_{0}}(2.13)
$$

Thus the Debye relaxation time is proportional to σ and \mathbb{H}_{0}^{-1}. In our impact theory approrimation the iffedtime τ is a free model

The
parameter. V experimentally determined relaxation time τ_{D} strongly depends on temperature and still more strongly on a phage state of a dielectric sample. The value of τ may be found betaking the prescribed value of τ_{D} if one finds the solution (relativ er τ) of the equation
or

$$
\begin{equation*}
\sigma \tau / \mathbb{K}(l \eta / \tau)=\tau_{D} / g \tag{2.20}
\end{equation*}
$$

$$
\left\{\begin{array}{c}
\text { anisotropic } \tag{2.21}\\
\text { medium }
\end{array}\right\}
$$

$\left[\left\langle q^{2}\right\rangle-\langle q\rangle^{2}\right] \tau / L\left(\ln / \tau_{D}\right)=\tau_{D} / g\left\{\begin{array}{c}\text { isotropic } \\ \text { medium }\end{array}\right\}$,
Here the r.h.s. is given by the experimental data. To the prescribed change of ${ }^{\tau} \mathrm{D}$ may correspond some change of the potential well depth J_{0} accompanied by the change of the potential profile $U(\vartheta)$ and the life time τ.

The increase of the well depth U_{0} greatly influences the "static" response K_{0} and the dispersion σ, these values being different for the parallel and orthogonal susceptibilities. Examples of τ_{D} dependence on U_{O} and τ are given in Sec.4.

In order to interpret experimental dielectric spectra one must describe the frequency dependence $\varepsilon(\omega)$ of the complex dielectric permittivity. We employ eq. (2.8) with g given by

$$
\begin{equation*}
g=\frac{\varepsilon_{z}-n_{m}^{2}}{4 \pi} \frac{2 \varepsilon_{s}+n_{z}^{2}}{3 \varepsilon_{z}}[G 0]^{-1} . \tag{2.22}
\end{equation*}
$$

For g so defined eq.(2.4) and (2.8) give for $\omega=0$ the permittivity $\varepsilon(w)$ which is equal to experimental value ε_{3}.

3. The Rigorous Theory of Orientational Relaxation for the Double well Potential

THE STEADY STATE PARAMETERS.

For aimplicity we consider rotational motion in a plane, taking the dependence of the static field $E_{0}(\vartheta)$ on the angular shift θ as coad. Then we come to the double well potential (DWP) in the form $U(v)=\operatorname{const}(\theta)-\vec{H} / \vec{E}_{0}(v):$
Double well
potentisl (DWP)

In this formula we choge the arbitrary constants
C so that at the bottom of the well $U=0$. Thus. U_{0} is the well depth. The $U(\vartheta)$ function has two minima, the dipoles in neighboring wells have opposite orientations and so the average alpole moment (u) of the dielectric sample is zero. - In such a pleld model

$$
\begin{equation*}
\left\langle q_{1}\right\rangle=\left\langle q_{1}\right\rangle=0, \quad \sigma_{\|}=3\left\langle q_{\|}^{2}\right\rangle \text { and } \sigma_{1}=3\left\langle q_{1}^{2}\right\rangle \tag{3.1b}
\end{equation*}
$$

We introduce the static ileld parameter p by

$$
\begin{equation*}
p \equiv \sqrt{U_{0} /\left(k_{\mathrm{B}} T\right)} \tag{3.10}
\end{equation*}
$$

and the normalized Hamiltonian of a dipole $n=$ (the total energy of a dipole) / ($\left.R_{B} T\right)$. Denoting by a dot the diferentiating over of the time $\varphi=t / \eta$ we have

$$
\begin{equation*}
n=t^{2}+p^{2} \sin ^{2} \theta \tag{3.2}
\end{equation*}
$$

The integral

$$
\begin{equation*}
\left(\varphi+\varphi_{0}\right) p=\int_{0}^{\theta} \frac{d \theta}{\sqrt{n / p^{2}-\sin ^{2} \theta}} \tag{3.3}
\end{equation*}
$$

is obtained for the law of motion irom (3.2). Putting in (3.2) $9=$ 0 , we may relate the maximum angular shilt $\beta \equiv|v|_{\text {mar }}$ with the enerey of a dipole h and the static field parameter p :

$$
\beta \cong\left\{\begin{array}{l}
\arcsin \sqrt{u^{2}} \tag{3.4}\\
\pi
\end{array}\right\} \text { for }\left\{\begin{array}{l}
h / p^{2} \leqslant \\
h / p^{2} \geqslant 1
\end{array}\right\} \text {. }
$$

Thus two sub-ensemoles of librators and hiniered rotetors exist, the value $n=p^{2}$ beling the threghold energy. We Aistinguigh these sub-ensembles by inderes \vee and 0 , respeotively.

The quadrature (3.3) can be expressed interms of elliptio
functions. It may be ahown that the perlod 9 of the function $\check{q}_{\|}(\varphi)$ is determined by the equation $p=2 \mathbb{S}(k)$, where K is the complete Elleptis Integral of the first kind and $k==\sqrt{h} / p$ is its modulus the reader should not z in (2.1),(2.3),(2.5)1. Accordingly the nomalizad libration frequency 13 given by

$$
\begin{equation*}
p=\frac{\pi}{\omega}=\frac{\pi p}{2 K(\sqrt{n} / p)} \tag{3.5}
\end{equation*}
$$

The second group of particles performsa hindered rotation, the normalized period of which satisfies the equation

$$
\begin{equation*}
Q=4 n^{-1 / 2} X(k) \text {, where } \hat{z}=p, \sqrt{n} \text {. } \tag{3.6a}
\end{equation*}
$$

Thus the nomalized rotetional frequency is equal to

$$
\begin{equation*}
\left.\stackrel{Q}{p}=2 \pi\left[\frac{0}{\square}\right)^{-1}=(\pi / 2) \sqrt{h}[K(p / \sqrt{n})]\right]^{-1} . \tag{3.6b}
\end{equation*}
$$

Omitting csiculations (see details in the review ${ }^{11}$), we present here the \longmapsto expressions for the steady state dletribution function $W(h)$ and for tre averaged values of q^{2} :

$$
\begin{gather*}
W(n)=\left\{2 \pi^{3 / 2} I_{0}\left(p^{2} / 2\right)\right\}^{-1} \exp \left[\left(p^{2} / 2\right)-n\right] \tag{3.7a}\\
\left\{\begin{array}{c}
\left.q_{1}^{2}\right\rangle \\
\left.q_{0}^{2}\right\rangle
\end{array}\right\}=\frac{I_{0}\left(p^{2} / 2\right) \pm I_{1}\left(p^{2} / 2\right)}{2 I_{0}\left(p^{2} / 2\right)}=\frac{I}{3}\left\{\begin{array}{c}
0
\end{array}\right\} . \tag{3.7b}
\end{gather*}
$$

The mean poterthy energy can be found ima (3.7) and (3.1):

$$
\langle U(\theta)\rangle=\left\{\begin{array}{l}
\frac{1}{2} U_{0}\left[1-I_{i}\left[p^{2 / 2}\right) / I_{0}\left[p^{2} / 2\right]\right] \tag{3.3}\\
\left(1 / L_{B}\right. \\
(1 / 2)_{0}
\end{array}\right\}\left\{\begin{array}{l}
\text { general } \\
\text { oase } \\
\text { son } p \geqslant 1 \\
\text { for } p x 1
\end{array}\right\}
$$

Thus, in the case of aseep potential well the puantity di(1)> is about $\frac{1}{2} b_{3}$) and aos 0 det deperd on U_{0}, whil for ehallow well this average is about half depth.

In Table 1 rigorous and asymptotic falues are presented for: the proportion \dot{r} of rotors, the mean libration amplitude $\langle\beta\rangle$, the normalized frequencies of libration and hindered rotation, p, and
$\langle p\rangle$, the distribution functions $\check{f}(\tilde{p})$ and $\stackrel{o}{f}(p)$ over these frequencies and the parameter y_{c}, $\nabla 17$.

$$
\begin{equation*}
\tau_{0}=\eta / y_{0} \frac{1}{2}\langle\underset{\text { rotational motion }}{\text { per tod }}\rangle=\eta \pi /\langle p\rangle . \tag{3.99}
\end{equation*}
$$

The time τ_{c} means the average hall period of reorientations and may serve as a mature of collision time ${ }^{6}$ of particles, effected by the conservative potential U. The p - dependence of the $s t e a d y$ state parameters and the distribution functions $\dot{f}(\bar{p})$ and $\dot{f}(p)$ are 111ustreted by Table and F1E.1. The non-zero distribution $f(p)$ appears only at suffelently large field parameter p, it falls abruptly to zero at the maximum libration frequency \dot{p}, equal to

$$
\begin{equation*}
\max [p]=p . \tag{3.9b}
\end{equation*}
$$

For a deeper well the distribution $\check{f}(\underset{p}{c})$ becomes narrower, while the peak of the distribution $\stackrel{\ominus}{£}_{(\mathrm{p}}^{\mathrm{p}}$) shifts to greater frequencies \vec{p}. If p ts gupticientiy aisne ($p \geqslant 2$), almost gil dipoles are liberators: in this case the function $o(p)$ press itself to the abscissa axis and the square beneath it becomes small. The mean libration amplitude< Fiecregses when f Wis, while the generalized parameter y_{0} (which is proportional to the reciprocal value of the collision time) foresees. Thus the mean period of rotational motion decreases when the well death increases.

SPECTEAL RUNOTIONS. NOW let us consider Blelectric relaxation due to reorientation of molecules in the double well potential. We represent the spectral function as a sum

$$
\begin{equation*}
K=\check{K}+\check{Z} . \tag{3.10}
\end{equation*}
$$

Integrating (2.7) oren time 4 and steady tate enswate, we take into account (3.7) and the representation 0(3.3) in terms of elisptic functions. Then the spectral function $\bar{a}(z)$ is represented by a series, in who h terms are quadratures oren the modulus k of complete elliptic integrals. For the sub ensemble of ilbrators we take as a variable of integration $m=k^{2}$, so that

$$
\begin{equation*}
K \equiv \mathbb{K}(k) \equiv K\left(m^{1 / 2}\right) ; \tag{3.11}
\end{equation*}
$$

as a result we have
where

$$
\begin{equation*}
Q=\exp \left(-\pi K^{\prime} / K\right), K^{\prime} \equiv K\left(\boldsymbol{N}^{\prime}-m\right), \tag{3.13}
\end{equation*}
$$

and K is found from (3.11)
In the sub Censemble of hindered rotors the variable of integration k is substituted by $t=p / k$ (t is not the time herel), and we can obtain

where $\mathbb{H} \equiv \mathbb{K}(p / t)$ and Q is determined from (3.13) at $\pi=p^{2} t^{-2}$.
For the firet time this model was considered in work ${ }^{12}$, where the solution of the problem was given for a planar dipole, rotating in a pertodic potential U_{0} cos μ ($\mu=1,2,3 \ldots$). A more general conslderation was given later Doth for planar and space systems. Here we have followed another derivation for a planar system which was given in the review? 11

Erolution of the dielectric spectra of an feotropic medium with the thange of an intermolecular fleld 13 shown In Fig. 2. When the potentiel well depth incresses, the local anisotropy rises and this leads to an appearance of the region of the low frequency (Debye) relaxation. The Debye frequency x_{D} of the maximum loss χ_{D}^{*} is much lower than the frequency x_{I} of the absorption maximum. With the increase of the f1eld parameter p the frequency x_{I} also rises, and the sborption curve $\operatorname{LX}^{\prime \prime}(x)$ is localized near the peak irequency x_{L}.

F1g.2a, 2b are calcuiated for a some "boundary" lifectime τ, which is equal to the collision time ${ }^{6} \tau_{0} \longmapsto$; in
other terms $\longrightarrow y=y_{c}$. It should be noted that at $y<y_{c}$. one can regard molecular reorientation in a state or a local order to be auplicientiy prolonged, while at $y>y_{c}$ the reorientations are so short lived that librations actually degenerate, become damped. The last situation ($y>y_{c}$) is illustrated in Fig. 4 for $p=3$. Dielectric spectra qualitatively resemble typical spectra of strong sbsorbing liquids. It is especially true (see Fig. b) for a quasi-space calculation scheme (1.16c) with the doubled spectral function. Note that Fig.4a, $3 s$ weil as F18.2-3, are drawn according to eq.(1.16d), that is for the quasi-space isotropic ensemble but without doubling of $\mathbb{K}(z)$.

4. Hybrid Quasi Elastic Bond / Extended Diffusion Model

In this section we use the approximate representation oif the spectral function $K_{i}(\tilde{Z})$ and $K_{\perp}(z)$ by the following integrals

$$
\begin{align*}
& \ddot{K}_{\|}=\frac{3 \exp \left(p^{2} / 2\right)}{8 \pi^{1 / 2} p^{3} I_{0}\left(p^{2} / 2\right)} \int_{0}^{p^{2}} \frac{\exp (-n) n^{2} d n}{\gamma\left[4 p^{2}-\gamma^{2} z^{2}\right]} ; \gamma \equiv \gamma(n)=\left[1+\frac{h}{4 p^{2}}\right) ; \\
& (4.1 a) \tag{4.1b}\\
& \tilde{K}_{\perp}=\frac{3 \exp \left(p^{2 / 2}\right)}{2 \pi^{1 / 2} p I_{0}\left(p^{2 / 2}\right)} \int_{0}^{2} \frac{\exp (-n) n d h}{\gamma\left[p^{2}-\gamma^{2} z^{2}\right]} ;
\end{align*}
$$

${\stackrel{0}{K_{1}}}_{1}={\stackrel{0}{K_{1}}}_{1}=\frac{3 \exp \left(p^{2 / 2}\right)}{2 I_{0}\left(p^{2} / 2\right)} I_{F} ; \quad I_{F}(z, p) \equiv \frac{2}{\sqrt{\pi}} \int_{p}^{\infty} \frac{\exp \left(-s^{2}\right) a^{2} d a}{a^{2}-z^{2}}$,
which are obtained after a number of simplifications of the
\longmapsto series (3.12) and (3.14). Let us consider this approximation in more detail.

Eq.(4.1) correspond to the quasi-"elsstic bond (QEB) approximation. In the latter we retain in the hamiltonian h only two first terms of the Taylor series for the potential U_{0} sineq:

The last term takes into sccount the decendence of the libration frequency of a molecule on the energy h. The greater is h, the less is the frequency of the periodic motion. If e.g. the libration frequency $\hat{\circ}$ of a dipole is equal to the field $\mathrm{E}(t)$ irequency ω, then for a dipole of greater energy its Ifbration frequency $\check{\delta}<\omega$, the detuning $|\tilde{\Omega}-\omega|$ being greater for greater anharmonicity. This property Jeads to the widening of the absorption line and to the decrease of its peak value.
In the hybrid $Q E B / E D$ model we take into account also the contribution K of hindered rotors to the spectral function. This contribution is found at $h \geqslant p^{2}$ on assuming that in the interval τ between strong collisions the dipoles of the second subensemble rotate freely just as in the extended diffusion model 1 , i.e. in the absence of the static potential U. For this reason the longitudinal and orthogonal spectral functions in (4.2) are equal, the anisotropy of the dielectric response being due only to the libration subensemble. Thus the QEB/ED model behaves as if comprising
two important particular cases.
At p>> one can put ∞ in the upper limit of (4.1) and take $K=$ 0. Then we get the QEB approximation

On the contrary, at a weak intermoleculom $f l e t z(p \ll 1)$ we put $\check{K}=0$, and take the the range of integration in (4.2) to be $[0, \infty]$.

Then we get the spectral function of the planar extended difugion model:

$$
\begin{equation*}
/ L(z)=I+\sqrt{\pi} z w(z) ; w(z) \equiv \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp \left(-a^{2}\right) d e}{z-9} \tag{4.4}
\end{equation*}
$$

(Thus we may suppose that this hybrid model 19 applicable (at leas for a qualitative description) for any fleld paraneter p.

In order to be convinced of the validity of this statement, we compared the approximate and rigorous descriptions (of, Fig, 2b and 3), see also Fig. 4. At $p \geqslant 2$ the difference
between both approaches becomes small (curves 4 in Fig. $2 f$ and 3 , see also Fig. 4). At small p the gbove mentioned difference is greater. It is geen from the comparison of curves 1,2 in Fig . if
and 3., $3 s$ well as frompig. 5. Thus, the aimple $a \mathrm{FB} / \mathrm{ED}$ model is applicabie for a qualitative description of dielectric spectre at any p values and is supficiently true at $p \geqslant 2$ (of courge, in the frames of applicability of the DWP model under consideration). This conclusion permits usto gubstantially simplify the consideration of the central idea of this investigation (see Sec.5).

An unusual property of a microscopic model was found when caloulations were made for a small values of $y(y=0.005)$ and a moderate values of the field parameter p (p about 1), for which the contributions of both subensembles are commensurable. We mean the existence of two absorption maxima (curve 3), one due to the contribution of librators (curve 1) and other (curve 2) due to that of rotors. At a greater but still small value of $y(y=0.005)$ these maxima apper less distinctly. The principal significance of this result consists in that only one absorption maximum is usually characteristic for simple microscopic models, that is for models with simple $U(V)$ functions 1,11 . The existence of a two-humped absorption curve, shown above, fascilitates the development of new models capable of describing similar frequency dependences, observed experimentally. We shall return to this point at the end of the article.

5. Phenomenon of the Narrow Band Absorption in an Anisotropic Polar Medium

RESONANCE REGION. We have found above that when the potential well is deep ($p>2$) the FIR absorption band is narrower. Fig. 6 shows a more detalled ploture regarding an evolution of a dielectric loss spectrum due to the field parameter p or the Ifle-time τ. The two values of p and y are taken ($p=3.5$ and 4.5; $y=0.1$ and 0.3). The second parameter y is chosen sufficiently small since at greater values of y a strong widening of an absorption band occurs. In Fig. 6 only the part of a loss spectrum is presented related to the FIR region, In this region one may deduce the SF Prequency dependence $\mathbb{K}^{\prime \prime}(x)$ since $\chi^{\prime \prime}(x) * G K^{\prime \prime}(x)$.

Let Δx be the width of the resonance curve $K^{\prime \prime}(x)$ at the level $1 / 2$ and Δx_{0} be the same quantity at $y=0$. The latter (Δx_{0}) may be called the mintmum bancautath (in units η (ω) since at the inilinfte increase of ilfetime τ (as $y \rightarrow 0$) the parameter Δx_{0} remains non-zero, yet sufficiently low at large p. Correspondingly the term "lemiting line" (for $y=0$) is a characteristic of a classical ensemble of dipoles. In the present investigation we disregard quantum effects. When the field parameter p rises, the minimum line width Δx_{0} decreases and the normalized frequency x_{m} of s loss peak approaches the values

$$
\left\{\begin{array}{l}
x_{\mathrm{m}} * p \tag{5.1}\\
x_{\mathrm{m}} * 2 p
\end{array}\right\} \text { for the }\left\{\begin{array}{l}
\text { orthogonal } \\
\text { parallel }
\end{array}\right\} \begin{aligned}
& \text { orientation of a } \\
& \text { radation } \\
& \text { Pleid }
\end{aligned}
$$

Thus the loss line for a parallel orientation may be regarded as a second harmonic while the first harmonic corresponds to the orthogonal orientation. At $y=0.1$ the lines, shown in Fig. 6 , are close to the limiting lines, while curves $X^{\prime \prime}(x)$ are considerably wider at $y=0.3$. It is also seen from Fig. 6
that in the case of narrow lines the approximate and rigorous theories agree well with one another.

The ralues of paranetera $\Delta x, K_{m a x}$ and x_{m} of resonance lines are presented in Teble 3 for the three y values $0.05,0.1$ and 0.3 In z Wide range of the field parameter p. If $p \gg$ then at the orthogunal (1) omientation the ioss Iine ia much more intense than that at the peraliel (ii) orientation. This property may be explained by the feet that at \perp orientation molecular charges move almost along eleotromagretic eseld lines and so radiation spends more power than at 1 omentation. In the last case charges move almost normal to the $E(t)$ Eleld linee consequently a small torque $\vec{H}: \mathbb{E}(t)$ results.

These considerations are confirmed formally by the Gordon's sum rile

$$
\begin{equation*}
\Pi=\int_{-\infty}^{\infty} \chi^{\prime \prime}(\omega) d=\frac{m_{1}^{2} N}{I}\left(1-\alpha q^{2}\right) \tag{5.2}
\end{equation*}
$$

where Π denotes the integrated absorption. Indeed, if $p \gg I$, then $\left.\left\langle q_{\|}^{2}\right\rangle\right\rangle\left\langle q_{i}^{2}\right.$ and $\prod_{\perp}>\Pi_{\|!}$, the relevant statement in the previous paragraph is established. We see also from Table 3 that
a) the relative width $\gamma=\Delta x / x_{\mathrm{m}}$ of a resonance line decreases
 $\longleftarrow \mathrm{min}^{80} 0.09$ and $\mathrm{m}_{\mathrm{min}} * 0.13$;
b) the maximum absorption, which $1 s$ proportional to the produet $x_{m} K^{\prime \prime}$, Increases for + orientation with the iflel parameter p; for orientstion this product goes through a maximum and then, at Iarge p, quickiy approaches zero because this type of interaction vanishes;
c) when prises, the resonance loss or absorption line width Δx = now goes through its minimum value while the relative line width. we repeat, deareases with p;
 rlees.

In Fig. 6 d, e the frequenoy dependence of the real pert of the spectrel function 19 Ghom. If p is large, the region where $F(x)$ subatantially changes 19 concentrated near the centre x_{in} of a

Ine. For the main loss mechanism (at the orthogonal orientation) the amplitude of a change K_{\perp}^{\prime} in a resonance region is much greater than the value $K \perp$, corresponding to $x=0$.

DEBYE RELAXATION. FOF the same example as in Fig. $6(\bar{P}=3.5$; 4.5; $y=0.1 ; 0.3$) the low irequency 1099 spectrum is shown in Fig. 7. Solid lines refer to the complex susceptibility obtained from eq. (1.8) for the hybrid QEB/ED model; dashed lines refer to the same quantity obtained for the fixed $(x=0)$ spectral function, that is, for $K_{\perp}^{\prime \prime}(i y)$, $K_{i}^{\prime}(i y)$ or $L^{\prime \prime}(\xi y)$, the last being required for an isotropic ensemble). If y decreases, the relaxation time τ_{D} incresses, since the Debye loss maximum shifte to lower irequencies. For a parallel orientation the time τ_{D} is much greater than for an orthogonal one:

$$
\begin{equation*}
\tau_{D}^{\prime \prime}>\tau_{D}^{1}, 11 \quad P \geqslant 2 \tag{5.3}
\end{equation*}
$$

This property may be explained by the following way. At a parallel orientation in one or the other well there will appear some excess concentration $8 N$ of dipoles orienting alons electromggetic pield $E(t)$, if the ifeld irequency is not too great. This excess $8 N$ is due to stochastic forces which disturb the thermal equilibrium. It may be noted that
\longleftarrow regular torques due to a potential U(\because) cannot throw particles over thelr potentisi wells. When the field F(t) is switched off, the concentration of dipoles will approach the equilibrium in all wells. In order to reach the steady state distribution the "excess" particles must turn through a considerable angle $\theta \sim \pi$, and the relaxation time τ may be gregt. From the mathematical point of view this fact is due to the great value of the dispergion $\sigma_{\|}=3\left\langle q_{1}^{2}\right\rangle$, since the mean direction cosine $\left.q_{p}\right\rangle$ vanishes.

For a deep well with U_{0} large and K_{0} small the transfer of dipoles from one well to another is not easy what resulta is an increase of the time T, . Note, this $\tau_{D}^{\prime \prime}$ riseg abmuptiy with p, if p>1.

At the orthogonal ortentat lon the relaxation time th is less than τ_{D} since dipoles are to turn on less angle in order to resolve the excess concentration of dipoles appeared in the direction of the field $\mathrm{E}(\mathrm{t})$. The value of this excess 1 a emall since $\mathrm{E}_{\perp} Z$.

It should be noted that the properties (5.2) and (5.3) were taken into consideration previously ${ }^{13,14}$ for an example of wider lines of
resonance absorption.
In laotropic media a dipole interact almultaneously with both
field components, $\mathbf{E}_{\perp}(t)$ and $\mathbf{E}_{\|}(t)$, since the symmetry axis is inclined at different angles to the direction of electromagnetic ileld. As a result at $p \gg 1$ the relaxation time τ_{D} is less than at ii - orientation but grester than at 1 - orientation.

It is also seen from $F 18 . T$ that for sufficiently irequent collisions, or equivalently for sufficiently large values of y the Debye loss maximum at \perp orientation may almost reach the resonance absorption region. Because of this the approximation of fixed apectral function ($K \equiv K(i y)$, or $K \equiv L(i y)$ in an isctropic medium) may not be valid. However in our examples the substitution of $K(z)$ by $K(i y)$ and $L(z)$ by $\mathrm{L}(\mathrm{iy})$ is admissible, as we may see from the solid and dashed lines in Fig. 7.

Thus, if the lisétime τ is great, or equivalentiy if $y \ll 1$, the agreement between the theory and experiment may be obtained, if: chosen
a) the value of the fleld parameter p permits us to obtain the correct position x_{m} of the resonance loss peak and simultaneously the line width. We may note that for small y the linewidth is close to the minimum width Δx_{0});
b) the lifetime chosen or the corresponding value of y allows agreement between the theoretical low frequency spectrum and the experimental one.

The a) criterion demands the agrement of the theory and experiment for two parameters $\mathbb{F}_{\max }^{\prime \prime}$ and Δx by fitting the only free model parameter p. Indeed, If we want to describe also the low frequency spectrum we need to ift lipe time τ or y for a prescribed value τ_{D}. As a result, the applicability of this DWP model to concrete molecular systems ia reatricted. We shall turn to this question in the next section.

In Fig. 8 we have a graph of the $\widetilde{\tau}$ - dependence on the relaxation time τ_{D} or more precisely the dependence of τ_{D} / η on τ / η. The graph has a minimum at some critical value $y_{c r i t}$ which divides two regions of low frequency relaxation. Note that $y_{\text {crit }}$ is of the order of unity and depends on the value of p. Thus we have:
I. The region where colilsions are not extremeiy irequent and y \& $y_{\text {orit }}$; the relaxation time τ_{D} decreases along with the decrease of life_time :

If. the region of very frequent collisions $\left.(y) y_{\text {orit }}\right)$, in which the relaxation time τ_{D} increases if the ilfeこtime τ
decreases. In the limit $\tau \rightarrow 0$ the Hubbard relation $1 s$ satisfled

$$
\begin{equation*}
\tau_{\mathrm{D}} \tau=I /\left(2 \delta_{\mathrm{D}}(T) \quad \text { at } y \gg 1\right. \text {. } \tag{5.4}
\end{equation*}
$$

An anslygis shows that in liquids only the firet region may agree with experimental data and the most frequent collisions (near the point $y_{\text {orit }}$) spproximately correspond to the tempersture near boiling point / the most shallow potential well. In the $Q E B / E D$ model we have the similar dependence of τ_{D} on τ in the region I (see Fig.8b). But in this model the curve $\tau_{D}(\tau)$ has no point of mintmum, so, the GEB/ED model is not applicable at very large y.

More detailed data, related to low irequency spectra (see Table 4) where all calculation are given for the rigorous theory (but in the approximation $\mathbb{Z} \equiv K(t y)$ for anisotropic medium and $L \equiv I(t y)$ for isotroplo one). Ueing the formulas of Sec. 2 and Table 4 one can estimate, in particular, the static susceptibility χ_{3} and the quantity χ_{∞}.

6. On the Applicability of the Model to Calculation of Dielectric Spectra of Ice 1

In Table 5 the formulae are given in the quasi-elastic bond approxination, which permits to estimate apecific parameters of low frequency (at $x \leqslant x_{D}$) and of high frequency (at $x: p$) dielectric spectra. These formulae were obtained ${ }^{11} \longrightarrow$ for the QEB approximation where it was assumed that: a) the ileld paraneter $\bar{P}>1$; b) the mintmum resonance line widh Δr and the peck position x_{m} are found for the limit $\tau \rightarrow \infty$, that is, for the Ifmiting line; c) the parameters of low frequency (Debye) spectra are found for Pinite but large lifectime τ (at $y \lll_{0}$).

Let us chose the temperature equaifor, thet $18 T=273.15 K$. We take molecular constants of isclated molecule $\mu_{0}=1.84 \mathrm{D}$, optic (in the IR region) repractive inder $n_{x}=1.32$, the density $p=18 \cdot \mathrm{~cm}^{-3}$, molecular mass $M=18$. Then the normalizing parameter $\eta=$ $\left[I /\left(2 b_{B} T\right)\right]^{1 / 2}=4.43 \cdot 10^{-14}$ e, the dipole moment 4 in polar fluid 13 taken in the form $\mu=\mu_{0}\left(n_{\infty}^{2}+2\right) / 3$. Then $G=\mu^{2} N_{1} \rho /\left(3 \xi_{B} T M\right)=$ $1.56\left(N_{A}\right.$ - is the Apogadro number). In Table 6 the spprogimate
experimental ${ }^{8,10}$ Values of parameter ior lce 1 are presented; the band near $830 \mathrm{~cm}^{-1}$ is denoted as \mathcal{L} and the band near $226 \mathrm{~cm}^{-1}$ as \mathcal{R} (the splitting of the second band is ignored; index "m"refers to centres of both bands and subscripts "min", "max" refer to the quantities, related to on the level $1 / 2$ regerding the peak loss value $\varepsilon_{\mathrm{m}}^{\prime \prime}$ in these bands. Using experimental data $[8]$ and the equation $\varepsilon^{*}=n^{2}-x^{2}+2 i n \neq$, we may find the band width Δv from the frequency dependence $\varepsilon^{*}(v)=2 \pi(v) æ(v)$.

Using these data, we ifind:
At $\mathrm{C}: \chi_{\mathrm{m}}=0.05, x_{\mathrm{m}}=6.68, \Delta x_{\exp }=2.13$;
At $R: \chi_{\mathrm{m}}=0.058, x_{\mathrm{m}}=1.89, \Delta \tau_{\mathrm{EKP}}=1$.
For the description of the dielectric behavion of ice 1 we introduce two subensembles of molecules, like in case of Ilquid water ${ }^{\text {¹, }}$: $[I]$, with less, and $[R]$, with greater rotational mobility, to which $\mathcal{R}-1$ and \mathcal{C} - bands correspond in the FIR spectrum. As in the work we suppose, that [I]-molecules are responsible for the Debye relaxation of polar medium. The above theory is applied aeparately to K - and $R-$ regions of the $F I R$ spectrum of ice 1.

Uaing the formulae of Table 5 we get the following egtimationg of the field parameter p and minimum Ine band Δx_{0} :

$$
\begin{equation*}
\text { At } \mathcal{L}: p=6.7, \Delta x_{0}=0.074 \tag{6.3}
\end{equation*}
$$

At $R: p=2, \quad \Delta x_{0}=0.235$.
Thus the estimated minimum width of the C-band is approximately 30 times lessvthe experimental value Δx amp. The question arises, whether the loss curve can be widened due to the finiteness of the life time τ so that it may cancel this arawback. The ilfe time τ we may estimate using Tables 5 and 6 . Oeloulating the Kirkwood correlation factor $g=\frac{\varepsilon_{g}-n_{\infty}^{2}}{1+\omega} \frac{2 \varepsilon_{g}+n_{i \infty}^{2}}{3 \varepsilon_{a}}=2.21$, we find that the normalized collision Irequency y is extremely $10 \%\left(y \approx 4.1 \cdot 10^{-7}\right.$). Hence the theoretical width Δx proctically coincides with the minimal one (Δx_{0}). So, if the DWP model with the proilie $\cos ^{2}{ }^{2} g$
were employed it would seem impossible to remove the difference between the theoretical and experimental line widths $\Delta \boldsymbol{x}$ and $\Delta X_{\text {exp. }}$. A possible way to
improve the theory is to change the profile of the intermolecular potential.
The situation is different for R-band. The estimated value of
the p-parameter is about 2 , and the minimum line width Δx_{0} is several times lese than the experimentel valus Δx. Upting dsta of Table 3 we ind that the theoretical \mathcal{R}-band may be midened by taking $: \leadsto 0.3$ Then acoording to rable 4 the relaxation time will be in the order of picoseconds. Indeed, we have $\eta \simeq 0.038 \mathrm{ps} ;$ so, putting from Table 4 the value $\tau_{D} / \eta=21$, which corresponds to $p=2$ and $y=0.3$, and multiplying the result by $g=2.21$, we obtain: $\tau_{D} \simeq 21 g 1 \simeq 1.8 \mathrm{ps}$. Consequently the corresponding wave length $\lambda_{D}=\left(2 \pi c \tau_{D}\right)^{-1} \simeq 0.34 \mathrm{~cm}$. The relaxation time for R-molecules is thus several times less than its value for liquid water but it is many orders of magnitude less than the value of $\tau_{\mathbb{D}}$ for
the main relaxation region in ice 1 .

At last, let us estimate the proportion r of molecules regponsible for the R-band. Noting that at $p=3$ and $y=0.3$ the Table 3 gives $I_{\max }^{\prime \prime} \otimes(1 / 3) \bar{K}_{\max }^{\prime \prime}=0.816 / 3$. Doubling this value in order to account approximately for the space atatigtics we obtain $r=\frac{\chi_{m}^{\prime \prime}\left(\operatorname{enpe} e^{p} \operatorname{ment} \text { in } R\right)}{2 \chi_{m}^{\prime \prime}(p=2, y=0.3)}=\frac{0.058}{20 L_{\max }^{\prime}(p=2, y=0.3)}=6.8 \%$.

An important resit of these eatimations get oneself thinking that the proportion of $\mathrm{H}_{2} \mathrm{O}$ molecules ath greater rotational mobility has in lce the same order of magitwie as in liquid water In spite di more reguiar stmuture of fee and congequentiy the leas proportion of "defecta" of structure then in mater. Indeed, $\longleftarrow+1,4$, the proportion of $[R]$ - molecules in
 the following experimental fact : Intenstitias of R - bands are neariy equal in ioe 1 and liquid water. The obteined reaut an be refommiated as follows. The rotational , translational motion contributing to the R - band in FIR gpectrel region, actually is not frozen at water - foe trangition in spite op the gibetantial many orders of magntwat inorease of visoogity and the Deove relaretion time. rence, most probably, [R] - molecules present the inherent property of E-bond 1 tseif and have no drect relation to the "derscts" of it - bond net.

Conclusion

1. A gimple nybrid quesi-elastic bond , extended difusion
model may be applied for a qualitative analysis of a dielectric relaxation described by a rigorous planar double well potential model with a profile $U_{0} \cos ^{2} \theta^{2}$.
2. When a conservative fild parameter $p=\left(U_{0} / k_{B} T\right)^{1,2}$ exceeds 4, the FIR absorption spectrum results in a narrow line and a. great Debye relaxation time τ_{D}. In this work the notion of limiting absorption tine is introduced, which has the minimum width and corresponds to the limit $\tau \rightarrow \infty$. If τ_{D} is very large, it is the limiting line that practically describes the FIR absorption spectrum.
3. The field DWP model can be applied for the description of the dielectric loss spectrum in the translational (near $200 \mathrm{~cm}^{-1}$) band of hydrogen-bondedgystems. The comparison of ice 1 and water spectra set oneself thinking that the very existence of [R]-molecules with greater mobility is due to the hydrogen bond itself, and not to the "defects" of H-bond net.
4. The field DWF model with a profile $U_{0} \cos ^{2} \theta$ is not applicable to the description of a librational (near $\gamma \simeq 800 \mathrm{~cm}^{-1}$) band of ice 1, aince the theoretical absorption line is too narrow in this case. Comparison with the confined rotator model ${ }^{4}$ implies the idea that both librational and translational bandsmay be described in frames of a new field model in which the potential profile $U(v)$ has the form of a "hat": flat bottom, abruptly elevating walls and flat
[^0]ACKNOWLEDGEMENTS

We are thankful to Yu.P.Kalmykov who drew our attention to the necessity of checking the applicability of the approximation $K(z) \rightarrow K(i y)$, which was used in this work for the study of Debye relaxation. V.I.Gaiduk acknowledges the hospitality of the Dublin Institute for Advanced Studies, where the research reported in the present publication was completed.

References

1 V.I. Gatak ond Yu.P. Holmykov, t. Mol. Liquide, 34 (1987) ..
2 V.I.Gatiuk, T.A.NovaRova an V.V.Breanovakikn, J. Ohem. Soc. Faraday Trang., 87 (1991) 559.
3 I.Grochulaki, A.Gerachet. , Mol. Fhys., 77 (1992) 539.
4 V.I.Golduk, T.A.Novspova and V.V.Brekhovekthn, d. Them. Soo. Taraday Trans. 93 (1990).
5 W.T.Coffey, T.K.Vis and P. W. Gorcoran, Proc. Rov. Soc. Iond. A425 (1989) 969.
5 Y.I.Galdur, T.A.Novakova, B.M.Taeltlin aid j. Moconnelt, Fhysica A. 197 (1993) 75.

7 G. Fintgepina, Droperties and Structure of Water. The Voacow Intueraity, 1974 (in Rusian).
3 V.M.Zolotar'ev, Optioa I Specroskoplya, 29 (1970) il25 (in Rusgian).
9 J.G.Eertte, and E.Whatley, J. Chem. Phys. 46 (1967) 1271.
10 G.Hufford, Internat. J. Of Infrared and millimeter Waves, 12 (1991) 67\%.

11 V. T. Gaidue and B. Y. Tevititn, The Complex Susceptibility of a Libreting apole in an Axially Symmetris Potential well, Advances in Themioal Dhysica, 87(1994)000-000.
12 D. J.Retd, MoI. Phys., 49 (1983) 331.
13 Yu.P. Holmykou, Khimicheskaya Fyzika, 6 (1997) 59e, 745 (in Rugaian).
14 Yth. P. Kalmy $o v$, Liquid Oryetala, 10 (1991) 519.
15. V.I.Gaiduk. On the Nature of the Translational Band in FIR Absorption Spectra of Liquid Water and Ice 1. Submitted for publication in Mendeleev Communications. 16. V.I.Gaiduk and V.V.Gaiduk. Dielectric Relaxation and Structure of Hydrogen Bond (in Russian). Submitted for publication in Khim. Fizika.

Pis. orientarfonal motion of Iibrators (a) and hindered rotators (b).
a: the fleld parameter $p=0.5(1), 1(2), 2(3)$; dotted line the saymptotic dependence.
b: $p=0.05(1), 0.1(2), 0.5(3)$ and 14); curve 5 - the Maxwellien astribution.

Fig.2. The frequency dependences of the imaginary part of the susceptibility (a) land the normalized absorption (b). The field parameter $p=0.5(1), 1(2)$, 1.75 (3) and 3(4). Isotropic medium.

Fig.3. The frequency dependence of the normalized absorption coefficient. The QEE/ED model. All denotations as in Fig. 2.

FIg.4. The losa susceptibility (1) and nomalized absorption (2) as functions of frequency: the rigorous theory (solid lines) and QES/ED model (dashed limes). a - for quasi-space ensemble; b the same but with doubled spectral function. $p=3, y=2$, isotropic medium.
 field parameter p for a relatively shallow potential well: $p=0.01$ (i); $p=0.1$ (2); $p=0.2(3) ; p=0.3$ (4); $p=0.4$ (5). a Higorous theory, b - QEB/ED model; $y=y$.
(C): the plot $x x^{\prime \prime}(x)$, calculated for $y=0.005, p=0.75$ (curve 3) and $y=0.05, p=0.85$ (curve 4). Curves 1 and 2 show the contributions of librators and hindered rotors to curve 3. Rigorous theory.

P18.6. The evolution of a nerrow lose ime $\mathrm{K}^{\prime \prime}(x)$ due to the Field parmoter p and to the strong collision frequency $y: a, b$ - for the parsilel orientation; c, d - ior the orbiogural orientation.

QEB/ED model: solid lines for $y=0.1$, dota for $y=0.3$;
rigorous theory: dots for $y=0.1$ and talangles for $y=0.3$.
The ifeld parameter $p=3.5(9,0)$ and $4.5(b, d)$.
d, e: the real part of the spectral function $\Pi^{\prime}(x)$ at $p=4.5$ for $y=0.1$ (30lid Ine) and $y=0.3$ (dashed Ine) at parallel (e) and orthogonal (f) orientations in frames of the $\angle F P / E D$ model.

Fif. 7 : The sequency dependence of the loss gusceptibility for parallel orientation (4), isotropto ensemble (2) and orthogonal orientation (3). Solid Inse - fcr the spectral functions $K(z)$, $L(z)$; dained lines - for the spectral functions $I(z y), L(i y)$. The fleld parameter $p=4.5$; st $y=0.1$ (a) and 0.3 (b). The $Q E B / E D$ model.

F1g.8. The dependence of the relaration time τ_{D} on the life time τ for isotropte dipolar ensemble. The fleld parameter $p=5$ (solid line) and $p=2$ (ashed ine). 3: rigorous theory; $b:$ QEB/ED model.
-27-

Parameter	General case	For $p \geqslant 1$	Fror $\rho \rightarrow 0$
$\stackrel{r}{r}$	$\frac{2 p \exp \left(p^{2} / 2\right)}{\pi^{3 / 2} I_{0}\left(p^{2} / 2\right)} \int_{0}^{1} c \mathrm{k} d m$	$\simeq 1$	$\frac{4 p}{\pi^{3 / 2}}$
< β;	$\frac{2}{r} \frac{p \exp \left(p^{2} / 2\right)}{\pi^{3 / 2} I_{0}\left(p^{2} / 2\right)} \int_{0}^{1} f x \operatorname{arosin}(\sqrt{m}) d n$	$\frac{\pi^{1 / 2}}{2 p}$	
p	$2 \operatorname{sh}\left(p^{2} / 2\right)\left\{r \sqrt{\pi} I_{0}\left(p^{2} / 2\right)\right\}^{-1}$	p	$\pi p / 4$
¢	$\operatorname{sap}\left(-p^{2} / 2\right)\left[\pi^{1 / 2} I_{0}\left(p^{2} / 2\right)\right]^{-1}$	$\simeq 0$	$\pi^{-1 / 2}$
y_{0}	$\exp \left(p^{2} / 2\right)\left\{(\pi)^{3 / 2} I_{0}\left(p^{2} / 2\right)\right\}^{-1}$		
$\stackrel{r}{f(p)}$	$\frac{\pi^{1 / 2} \check{\gamma}^{3}}{I_{0}\left(p^{2} / 2\right)} \frac{m m^{\prime}}{E-\pi^{\prime} K} \exp \left[\frac{p^{2}(1-2 \pi)}{2}\right]$ where $m(p)$ is found from the equation $p=\pi p /(2 \mathrm{~K})$	$\begin{aligned} & 4 p \gamma^{3} e^{4 p^{2}} \\ & \times \exp \left[-4 p^{2} \gamma\right] \end{aligned}$	± 0
$\begin{gathered} 0 \\ f(p) \end{gathered}$	$\frac{\pi^{1 / 2} \gamma^{3}}{I_{0}\left(p^{2} / 2\right)} \frac{m^{\prime} m^{-3 / 2}}{\mathbf{E}(\sqrt{m})} \exp \left[\frac{p^{2}}{2}\left(1-\frac{2}{m}\right)\right]$ where $m(p)$ is found from the equa- $\text { tion } \quad \frac{0}{p}=\pi p /(2 \sqrt{m} K(\sqrt{m})$	0	$\frac{2}{\sqrt{\pi}} \mathrm{e}^{-\frac{0}{2} / 2}$
Denoons	$\begin{array}{cc} C=\exp \left(-p^{2} m\right) ; R=\exp \left(-p^{2} m\right. \\ p=H_{0} /\left(k_{B} T ;\right. & \ddot{\gamma}=p, \end{array}$	${ }^{4} ; m=r^{2} ;$	$\begin{aligned} & q^{\prime}=1-m ; \\ & =p / p \end{aligned}$

	92°	$8 \pm 6{ }^{\circ}$	0920	Etg＊0	$909^{\circ} 0$	795＊0］	（i）
$\begin{array}{r} {[9]} \\ 96^{\circ} \downarrow \end{array}$	$E \in \varepsilon_{0}^{[2]}$	$\angle L E^{\circ} O$	$\begin{array}{r} {\left[66 \varepsilon^{\circ} 0\right]} \\ 16 \varepsilon^{-0} \end{array}$	$\left[\begin{array}{cc} {[5 \cdot 0]} \\ \pm 56 \cdot 0 \end{array}\right.$	$\begin{aligned} & {\left[6 L 0^{\circ} 0\right]} \\ & 6920^{\circ} 0 \end{aligned}$	［0］	＜${ }^{2}$
SLS．	$285^{\circ} 0$	8L己＇0	とO2．0	E81．0	081．0	081．0	f
000＊	9920	$ゆ 6 \cdot 0$	¢59＊0	$098^{\circ} 0$	$L 26^{\circ} \mathrm{O}$	\downarrow	$\stackrel{1}{0}$
$866^{\circ} 0$	$26^{\circ} \mathrm{O}$	$\begin{gathered} 8.2 .0] \\ 929.0 \end{gathered}$	$\left[\begin{array}{c} \left.658^{\circ} 0\right] \\ 195^{\circ} \end{array}\right.$	$\begin{gathered} {[\not p+1.01} \\ 9>1.0 \end{gathered}$	$\left[\begin{array}{l} \left.2 L 0^{\circ} 0\right] \\ E E L 0.0 \end{array}\right.$	0	$\underset{\sim}{4}$
$[L L L \cdot 0]$	$\begin{gathered} {\left[\varepsilon t t^{\circ} \cdot\right]} \\ \varepsilon \in t \cdot 0 \end{gathered}$	$\left[\begin{array}{c} \left.988^{\circ} 0\right] \\ \left.64 L^{\circ} 0\right] \end{array}\right.$	1780	798＊0	$298^{\circ} 0$	$898{ }^{\circ} 0$	＜d＞
ς		มəาวurate	$5=0$ d pIeTj	2.0 2atqeana	1.0 suoo eux	0	untpaw e －EnEd zuil

Table 4. The dependence of the Debye relaxation parameters on

ara-	Field parameter p						
	0.011	0.1	0.2	0.5	I	2	5
O_{HI}	1.5	\%.504	1.515	1.59	1.86	2.55	2.94
1	1.5	1.496	1.485	1.41	1.14	0.453	0.061
A: anisotropio medium							
$\pi \mathrm{C}$	1.373	1.323	1.2151.1620.882	$\begin{aligned} & 0.887 \\ & 0.869 \\ & 0.731 \end{aligned}$	$\begin{aligned} & 0.444 \\ & 0.440 \\ & 0.402 \end{aligned}$	$\begin{aligned} & 0.436 \\ & 0.159 \\ & 0.0426 \end{aligned}$	$\begin{aligned} & 0.0003 \\ & 0.0003 \\ & 3 \cdot 10^{-4} \end{aligned}$
	1.259	1.233					
	0.914	10.906					
K^{\perp}	$\begin{aligned} & 1.374 \\ & 1.26 \\ & 0.914 \end{aligned}$		$\begin{aligned} & 1.422 \\ & 1.320 \\ & 0.944 \end{aligned}$	1.373 1.322 1.023	$\begin{aligned} & 1.113 \\ & 1.098 \\ & 0.964 \end{aligned}$	$\begin{aligned} & 0.450 \\ & 0.448 \\ & 0.434 \end{aligned}$	$\begin{aligned} & 0.0613 \\ & 0.0613 \\ & 0.0611 \end{aligned}$
$\chi_{\bar{\chi}_{i l}^{\prime \prime}} / G$	0.0637	0.0901	$\begin{aligned} & 0.150 \\ & 0.177 \\ & 0.317 \end{aligned}$	$\begin{aligned} & 0.354 \\ & 0.362 \\ & 0.431 \end{aligned}$	$\begin{aligned} & 0.710 \\ & 0.712 \\ & 0.731 \end{aligned}$	$\begin{aligned} & 1.251 \\ & 1.252 \\ & 1.252 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 1.47 \\ & 1.47 \end{aligned}$
	0.120	0.135					
	0.293	0.299					
$\chi_{D_{\perp}}^{\prime \prime} / G$	0.0529	0.0463	$\begin{aligned} & 0.0316 \\ & 0.0823 \\ & 0.270 \end{aligned}$	$\begin{aligned} & 0.01689 \\ & 0.0422 \\ & 0.191 \end{aligned}$	$\begin{array}{r} 0.0115 \\ 0.0190 \\ 0.0863 \end{array}$	$\begin{aligned} & 0.0019 \\ & 0.0026 \\ & 0.0098 \end{aligned}$	$\begin{array}{\|c\|} \hline 6 \cdot 10^{-7} \\ 10^{-5} \end{array}$
	0.120 0.293	10.104					
Tid	11.95.47	$\frac{22.72}{12.2}$	$\begin{aligned} & 24.95 \\ & 13.04 \\ & 5.73 \end{aligned}$	$\begin{aligned} & 35.95 \\ & 18.34 \end{aligned}$ 7.23	84. 42.4 15.5		$\left\lvert\, \begin{array}{l\|} 179448 \\ 89731 \end{array}\right.$
		5.54					29936
τ_{D} / η	21.83 11.9	21.32	20.89 11.25	20.5 10.64	$\frac{80.4}{10.35}$	$\frac{20.2}{10.12}$	20 10.00
	5.47	5.41	5.24	4.58	3.93	3.48	3.35
	E: isotropio me				$10=1)$		
	0.916	0.909	0.879	0.753	0.519	0.164	0.0205
I_{0}	0.840	0.801	0.827	0.730	0.513	0.164	0.0205
	0.60	0.009	0.009	0.585	0.455	0.159	0.0205
χ_{D} / G	0.04220.0800.195	0.0455	0.0506	0.123	0.640	0.418	0.49
		10.0796	0.0863 0.196	0.135 0.208	0.244	0.418	0.49
τ_{D} / η	$\left\lvert\, \begin{aligned} & 21.24 \\ & 11.9 \\ & 5.47 \end{aligned}\right.$	22.00	22.76	25.6	38.5	121.7	0.49
		11.9 5.47	12.09	13.7	19.5	61.0	487
		5.47	5.48	5.7	7.33	21.0	

-ac-

Table 5. Dieleotrio onstant of ioe 1, uese for estimetion of free

[01] unuroede aroed OL	$\text { [8] }{ }_{8} \text { pueq - } d$	$[8]_{8} \text { purq }-7$

Fig. 1

Fig. 2

Fig, $\overline{3}$
-34-

Fig. 4

$$
\text { Fig, } 5 a, k
$$

$-36-$

Fig. 50

Fig. $6 a, b$

Fig. 6c,d

Fig. 6 e, f

Fig. 7

Fig. 8

[^0]: edges where u depends weakly on the angle $\boldsymbol{\theta}$. The explanation of this idea was given recently 15,16 . The existence of a two-humped absorption curve, which was show (Fig. 5c) for a cosine squared profile $\mathbb{V}(\mathscr{O}$, supports the idea that both absorption peaks, \mathcal{C}_{L} and $\mathcal{C}_{\boldsymbol{R}}$, can agree with experimental data for a suitable 15,16 potential form $u(\boldsymbol{\vartheta})$.

